
© Alla Sheffer, Helge Rhodin

CPSC 427
Video Game Programming

Helge Rhodin

Advanced OpenGL

1

© Alla Sheffer, Helge Rhodin

Recap: More detail: GLSL Vertex shader
The OpenGL Shading Language (GLSL)
• Syntax similar to the C programming language
• Build-in vector operations
• functionality as the GLM library our assignment template uses

2

uniform mat3 transform;

uniform mat3 projection;

in vec3 in_pos;

void main() {

// Transforming The Vertex

vec3 out_pos = projection * transform * vec3(in_pos.xy, 1.0);

gl_Position = vec4(out_pos.xy, in_pos.z, 1.0);

}

world
-> camera object

-> world
vertex-specific input position

mandatory to set

© Alla Sheffer, Helge Rhodin

Recap: Variable Types
Uniform
• same for all vertices/fragments

Out (vertex shader) connects to In (fragment shader)
• computed per vertex, automatically interpolated for fragments

• E.g., position, normal, color, …
In (attribute, vertex shader)
• values per vertex
• available only in Vertex Shader

Out (fragment shader)
• RGBA value per fragment

© Alla Sheffer, Helge Rhodin

Recap:
Setting (Vertex) Shader Variables in C++
Uniform variable (same for all vertices/fragments)
mat3 projection_2D{ { sx, 0.f, 0.f },{ 0.f, sy, 0.f },{ tx, ty, 1.f } }; // affine transformation as introduced in the prev. lecture
GLint projection_uloc = glGetUniformLocation(texmesh.effect.program, "projection");
glUniformMatrix3fv(projection_uloc, 1, GL_FALSE, (float*)&projection);

In variable (attribute for every vertex)
// assuming vbo contains vertex position information already
GLint vpositionLoc = glGetAttribLocation(program, "in_pos");
glEnableVertexAttribArray(vpositionLoc);
glVertexAttribPointer(vpositionLoc, 3, GL_FLOAT, GL_FALSE, sizeof(vec3), (void*)0);

© Alla Sheffer, Helge Rhodin

Salmon Vertex shader

5

#version 330
// Input attributes
in vec3 in_position;
in vec3 in_color;

out vec3 vcolor;
out vec2 vpos;

// Application data
uniform mat3 transform;
uniform mat3 projection;

void main() {
vpos = in_position.xy; // local coordinated before transform
vcolor = in_color;
vec3 pos = projection * transform * vec3(in_position.xy, 1.0);
gl_Position = vec4(pos.xy, in_position.z, 1.0);

}

as before

pass on color and position
in object coordinates

© Alla Sheffer, Helge Rhodin

Salmon Fragment shader

6

#version 330
// From Vertex Shader
in vec3 vcolor;
in vec2 vpos; // Distance from local origin

// Application data
uniform vec3 fcolor;
uniform int light_up;

// Output color
layout(location = 0) out vec4 color;

void main() {
color = vec4(fcolor * vcolor, 1.0);

// Salmon mesh is contained in a 1x1 square
float radius = distance(vec2(0.0), vpos);
if (light_up == 1 && radius < 0.3) {

// 0.8 is just to make it not too strong
color.xyz += (0.3 - radius) * 0.8 * vec3(1.0, 1.0, 1.0);

}
}

interpolated vertex color, times global color

create a spherical highlight
around the object center

© Alla Sheffer, Helge Rhodin

SPRITES: Faking 2D Geometry
• Creating geometry is hard
• Creating texture is “easy”
• In 2D it is hard to see the difference

• SPRITE:
• Use basic geometry (rectangle = 2 triangles)
• Texture the geometry (transparent background)
• Use blending (more later) for color effects

© Alla Sheffer, Helge Rhodin

Sprite basics

A textured quad looks like fine-grained 2D geometry

8

Transparent with alpha = 0
e.g., color_RGBA = {1,1,1,0}

Proper occlusion despite
simple geometry

© Alla Sheffer, Helge Rhodin

SPRITES: Creation

Create Quad Vertex Buffer

vec3 vertices[] = { v0, v1, v2, v3 };

glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, vertices_size, vertices,
GL_STATIC_DRAW);

Counter-clockwise winding (CCW)OpenGL initialization (once):

