CPSC 427
 Video Game Programming

Collisions (and a bit of physics)

Helge Rhodin

Objectives

- How to mathematically test that two objects intersect?
- How to implement intersection?
- Learn about points, lines, polygons

Future lectures: How to resolve collisions

Recap: Blending

- Controls how pixel color is blended into the FBO's Color Attachment
- Control on factors and operation of the equation
- RGB and Alpha are controllabe separately

$$
R G B_{o}=R G B_{s r c} * F_{s r c}[+-/ *] R G B_{d s t} * F_{\text {dst }}
$$

(Source Color * Source Alpha)

Recap: Two-pass rendering

- Deferred shading (a form of screen-space rendering)

First rendering pass

Second pass

Input

Second pass

Post-processing: Bloom

- Fullscreen Effect to highlight bright areas of the picture
- Post-processing: Operates on Images after the scene has been rendered
- High level overview:

1. Render scene to texture
2. Extract bright regions by thresholding
3. Gaussian blur pass on the bright regions
4. Combine original texture and highlights texture with additive blending

Normal maps

A way to fake 3D details

Perfect for illumination in 2D games

- What do you observe?

How to implement?

Either:

1. Include shading into your fragment shader

- Load and sample from RGB texture
- Load and sample from normal map (the new aspect)
- Compute shading

2. Two-pass rendering

- Render color in one pass
- Render the normal in a second pass
- Compute shading in a separate pass, as for the water shader

Shading equation?

- Single light source:
- Dot product of normal and light direction
- Light direction: computed from light source (L) and pixel location (x)
- Normal direction: load from normal map

$$
\text { color }=\text { texture }(x) \text { * dot(normal(x), normalized(x-L)) }
$$

Helge Rhodin

CPSC 427

Video Game Programming

Curves and Animation

Keyframe animation

Line equation

Parametric form

- 3D: x, y, and z are functions of a parameter value t

$$
C(t):=\binom{P_{y}^{0}}{P_{x}^{0}} t+\binom{P_{y}^{1}}{P_{x}^{1}}(1-t)
$$

What things can we

 interpolate?Line segment
$P_{0}=\left(x_{0}^{1}, y_{0}^{1}\right)$.

Recap: Texture mapping

Interpolating general properties

- position
- aspect ratio?

$$
\begin{aligned}
C(t):= & \binom{P_{y}^{0}}{P_{x}^{0}} t+\binom{P_{y}^{1}}{P_{x}^{1}}(1-t) \\
& s^{0} \\
& s^{0} \\
& c^{1}
\end{aligned}
$$

- scale \qquad
- color
- What else?

Barycentric coordinates / interpolation

Other Parametric Functions

$C(t):=\binom{P_{y}^{0}}{P_{x}^{0}} t+\binom{P_{y}^{1}}{P_{x}^{1}}(1-t)$
Line segment

$$
C(t):=\binom{\cos t}{\sin t}
$$

Circle (arc)

Future lecture: Splines

Segments of simple functions

$$
f(x)= \begin{cases}f_{1}(x), & \text { if } x_{1}<x \leq x_{2} \\ f_{2}(x), & \text { if } x_{2}<x \leq x_{3} \\ \vdots & \vdots \\ f_{n}(x), & \text { if } x_{n}<x \leq x_{n+1}\end{cases}
$$

E.g., linear functions

Collision Motivation: Object selection

- Point inside object boundary?

Motivation: Bullet trajectories

- Line-object or point-object intersection?

https://forum.unity.com/threads/2d-platformer-

Motivation: Collision

- Prevent object penetration
- How?

Collision Configurations?

To detect collisions between polygons it is enough to test if their edges intersect

A. True

B. False

Collision Configurations?

- Segment/Segment Intersection
- Point on Segment
- Polygon inside polygon

Inside Test?

- How to test if one poly is inside another?
- Use inside test for point(s)
- How?
- Convex Polygon

- Same side WRT to line (all sides)
- Non-Convex
- Subdivide= triangulate (not that easy)
- Shoot rays (beware of corners and special cases)

Collision Test?

