CPSC 427 - Video Game Programming

Milestone 3: Advanced Game

For this milestone, you should have a complete playable game, and continue to support all
required features from prior milestones (please fix any latent bugs). You should also include
advanced features such as detailed geometry, non-linear motion, and time-stepping based
physics. Test the playability of all new features and ensure alignment with your team’s game

development plan.

You should support robust continuous play with no memory leaks, crashes or glitches. Ask
people outside your team to test play the game and modify your gameplay and interface as
necessary based on their input.

(60%) Mandatory Requirements:
Playability (15%):

Sustain progressive, non-repetitive gameplay for 5 min or more that integrates all
the new features (with minimal oral instruction). During the 5 min, the player
should be able to interact with the game and see new content for most of the time.

Robustness (25%):

Include proper memory management (no memory hoarding or leaks, the game
should not hog memory even after extended play time) (10%).

The game should robustly handle any user input. Unexpected inputs or
environment settings should be correctly handled and reported, and not crash the
game (5%).

The gameplay should be real-time (no lag). Use a profiler to locate runtime
bottlenecks and resolve them once located (10%).

Stability (20%):

Include fully completed and playable prior-milestone implementations. Fix all
bugs identified in prior marking sessions.

The game resolution and aspect ratio are consistent across different
machines/displays.

The game code should support continuing execution and graceful termination,
with no crashes, glitches, or other unpredictable behavior.



(40%) Creative Components: To obtain full marks you should implement a subset of the
advanced features below. Correctly implementing multiple features can bring your grade above
100%.

- Reloadability (10%): The game should allow for full state saving for play “reload”.
Users should be able to exit the game and restart at the same place, level, or chapter they
left the game at, with all environment variables reset to the state they were in at save
time.

- Physics-Based Animation (30%): Implement time-stepping based physical simulations
which can either serve as background effects (e.g. water, smoke implemented using
particles) or as active game elements (throwing a ball, swinging a rope, etc.). A subset of
the game entities (main or background) should possess non-trivial physics properties such
as momentum (linear or angular) and acceleration, and act based on those.

- Complex Geometry (20%): Incorporate one or more complex polygonal geometric
assets. Implement an accurate and efficient collision detection method that supports this
and other moving assets (include multiple moving assets that necessitate collision
checks).

- Complex Prescribed Motion (10%): Use geometric splines (Hermite, Lagrange, Bezier,
etc.) to implement smooth non-linear motion of one or more assets or characters. An
example of a curve controlled animation is shown at
https://docs.unity3d.com/uploads/Main/AnimationEditorBouncingCube.gif

- Other: As an alternative to the above you can implement a selection of basic (10%) or
advanced (20%) features listed in the MilestoneSubmissionForm.pdf which were not
part of prior milestones.

Grading here will necessarily be subjective: more complex features or those better fitting into the
overall game will be rewarded with more points.

Note: You will receive full credit for any of the features above only if they are fully operational.
You will receive points for creative components only if the mandatory ones are fully operational.
Points will be deducted for buggy and/or incomplete implementations.

Documentation:

¢ Provide a README.md providing entry points to each of the implemented features and
explain them where necessary.

¢ Your submission should align with your proposed development plan: Provide a write-
up explaining how your milestone aligns with the plan. Explain all discrepancies and
submit an updated proposal when such discrepancies occur.

¢ Game Design Documentation: Document the ECS design pattern used in your game.
Enumerate the game entities and actionable components used. Draw a diagram of the



interaction between entities and components. Highlight any changes versus the previous
milestone.

e Please submit a filled MilestoneSubmissionForm.pdf with this and all subsequent
milestones.

Submission: Submit the code and associated documents using the course Git repository that has
been set up for your team at https://github.students.cs.ubc.ca/CPSC427/team#. The repository is hosted
on the UBC servers and will be accessible only to enrolled students. Note that each team member
is also expected to submit their individual progress & feedback report via ‘handin’.