© Alla Sheffer, Helge Rhodin

SPRITES: Creation

Load Texture

Create Quad Index Buffer
uint16_t indices[] = { 0, 1, 2, 1, 3, 2 };
Gluint ibo;
glGenBuffers(1, &ibo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,ibo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices_size, indices,
GL_STATIC_DRAW);

Gluint tex_id;
glGenTextures(1, &tex_id);
glBindTexture(GL_TEXTURE_2D, tex_id);
glTexImage2D(GL_TEXTURE_2D, GL_RGBA, width, height, .., tex_data);

OpenGL initialization (once):

© Alla Sheffer, Helge Rhodin

SPRITES: Rendering

Enable Alpha Blending

glBindVertexArray(vao);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// Alpha Channel Interpolation
// RGB_o = RGB_src * ALPHA_src + RGB_dst * (1 – ALPHA_src)

Bind Buffers
OpenGL rendering (every frame):

© Alla Sheffer, Helge Rhodin

SPRITES: Rendering
Bind Texture

Draw

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texmesh.texture.texture_id);

glDrawElements(GL_TRIANGLES, 6, ..); // 6 is the number of indices

© Alla Sheffer, Helge Rhodin

Color and Texture Mapping
• How to map from a 2D texture to a 3D object that is

projected onto a 2D scene?

13

© Alla Sheffer, Helge Rhodin

Scan Conversion/Rasterization
• Convert continuous 2D geometry to discrete
• Raster display – discrete grid of elements
• Terminology

• Screen Space: Discrete 2D Cartesian coordinate system of the
screen pixels

© Alla Sheffer, Helge Rhodin

Scan Conversion

© Alla Sheffer, Helge Rhodin

Self study:
Interpolation with barycentric coordinates
• linear combination of vertex properties

• e.g., color, texture coordinate, surface normal/direction, …

• weights are proportional to the areas
spanned by the sides to query point P

16

© Alla Sheffer, Helge Rhodin

Texture mapping

s

t
(s0,t0)

(s1,t1)

(s2,t2)

© Alla Sheffer, Helge Rhodin

s

t

Texture mapping

(s0,t0)

(s1,t1)

(s2,t2)

© Alla Sheffer, Helge Rhodin

s

t

Texture mapping

(s0,t0)

(s1,t1)

(s2,t2)

© Alla Sheffer, Helge Rhodin

Blending:
• Fragments -> Pixels
• Draw from farthest to nearest
• No blending – replace previous color
• Blending: combine new & old values with some arithmetic operations

• Achieve transparency effects

Frame Buffer : video memory on graphics board that holds
resulting image & used to display it

Blending

© Alla Sheffer, Helge Rhodin

Remove occluded geometry
• Parts that are hidden behind other geometry
• For 2D (view parallel) shapes – use depth order

• draw objects back to front
• sort objects: furthest object first, closest object last

Depth Test / Hidden Surface Removal

© Alla Sheffer, Helge Rhodin

Self study: Alternative to ordering
Depth buffer with transparent sprites
• Fragment shader writes depth to the depth buffer

• discard fragment if depth larger than current depth buffer (occluded)
• alleviates the ordering of objects

• Issue, depth buffer written for fragments with alpha = 0
• Solution:

explicitly discard fragments
with alpha < 0.5
• note, texture sample interpolation

leads to non-binary values
even if texture is either 0 or 1.

22

#version 330
in vec2 texCoord;
out vec4 outColor;
uniform sampler2D theTexture;

void main() {
vec4 texel = texture(theTexture, texCoord);
if(texel.a < 0.5)

discard;
outColor = texel;

}

© Alla Sheffer, Helge Rhodin

CPSC 427
Video Game Programming

Helge Rhodin

Advanced OpenGL

23

© Alla Sheffer, Helge Rhodin

Milestone 1
• Team github -> make sure you have access
• Use pull requests and code reviews

• The whole team needs to be there for face-to-face
sessions (on zoom, we will send links)

• Make sure the template runs for all your team mates,
cross platform

• Organize internal deadlines
• New 10p feature for M1 “Team organization”

24

© Alla Sheffer, Helge Rhodin

A0, A1, handin, and handback
• Check your grade with handback

https://www.students.cs.ubc.ca/~cs-427/handback/
• Double check that you submitted the right files
• Use the “-c” option to list submitted files