- How to test if one poly collides with another?
- Use inside test for points on vertices

Resources

http://www.realtimerendering.com/intersections.html

Curves

Mathematical representations:

- Explicit functions:
- Parametric functions
- Implicit functions

Explicit functions

- $y=f(x)$
- E.g. $y=a x+b$
- Single y value for each x
- Useful for?
- Terrain

Left or right?

- "height field" geometry
- Issues?

Parametric Functions

- 2D: x and y are functions of a parameter value t
- 3D: x, y, and z are functions of a parameter value t

$$
C(t):=\binom{p_{y}}{p_{x}} t+\binom{q_{x}}{q_{y}}(1-t)
$$

Line (segment)

$$
C(t):=\binom{\cos (t)}{\sin (t)}
$$

Circle (arc)

- Depends on parameter range $t_{1}<t<t_{2}$

Lines \& Segments

$$
\begin{aligned}
& \text { Segment Г from } \mathbf{p}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \text { to } \mathbf{q}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \\
& \mathbf{q}
\end{aligned}
$$

How to determine if left or right of the line?

Implicit Function

- Curve (2D) or Surface (3D) defined by zero set (roots) of function
E.g:

$$
S(x, y): \quad x^{2}+y^{2}-1=0
$$

How to determine if inside circle?

$$
S(x, y):-3 x-y=0
$$

How to determine if left or right of the line?

Implicit Line - left or right?

Implicit line in 2D $\leftrightarrow \quad$ Explicit plane in 3D
 $0.1 x+0.3 y=0 \quad \leftrightarrow \quad f(x, y)=0.1 x+0.3 y$

Point vs Line (-> inside test for convex poly)

- Point $\mathbf{p}=\left(p_{x}, p_{y}\right)$
- Use implicit equation to determine coincidence \& side
- Implicit $A x+B y+C=0$
- Get there by solving 2 equations in 2 unknowns (unique with third equation: $A^{2}+B^{2}=1$)
- On: $A \cdot p_{x}+B \cdot p_{y}+C=0$
- Use same orientation to get consistent left/right orientation for inside test for lines defining CONVEX polygon
- Same sign implies inside
- Eg. ALL $A \cdot p_{x}+B \cdot p_{y}+C<0$

From parametric to implicit lines

Parametric: $\Gamma(t) \quad$ Implicit: $\mathrm{A} x+B y+C=0$

$$
\Gamma(\mathrm{t})=\left\{\begin{array}{l}
x(t)=x_{0}+\left(x_{1}-x_{0}\right) t \\
y(t)=y_{0}+\left(y_{1}-y_{0}\right) t
\end{array}\right.
$$

$$
\begin{array}{ll}
x=x_{0}+\left(x_{1}-x_{0}\right) t & y=y_{0}+\left(y_{1}-y_{0}\right) t \\
\leftrightarrow \frac{x-x_{0}}{\left(x_{1}-x_{0}\right)}=t & \leftrightarrow \frac{y-y_{0}}{\left(y_{1}-y_{0}\right)}=t
\end{array}
$$

$$
\begin{aligned}
& \leftrightarrow \frac{x-x_{0}}{\left(x_{1}-x_{0}\right)}=t \\
& \quad \frac{x-x_{0}}{\left(x_{1}-x_{0}\right)}-\frac{y-y_{0}}{\left(y_{1}-y_{0}\right)}=0
\end{aligned}
$$

$$
\left.A=\frac{A x}{\left(x_{1}-x_{0}\right)}-\frac{y}{\left(y_{1}-y_{0}\right)}-\frac{x_{0}}{\left(x_{1}-x_{0}\right)}+\frac{y_{0}}{\left(y_{1}-y_{0}\right)}\right)
$$

Without singularities?

