Milestone Submission Form

Team ID:
Milestone:

Team composition:

Student initials | CWL

Instructions
Please keep this document up to date and include a copy of it with each milestone submission. TA’s
should be able to read through this document and see the work your team 1) is planning to do in the
next milestone, 2) has completed for the current milestone, 3) as well as a running history of work

completed over prior milestones.

Milestones are organized into tables below which include both their required features and text inputs
for their creative components (which you fill in with your selected features). There are annotated long-
form explanations for each feature, with links to additional resources if available, at the end of this
document. We further provide a table of suggested features that you may pick and choose from for each

milestones creative component. To aid in planning, each suggested feature has a classification of ‘basic

b

or ‘advanced’ and a list of the background knowledge required to implement it. In general, ‘basic’
features are worth 10 points and ‘advanced’ features are worth 20 points. We highly encourage you to
work on your own custom features, beyond what has been suggested here. Important: Please discuss

the amount of points custom feature are worth with the TAs before working on them.

Fill in the table below for the current milestone, entering the initials of the author responsible for each

implemented feature to the right of the table, under ‘Author’. If it was teamwork., list in the primary

contributor first. Also include a rough plan on features and authors for the next milestone (non-binding,

please update as you go).

Grading

Each feature you implement allots your team a specified number of points, for each milestone you must
attain 100 points to receive full marks for that milestone. Certain features are required for specific
milestones, others you can complete as a part of the creative component of milestones. Required
features can be completed early but never late, meaning if you finish the required features for future
milestones in an earlier milestone submission, you will be credited at the earlier milestone, leaving
room for additional optional features in the future one.

You will receive full credit for features only if they are fully operational. We deduct points for sloppy,
buggy and incomplete implementations. Grading suggested features will necessarily be subjective:
more complex features or those better fitting into the overall game will be rewarded with more points.
Bonus points can be gained for features exceeding 100 points, and the grading of additional bonuses,
features, and the size of bonuses will be at the marker’s discretion.

Milestone 1
Category Task Points Author initials
(primary, secondary, ...)
Textured geometry 10% |
Rendering Basic 2D transformations 10% |
Key-frame/state interpolation 10% |
Keyboard/mouse control 10% |
Random/coded action 5% |
Gameplay
Well-defined game-space boundaries 5% |
Simple collision detection & resolution (e.g. between square sprites) 10% |
Minimal lag |
Stability 20%
No crashes, glitches, unpredictable behaviour |
Creative | 20% ||

Milestone 2

Category Task Points Author initials
Game logic response to user input 15% |
Sprite sheet animation 15% |
IGn;rir:;Z?/ New integrated assets 10% |
Mesh-based collision detection (e.g. mesh and straight wall) 10% |
Basic user tutorial/help 5% |
Playability 2 minutes of non-repetitive gameplay 10% |
Minimal lag |
Stability Consistent game resolution 15% |
No crashes, glitches, unpredictable behaviour |
| |
| |
Creative : 20% :
| |
| |
Milestone 3
Category Task Points Author initials
Playability 5 minutes of non-repetitive gameplay 15% |
Memory management 10% ||
Robustness Handle all user input 5% |
Real-time gameplay 10% |
Prior missed milestone features & bug fixes |
Stability Consistent game resolution 20% |
No crashes, glitches, unpredictable behaviour |
| |
| |
| |
Creative : 40% :
| |
| |
| |
Milestone 4
Category Task Points Author initials
Prior missed milestone features & bug fixes
Stability 15%
No crashes, glitches, unpredictable behaviour
Playability 10 minutes of non-repetitive gameplay 15%
Comprehensive tutorial 10%
User Experience
Optimize user interaction and REPORT it 10%

Creative

50%

Suggested Features

Category Feature Group Background Knowledge

[1] Simple rendering effects basic Fragment shaders/OpenGL uniforms.

[2] Parallax scrolling backgrounds advanced |Vertex and fragment shaders, texture mapping.

[3] Complex geometry advanced |Geometry and vertex shaders.

Graphics [4] Skinned motion advanced |Meshes, bones, constraints, matrix algebra and
P hierarchies, UV mapping, kinematics.

[5] Particle systems advanced |Instanced rendering, shader storage buffer objects,
simple physics.

[6] 2.5(3D) lighting advanced |Normal mapping, local illumination models

[7] 2D dynamic shadows advanced |Basic shadow mapping, ray-object intersections

[8] Basic physics basic Basic understanding of 2D physics.

[9] Complex prescribed motion basic Bezier/spline/Hermite interpolation and parametric
curves.