“handin -c cs-427 a0”
• We added checks to ensure that relevant files are there
• We added checks to ensure that generated files are not submitted

• Work individually
• Signup sheet for A1 face-to-face will be posted after the

deadline (students drawn at random)
• Re-grading requests as message to instructors on piazza

(NOT on Canvas, NOT on slack)
25

https://www.students.cs.ubc.ca/%7Ecs-427/handback/

© Alla Sheffer, Helge Rhodin

• Deferred shading (a form of screen-space rendering)

• or water effects

Motivation

27

First rendering pass Second pass

Input

Second passFirst pass

© Alla Sheffer, Helge Rhodin

A few advanced examples

• Blending
Sprite Sheets

• Render to Texture
• Post-processing Effects: Bloom

© Alla Sheffer, Helge Rhodin

Blending

• Controls how pixel color is blended into the FBO’s Color Attachment

• Control on factors and operation of the equation

• RGB and Alpha are controllabe separately

Cloud (source) on top of grid (dest)

© Alla Sheffer, Helge Rhodin

Blending: Example Presets

• Additive Blending

• Alpha Blending

© Alla Sheffer, Helge Rhodin

Sprite Sheets

• Compact (and fast) approach for 2D animations

• Every frame only a region of the original Texture is rendered

• Texture Coordinates are updated as clock ticks

• Does not require dynamic VBOs
Time

Animation
type

© Alla Sheffer, Helge Rhodin

Sprite Sheets: Example

© Alla Sheffer, Helge Rhodin

Render To Texture

• Building block of any multipass pipeline
• Just putting two concepts together..

• - First Pass: Pixel colors are written to the FBO’s Color Attachment
• - Second Pass: The same Texture can be bound and used by

Samplers

© Alla Sheffer, Helge Rhodin

Post-processing: Bloom

• Fullscreen Effect to highlight bright areas of the picture

• Post-processing: Operates on Images after the scene has been
rendered

• High level overview:

• 1. Render scene to texture
• 2. Extract bright regions by thresholding
• 3. Gaussian blur pass on the bright regions
• 4. Combine original texture and highlights texture with additive

blending

© Alla Sheffer, Helge Rhodin

Post-processing: Bloom

BlurThreshold

Sum

© Alla Sheffer, Helge Rhodin

Post-processing: Bloom

© Alla Sheffer, Helge Rhodin

Self study:
Post-processing: Bloom

As many details have been skipped, here are a couple of hints:

• A fullscreen effect is achieved by rendering a textured quad with the same dimensions as
the screen. No need for any camera or projection matrix as you already know that you
want the vertices to correspond to the corners of the screen.

• Thresholding bright areas can be achieved in the fragment shader with something as
simple as: return Intensity > Threshold ? Color : 0.0;

• Where Intensity is some function of the pixel’s RGB values. You can start from max
component, average, or explore other color space.

• Regarding Gaussian Blur (or Bloom altogether) there are lots of online resources of
various quality.

• A suggested place to start for tutorials is https://learnopengl.com.
• The standard reference book for real-time rendering is “Real-Time Rendering”

(http://www.realtimerendering.com/)

https://learnopengl.com/
http://www.realtimerendering.com/

	CPSC 427�Video Game Programming
	Recap: More detail: GLSL Vertex shader
	Recap: Variable Types
	Recap: �Setting (Vertex) Shader Variables in C++
	Salmon Vertex shader
	Salmon Fragment shader
	SPRITES: Faking 2D Geometry
	Sprite basics
	SPRITES: Creation
	SPRITES: Creation
	SPRITES: Rendering
	SPRITES: Rendering
	Color and Texture Mapping
	Scan Conversion/Rasterization
	Scan Conversion
	Self study:�Interpolation with barycentric coordinates
	Texture mapping
	Texture mapping
	Texture mapping
	Blending
	Depth Test / Hidden Surface Removal
	Self study: Alternative to ordering�Depth buffer with transparent sprites
	CPSC 427�Video Game Programming
	Milestone 1
	A0, A1, handin, and handback
	Motivation
	A few advanced examples
	Blending
	Blending: Example Presets
	Sprite Sheets
	Sprite Sheets: Example
	Render To Texture
	Post-processing: Bloom
	Post-processing: Bloom
	Post-processing: Bloom
	Self study:�Post-processing: Bloom