$$
\begin{aligned}
& \frac{x-x_{0}}{\left(x_{1}-x_{0}\right)}-\frac{y-y_{0}}{\left(y_{1}-y_{0}\right)}=0 \\
& \frac{\left(x-x_{0}\right)\left(y_{1}-y_{0}\right)}{1}-\frac{\left(y-y_{0}\right)\left(x_{1}-x_{0}\right)}{1}=0 \\
& x\left(y_{1}-y_{0}\right)+x_{0}\left(y_{1}-y_{0}\right)-y\left(x_{1}-x_{0}\right)-y_{0}\left(x_{1}-x_{0}\right)=0 \\
& \underbrace{}_{\underbrace{\left(y_{1}-y_{0}\right.}_{A})}+y \underbrace{\left(x_{0}-x_{1}\right)}_{\text {B }}+\underbrace{}_{\underbrace{x_{0}\left(y_{1}-y_{0}\right)-y_{0}\left(x_{1}-x_{0}\right)}=0}
\end{aligned}
$$

Self study: From explicit to implicit Line

Explicit: $y=m x+b$

$$
\begin{aligned}
0 & =m x+b-y \\
\Rightarrow A & =m, \quad B=-1, C=b
\end{aligned}
$$

Implicit: $A x+B y+C=0$

Example

$$
\begin{gathered}
y=\frac{-1}{3} x+0 \\
\Leftrightarrow \frac{-1}{3} x+1 y=0
\end{gathered}
$$

$$
A=-\frac{1}{3}, \quad B=-1, \quad C=0
$$

Issues?

Recap: Inside Test?

- How to test if one poly is inside another?
- Use inside test for point(s)
- How?
- Convex Polygon
- Same side WRT to line equation (all sides)
- Non-Convex
- Subdivide, e.g., triangulate How?
- Shoot rays in all directions (beware of corners and special cases)
- Other ways?

Self-study:

Winding number algorithm

Point in polygon?

- If the winding number is nonzero
- How to compute the winding number?
- http://geomalgorithms.com/a03-_inclusion.html

Winding number:

- the number of times that curve travels counterclockwise around the point
- negative if clockwise

Line-Line Intersection

$$
\begin{aligned}
& \Gamma^{1}=\left\{\begin{array}{l}
x^{1}(t)=x_{0}^{1}+\left(x_{1}^{1}-x_{0}^{1}\right) t \\
y^{1}(t)=y_{0}^{1}+\left(y_{1}^{1}-y_{0}^{1}\right) t
\end{array} \quad t \in[0,1]\right. \\
& \Gamma^{2}=\left\{\begin{array}{l}
x^{2}(r)=x_{0}^{2}+\left(x_{1}^{2}-x_{0}^{2}\right) r \\
y^{2}(r)=y_{0}^{2}+\left(y_{1}^{2}-y_{0}^{2}\right) r
\end{array} \quad r \in[0,1]\right.
\end{aligned}
$$

Intersection: x \& y values equal in both representations two linear equations in two unknowns (r, t)

$$
\begin{aligned}
& x_{0}^{1}+\left(x_{1}^{1}-x_{0}^{1}\right) t=x_{0}^{2}+\left(x_{1}^{2}-x_{0}^{2}\right) r \\
& y_{0}^{1}+\left(y_{1}^{1}-y_{0}^{1}\right) t=y_{0}^{2}+\left(y_{1}^{2}-y_{0}^{2}\right) r
\end{aligned}
$$

Question: What is the meaning of $r, t<0$ or $r, t>1$?

A. They still collide
B. They do not collide
C. They may or may not collide - need more testing

Efficiency

- Naïve implementation
- Test each moving object against ALL other objects at each step
- Horribly expensive
- How to speed up?

Efficiency

- Naïve implementation
- Test each moving object against ALL other objects at each step
- Horribly expensive
- Speed up
- Bounding Volumes
- Hierarchies

Bounding volumes

- Axis aligned bounding box (AABB)
- + Trivial to compute
- + Quick to evaluate
- - May be too big...
- Tight bounding box
- - Harder to compute: Principal Component Analysis (PCA)
- - Slightly slower to evaluate
- - Compact

Principle Component Analysis (PCA)

Derive the directions of maximum variance

$$
\mathbf{w}_{(1)}=\underset{\|\mathbf{w}\|=1}{\arg \max }\left\{\sum_{i}\left(\mathbf{x}_{(i)} \cdot \mathbf{w}\right)^{2}\right\}
$$

Bounding volumes

- Bounding circle
- A range of efficient (non-trivial) methods
- Convex hull
- Gift wrapping \& other methods...

