
Rendering & Meshes

Dave is here to talk to you about

2. How does mesh rendering work, anyway?

Pipeline recap

A mesh consists of: vertex positions and which vertices make faces

1
2

3

4

5

1, 2, 5
5, 2, 4

2,
 3

, 4

Pipeline recap

1
2

3

4

5

Vertex shader computes
positions and other
properties for each vertex

Fragment shader
computes the colour of
each pixel on each face

Properties are interpolated
across each face pixel

What does the vertex shader do?

● Vertex positions start in local coordinates

● The vertex shader translates those into screen coordinates
○ We need to scale/rotate/translate these local coordinates into world coordinates

○ OpenGL wants x and y in [-1, 1] and maps that to the window automatically. This is "clip

space" if you need to google things related to it

position transform * position projection * transform * position

local world screen

What does the vertex shader do?

● Also, pass any per-vertex info you might need to compute colours in the
fragment shader with out variables (which become in variables in the
fragment shader)

e.g.
in vec2 in_texcoord;

out vec2 texcoord;

void main() {

 texcoord = in_texcoord;

 // ...etc

}

What does the fragment shader do?

● Using per-vertex in variables and global shader uniform variables, compute a
pixel color

e.g.
in vec2 texcoord;

uniform sampler2D image;

layout(location = 0) out vec4 out_color;

void main() {

 out_color = texture(image, texcoord);

}

Compiling shaders

● Shaders get compiled at runtime, not when our C++ gets compiled
● Starting with a string for each shader, we:

○ Give the string to OpenGL with glShaderSource()
○ Tell OpenGL to compile the shader with glCompileShader()
○ Create a program for the vertex + fragment shader with glCreateProgram()
○ Attach both shaders to the program with glAttachShader()
○ Link it all together with glLinkProgram()

How do we get mesh info to the shaders?

Pipeline recap

CPU GPU

{x,y,z}, {x,y,z}, {x,y,z}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

Pipeline recap

CPU GPU
We need some
space for vertices
and face indices

{x,y,z}, {x,y,z}, {x,y,z}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

Pipeline recap

CPU GPU

I made you some
buffers

{x,y,z}, {x,y,z}, {x,y,z}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

Vertex array object 1

Buffer object 2

Buffer object 3vertexBufferId = 2

indicesBufferId = 3

vaoId = 1

Pipeline recap

CPU GPU

Put this vertex
position data for
vertex array 1 in
buffer 2 please

{x,y,z}, {x,y,z}, {x,y,z}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

Vertex array object 1

Buffer object 2
{x,y,z}, {x,y,z}, {x,y,z},
...

Buffer object 3vertexBufferId = 2

indicesBufferId = 3

vaoId = 1

ve
rtic

es

Pipeline recap

CPU GPU

Put this face index
data for vertex array
1 in buffer 3 please

{x,y,z}, {x,y,z}, {x,y,z}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

Vertex array object 1

Buffer object 2
{x,y,z}, {x,y,z}, {x,y,z},
...

Buffer object 3
{v1,v2,v3}, {v1,v2,v3},
...

vertexBufferId = 2

indicesBufferId = 3

vaoId = 1

ve
rtic

es

elem
ents

Pipeline recap

CPU GPU

And now draw it
using this shader

{x,y,z}, {x,y,z}, {x,y,z}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

Vertex array object 1

Buffer object 2
{x,y,z}, {x,y,z}, {x,y,z},
...

Buffer object 3
{v1,v2,v3}, {v1,v2,v3},
...

vertexBufferId = 2

indicesBufferId = 3

vaoId = 1

ve
rtic

es

elem
ents

Pipeline recap

CPU GPU

Here you go

{x,y,z}, {x,y,z}, {x,y,z}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

Vertex array object 1

Buffer object 2
{x,y,z}, {x,y,z}, {x,y,z},
...

Buffer object 3
{v1,v2,v3}, {v1,v2,v3},
...

vertexBufferId = 2

indicesBufferId = 3

vaoId = 1

ve
rtic

es

elem
ents

Where does the vertex info come from, anyway?

● Hard-coded (e.g. if you just need a square)
● Dynamically generated
● Imported from modelling software

Importing meshes: obj files

vertex positions (and optionally colors) are specified with:
v -0.5 2.0 -0.2 1.0 0.0 0.0
This will be vertex 1, and the next one will be vertex 2, etc

texture coordinates are specified with vt:
vt 0.2 0.8
This will be texture coord 1

faces are specified as the set of vertex indices around the face:
f 1 2 3
optionally with texture coordinate indices after a / too:
f 1/1 2/2 3/3

Making obj files in Blender

1. Either make a shape in Blender or make an SVG somewhere and import it

Making obj files in Blender

2. Hit Ctrl-Tab to go into Vertex Paint mode:

Making obj files in Blender

This creates an empty set of vertex
colours for the mesh:

Making obj files in Blender

3. Change the object's material so
we can see the colours that we're
going to add by setting the base
colour to the vertex colours:

Making obj files in Blender

4. Use Vertex Paint mode to paint the vertices the colours you want

Making obj files in Blender

5. If you ctrl-tab back into Object Mode, use viewport shading to see the colours

Making obj files in Blender

6. Blender's .obj exporter doesn't
actually support vertex colours,
but its .ply exporter does! Export a
.ply instead:

Making obj files in Blender

7. Convert the .ply to a .obj using MeshLab by doing File ➝ Export Mesh As

Making obj files in Blender

8. Put that .obj in your data directory and use it in your game!

Another alternative

● Decompose your character into multiple sprites
● The character has one transform, and each body part has its own:

// textured.vs.glsl
vec3 pos = projection * transform *
 vec3(in_position.xy, 1.0);

// your_character.vs.glsl
vec3 pos = projection *
 character_transform * part_transform *
 vec3(in_position.xy, 1.0);

Depth sorting multiple meshes

Ways of depth sorting

● Using OpenGL's depth buffer
○ OpenGL does it for you!

○ ...but you need to discard totally transparent sprite pixels yourself

○ ...but you still need to draw semi-transparent things in order

● Using the painter's algorithm
○ glDisable(GL_DEPTH_TEST);

○ Draw things in back-to-front order

Painter's algorithm in ECS

● In tiny_ecs.hpp, we have
ComponentContainer::sort(comparisonFunction)

● comparisonFunction(a, b) returns whether a comes before b in the list

e.g.:
struct Depth { float depth; }; // or add to Motion
ECS::registry<Depth>.sort([](const Depth& a, const Depth& b) {
 // Higher z → farther away?
 bool should_a_draw_before_b = false; // FIXME
 return should_a_draw_before_b;
}); NOTE: removing entities will

reorder components, so you
need to sort again afterwards!

Questions?