[10] Precise collisions advanced |Newton’s method, basic physics, acceleration
structures such as bounding volume hierarchies,
quad trees, etc.

Physics & [11] Complex physical interactions advanced |Classic physics models, kinematics, numerical
. Y . with the environment integration.
Simulation

[12] Articulated motion advanced |Paramaterization, kinematics, coordinate systems,
matrix algebra and hierarchies.

[13]Physics-based animation advanced |Classic physics models, Euler method or other
advanced integration methods, kinematics, particle
systems for background effects (water/smoke).

[14] Simple path finding basic Basic search algorithms (ex. breadth-first).

[15] Advanced decision-making advanced |Complex graph traversal and search algorithms, goal-
based Al logic (ex. rewards, penalties...).

Al [16] Swarm behaviour advanced |Instanced rendering, BOIDS, basic physics.

[17] Enemy group behaviour advanced |Behaviour/decision trees, observer pattern, BOIDS.

Cooperative planning

[18] Cooperative planning advanced |Behaviour trees, goal-based Al logic (ex. rewards,
penalties...), observer pattern.

[19] Reloadability basic Serialization.

Software Eng.
[20] External integration basic General coding skills.
[21] Camera controls basic Linear algebra for camera matrix.
Ul &I0 [22] Mouse gestures basic General coding skills.

[23] Audio feedback basic General coding skills.

[24] Basic integrated assets basic Asset creation tools (e.g. Blender, Krita, GIMP,
Audacity...).

[25] Game balance basic Video games, human psychology :)

Quality & UX . . .

[26] Numerous sophisticated advanced |Asset creation tools (e.g. Blender, Krita, GIMP,

integrated assets Audacity...).

[27] Story elements basic or | Narratives, basic animation (for cutscenes), text

advanced |[rendering, or text sprites.

[1] Simple creative use of the fragment shader.. For example changing the color of a sprite over time.
The color should change based on a uniform input (e.g. change the uniform based on time, user input or

when a collission is detected).

[2] Multiple background layers (at least 3) that create a parallax effect upon camera motion.

[3] Incorporate one or more complex polygonal geometric assets. Implement an accurate and efficient
collision detection method that supports this and other moving assets (include multiple moving assets

that necessitate collision checks).

[4] Render an animated skinned mesh (for example an eel represented as a triangle mesh that slithers

around).

[5] Use the OpenGL instancing feature glDrawArraysInstanced to render hundreds of instances of the
same object more efficiently to create appealing particle effects.

[6] Create interesting shading effects, such as diffuse reflection, metallic texturing, bump/normal
mapping, specular reflections, baked/static shadows...

[7] Make lights cast dynamic shadows, when entities pass in front of a light source their shadow should
be accordingly updated and look plausible/realistic. You can use any technique as long as the result
looks good.

https://www.gamedev.net/tutorials/ _/technical/graphics-programming-and-theory/dynamic-2d-
soft-shadows-12032/

[8] Simple physical interactions, force of gravity, elastic or inelastic collisions, conservation of
momentum... For example, have a ball fall down and bounce off the floor/entities. Use a numeric
integrator such as Verlet.

[9] Use geometric splines (Hermite, Lagrange, Bezier, etc.) to implement smooth non-linear motion of
one or more assets or characters. An example of a curve controlled animation is shown at
https://docs.unity3d.com/uploads/Main/AnimationEditorBouncingCube.gif

[10] Incorporate two or more complex polygonal geometric assets that move and collide. Implement an
accurate and efficient collision detection method that supports these and other moving assets. You can
approximate all objects with convex proxy polygons.

[11] Have complex physical interactions between the entities and the environment. For example
simulate exact collisions between the player and ropes/vines that wiggle and eventually come to rest, or
let the player cut a tree and have it fall down in a realistic/plausible fashion.

[12] Implement an articulated entity, for example a robotic arm that follows the cursor and uses inverse
kinematics to figure out it;s position/geometry. Use a matrix hierarchy and correctly solve the inverse
system.

[13] Implement time stepping based physical simulation which can either serve as a background effects
(e.g. water, smoke implemented using particles) or as active game elements (throwing a ball, swinging
a rope, etc.). A subset of the game entities (main or background) should possess non-trivial physics
properties such as momentum (linear or angular) and acceleration, and act based on those.

[14] Breadth first search for path finding and logic for characters to follow a prescribed path.

[15] Advanced decision-making mechanisms based on goals (e.g., A* result used in the Al of
a character).