Bounding Volume Intersection

- Axis aligned bounding box (AABB)
- A.LO<=B.HI \&\& A.HI>=B.LO (for both X and Y)

- Circles
- $\|A . C-B . C\|<A . R+B . R$

Center

Radius

Moving objects

- Sweep - test intersections against before/after segment
- Avoid "jumping through" objects
- How to do efficiently?
- Boxes?
- Spheres?

Hierarchical Bounding Volumes

Bound Bounding Volumes:

- Use (hierarchical) bounding volumes for groups of objects

- How to group boxes?
- Closest
- Most jointly compact (how?)

Hierarchical Bounding Volumes

Bound Bounding Volumes:

- Use (hierarchical) bounding volumes for groups of objects

- Challenge: dynamic data...
- Need to update hierarchy efficiently

Spatial Subdivision DATA STRUCTURES

- Subdivide space (bounding box of the "world")
- Hierarchical
- Subdivide each sub-space (or only non-empty sub-spaces)
- Lots of methods
- Grid, Octree, k-D tree, (BSP tree)

Regular Grid

Subdivide space into rectangular grid:

- Associate every object with the cell(s) that it overlaps with
- Test collisions only if cells overlap

Creating a Regular Grid

Steps:

- Find bounding box of scene
- Choose grid resolution x, y, z
- Insert objects
- Objects that overlap multiple cells get referenced by all cells they overlap

Regular Grid Discussion

Advantages?

- Easy to construct
- Easy to traverse

Disadvantages?

- May be only sparsely filled
- Geometry may still be clumped

Adaptive Grids

- Subdivide until each cell contains no more than n elements, or maximum depth d is reached

Nested Grids

Octree/(Quadtree)

- This slide is curtsey of Fredo Durand at MIT

Collision Resolution

Today: simplified example

Upcoming lecture:
Physics-based simulation

Basic Particle Simulation (first try)

How to compute the change in velocity?

$$
\begin{gathered}
d_{t}=t_{i+1}-t_{i} \\
\overrightarrow{\boldsymbol{v}}_{i+1}=\overrightarrow{\boldsymbol{v}}_{i}+\Delta v \\
\overrightarrow{\boldsymbol{p}}_{i+1}=\overrightarrow{\boldsymbol{p}}\left(t_{i}\right)+\overrightarrow{\boldsymbol{v}}_{i} d_{t}
\end{gathered}
$$

Particle-Plane Collisions

- Change in direction of normal

Velocity along normal
(v projected on normal
by the dot product)
Frictionless
Apply change

$$
\Delta \boldsymbol{v}=\mathbf{2}\left(\boldsymbol{v}^{-} \cdot \widehat{\boldsymbol{n}}\right) \frac{\widehat{\boldsymbol{n}}}{} \quad \begin{aligned}
& \text { (magnitude } \\
& \text { times direction) }
\end{aligned}
$$

$$
v^{+}=v^{-}+\Delta v
$$

Loss of energy

$$
\Delta v=(1+\epsilon)\left(v^{-} \cdot \widehat{n}\right) \widehat{n}
$$

Particle-Particle Collisions (spherical objects)

After

Response:

$$
\begin{aligned}
& v_{1}^{+}=v_{1}^{-}-\frac{2 m_{2}}{m_{1}+m_{2}} \frac{\left\langle v_{1}^{-}-v_{2}^{-}\right\rangle \cdot\left\langle p_{1}-p_{2}\right\rangle}{\left\|p_{1}-p_{2}\right\|^{2}}\left\langle p_{1}-p_{2}\right\rangle \\
& v_{2}^{+}=v_{2}^{-}-\frac{2 m_{1}}{m_{1}+m_{2}} \frac{\left\langle v_{2}^{-}-v_{1}^{-}\right\rangle \cdot\left\langle p_{2}-p_{1}\right\rangle}{\left\|p_{2}-p_{1}\right\|^{2}}\left\langle p_{2}-p_{1}\right\rangle
\end{aligned}
$$

- This is in terms of velocity
- Upcoming lectures:
derivation via impulse and forces