[16] Create a group of characters with entities of the same class influencing each others positions.
Examples:
Subnautica’s fish schools: https://eater.net/boids

BOIDS pseudocode: http://www.kfish.org/boids/pseudocode.html

[17] Have a group of enemies coordinate between them, for example have them create an organized
line to pass through a bottleneck to reach the player, have a healer enemy heal an ally when they get
wounded, have many enemies position themselves to best surround and block the player out of an
objective.

[18] Planning the action of two different characters towards a common goal that requires non-trivial
communication between the two (e.g. coordination between non-player characters and enemies towards
a joint goal).

[19] Write level descriptions (entities and their components, i.e., position, texture,) in a human-
readable text file and write a level loader. We recommend the JSON format using existing json loaders.
ECS makes it easy to add components programmatically. The game should allow for full state saving
for play reload. Users should be able to exit the game and restart at the same place they left the game,
with all environment variables reset to the state they were in at save time (unless some variable needs
to be reset to make sense in your game).

[20] Integrate one or more external tools or libraries (physical simulation (PhysX, Bullet, ODE,
etc.), EnTT ECS system, game engines, or other alternatives). Important: Make sure that the

installation works for all team members before merging to main. It was a major issue in the
past that teammates were not be able to contribute and test the program due to a different
operating system or development environment.

[21] Make the camera follow the player or move it based on mouse or keyboard input.

https://www.gamedev.net/tutorials/_/technical/graphics-programming-and-theory/dynamic-2d-soft-shadows-r2032/
https://www.gamedev.net/tutorials/_/technical/graphics-programming-and-theory/dynamic-2d-soft-shadows-r2032/
https://docs.unity3d.com/uploads/Main/AnimationEditorBouncingCube.gif
https://eater.net/boids
http://www.kfish.org/boids/pseudocode.html

[22] Recognize gestures (patterns drawn with the mouse) to trigger jumps along an arc or other
dedicated action.

[23] Add audio feedback for at least three interactions in the game as well as background music with
tones reflecting the journey of the game.

[24] Create a few additional assets, such as new sprites and fully integrate them into the game, either as
background elements or as interactive entitites.

[25] Do it only for the last milestone. Make sure your game is balanced and fun to play, your game
should be beatable but should still require some level of challenge to the player.

[26] Have complex assets, such as music that changes when the player is in/out of combat, animated
meshes (e.g. gltf files), a wide variety of visually coherent sprites (i.e. same aesthetic/artistic style)...

[27] Give a compelling story to the game. Have some basic character development and interesting
events. You can either lean more on artistic creativity (e.g. interesting story/plot) or techncial merit (e.g.
complex cutscenes).

	Team ID:
	Milestone:
	Student initials:
	undefined:
	undefined_2:
	undefined_3:
	undefined_4:
	undefined_5:
	undefined_6:
	undefined_7:
	undefined_8:
	undefined_9:
	undefined_12:
	undefined_13:
	undefined_14:
	undefined_15:
	undefined_16:
	undefined_17:
	undefined_18:
	undefined_19:
	undefined_20:
	undefined_22:
	undefined_24:
	undefined_26:
	undefined_27:
	undefined_28:
	undefined_29:
	undefined_30:
	undefined_31:
	undefined_32:
	undefined_33:
	undefined_34:
	undefined_35:
	undefined_36:
	undefined_37:
	undefined_38:
	undefined_39:
	undefined_40:
	undefined_41:
	undefined_42:
	undefined_43:
	undefined_44:
	undefined_45:
	undefined_46:
	undefined_47:
	undefined_48:
	undefined_49:
	undefined_50:
	undefined_51:
	undefined_52:
	undefined_53:
	undefined_54:
	undefined_55:
	undefined_56:
	undefined_57:
	undefined_58:
	undefined_59:
	undefined_60:
	undefined_61:
	undefined_62:
	undefined_63:
	undefined_64:
	undefined_65:
	undefined_66:
	undefined_67:
	undefined_68:
	undefined_69:
	undefined_70:
	undefined_71:
	undefined_72:
	undefined_73:
	undefined_74:
	undefined_75:
	undefined_76:
	undefined_77:
	undefined_78:
	15:
	undefined_79:
	undefined_80:
	undefined_81:
	undefined_82:
	undefined_83:
	undefined_84:
	undefined_85:
	undefined_86:
	undefined_87:
	undefined_88:
	undefined_89:
	undefined_90:
	undefined_91:
	undefined_92:
	undefined_93:
	undefined_94:
	undefined_95:
	undefined_96:
	undefined_10:
	undefined_11:
	undefined_25:
	undefined_23:
	undefined_21:

