
© Alla Sheffer, Helge Rhodin

CPSC 427
Video Game Programming

ECS is used in Minecraft and many other commercial games

Entity Component System (ECS)

1

© Alla Sheffer, Helge Rhodin

Learning Goals & Outline
• core game design principles
• Entity component systems (ECS)

First half:
• issues with inheritance
• understanding the ECS concept
Second half:
• implementing ECS
• taking the perspective of the inventor of ECS

2

© Alla Sheffer, Helge Rhodin

Orga
• A0 released today

• play yourself, but ‘peer grading’ is the only submission
• Deadlines

• assignments: on MTA
• milestones: on lecture schedule (will likely add to MTA)

https://docs.google.com/document/d/e/2PACX-1vRZmo-ue-YY-wC9QTdvCm7ujAU-
t1GHmRMGpAdKrhU_dnk9bz0BHeGdjpepe2YrskLW_FObnTWRJhQz/pub

Do you want them on Canvas too?

• MTA participation
• use MTA to answer my questions; raise hand to ask your questions

3

https://docs.google.com/document/d/e/2PACX-1vRZmo-ue-YY-wC9QTdvCm7ujAU-t1GHmRMGpAdKrhU_dnk9bz0BHeGdjpepe2YrskLW_FObnTWRJhQz/pub

© Alla Sheffer, Helge Rhodin

Team Milestones
19-Sep: Oral pitch slides
https://docs.google.com/presentation/d/1h9wt4b-
rBJ27OtjOcObe102B3uc59O6IhWNWGSBSibc/edit?usp=sharing

20-Sep: 1 minute oral pitch
20-Sep: 2-page written pitch
25-Sep: game proposal
12-Oct: milestone 1
30-Oct: milestone 2
20-Nov: milestone 3
4-Dec: milestone 4

4

https://docs.google.com/presentation/d/1h9wt4b-rBJ27OtjOcObe102B3uc59O6IhWNWGSBSibc/edit?usp=sharing

© Alla Sheffer, Helge Rhodin

The game loop

5

Can you imagine a game without?

© Alla Sheffer, Helge Rhodin

A game is a simulator

6

1. AI and user input
2. Environment reaction
3. Numerical integration

• compute acceleration, update positions and velocities
4. Collision detection & resolution

We will have a separate
lecture on physics

simulation!

© Alla Sheffer, Helge Rhodin

Our game loop (A1, main.cpp)

7

© Alla Sheffer, Helge Rhodin

How to represent the parts of your world?
• for chess?
• a platformer?

8

© Alla Sheffer, Helge Rhodin

What are Entities?
• Entities: things that exist in your game world

BGM

9

© Alla Sheffer, Helge Rhodin

Entities in Traditional Game Programming
• Object-Oriented Programming

• Entities as objects
• Contains data, behaviors, etc.

• Entity Hierarchy: Entities extend other Entities

10

© Alla Sheffer, Helge Rhodin

Entity Hierarchy (object oriented design)

11

© Alla Sheffer, Helge Rhodin

Issues with Object-Oriented Approach

What if we want Mario to
be able to be squished?

12

© Alla Sheffer, Helge Rhodin

Issues with Object-Oriented Approach

• Difficult to add new
behaviors
• Choice between

replicating code or
• MONSTER SIZE parent

classes

Both options aren’t
ideal for big
games!

13

© Alla Sheffer, Helge Rhodin

Example ECS Diagram

Goomba is now
separated from its data
& methods

14

© Alla Sheffer, Helge Rhodin

Example ECS Diagram

Now what if we want
Mario to be able to be
squished?

15

© Alla Sheffer, Helge Rhodin

Example ECS Diagram

We can give Mario a
Physics Component to
make him squishable.

16

© Alla Sheffer, Helge Rhodin

Example ECS Diagram

What would happen to
Mario here?

17

© Alla Sheffer, Helge Rhodin

What is ECS?
• Alternative to object-oriented programming
• Data is self-contained & modular

• Similar concept to building blocks
• Entities no longer “own” data
• Entities pick & choose

18

© Alla Sheffer, Helge Rhodin

What is ECS?
• Entities actions determined only by their data

• Update loop doesn’t need references to Entities
• Systems search for Entities with right parts (data) & update

• For Mario to move he needs a position & velocity

19

© Alla Sheffer, Helge Rhodin

What is ECS?
• Composition over hierarchy

• Entities are collections of Components
• Components contain game data

• Position, velocity, input, etc.
• Systems are collections of actions

• Render system, motion system, etc.

20

© Alla Sheffer, Helge Rhodin

Component
• Contains only game data
• Describes one aspect of an Entity

– ex. a trumpet Entity will likely have an audio Component

21

© Alla Sheffer, Helge Rhodin

Component
• Typically implemented with structs.

22

© Alla Sheffer, Helge Rhodin

What Components to Make?
• What Components would we give to the following Entities?

23

© Alla Sheffer, Helge Rhodin

Components
• Easy to add new Entity characteristics

– Just create the desired Component & give to Entity

How do we change our
playable hero from
Mario to Luigi?

25

© Alla Sheffer, Helge Rhodin

Components
• Empty Components can be used to tag Entities

26

Empty components are useful, a flag indicating an ability!

© Alla Sheffer, Helge Rhodin

Components
• Empty Components can be used to tag Entities

Now Luigi can be
identified as the active
player

27

© Alla Sheffer, Helge Rhodin

Systems
• Groups of Components describe behavior/action

– ex. bounding box, position & velocity describe collisions
• Systems code behaviors/actions
• Operate on Entities with related groups of components

– Related: describe same (type of) behavior/action
– ex. render all Entities with sprite & position

• Entity behavior can be dynamic
– Add/remove components on the fly

28

© Alla Sheffer, Helge Rhodin

System Example
• What systems might these related groups of components

describe?

29

Enemy Motion System Player Motion System

© Alla Sheffer, Helge Rhodin

System Examples

30

for(int entity : velocity_entities)
if (position_components.has(entity))

position_components.get(entity)+= velocity_components.get(entity);

for(Velocity& velocity : velocity_components)
velocity += 9.81 * dt

Physics System

Motion System

… iterates over all components of type velocity

… iterates over all entities that have velocity and position

The physics system may not
care about entities at all!

Need to know all entities that have component X
Need to retrieve a component X from an entity

Game loop
Entity player;

if(! alive_components.has(player)) exit();
Simple checks

© Alla Sheffer, Helge Rhodin

Break

31

© Alla Sheffer, Helge Rhodin

ECS implementations

32

Where do we store our Components?

© Alla Sheffer, Helge Rhodin

Where/How do we store components?

• Inside Systems?
• NO!

• Component may be used by different systems

33

© Alla Sheffer, Helge Rhodin

Problem: associating entities and components

34

Mario

Luigi
Goomba1

Goomba2

Po
si

tio
n

Ve
lo

ci
ty

Ju
m

ps

Pl
ay

er

Sq
ui

sh
ab

le

Object-oriented-programming (OOP)?

ECS = containers of components?

© Alla Sheffer, Helge Rhodin

Memory & ECS
Where do we store our Components?
• Inside Entities?

position

collision
sprite

velocity

Update loop has to
access non-contiguous
memory repeatedly!

Memory Blocks35

Slow memory access!

© Alla Sheffer, Helge Rhodin

The Map Approach
(entity ID to component address)

36

Mario

Luigi
Goomba1

Goomba2
Po

si
tio

n

Ju
m

ps

Sq
ui

sh
ab

le

Mario
Luigi

1
2

Concept:
• A map to lookup components (fast if implemented correctly)
Implementation: std:map<Entity, Component>

ID

© Alla Sheffer, Helge Rhodin

Recall: Red-black trees

37

• Usually used for std::map
• A type of self-balancing binary search trees
• Hash map could be used too

© Alla Sheffer, Helge Rhodin

Assignment 0 (A0)
• Released today

• You have to grade ECS implementations
• Suggested: Implement your own ECS using std::map

(see previous slides)

• Simple and complex versions

• Requires C++:
• pointer, reference, value
• templates (simple template classes)

38

Attend tutorial if rusty!

© Alla Sheffer, Helge Rhodin

Memory & ECS
Where do we store our Components?
• In a map?

position

collision
sprite

velocity

Update loop has to
access non-contiguous
memory repeatedly!

Memory Blocks

Slow memory access!

40

© Alla Sheffer, Helge Rhodin

The (giant) Sparse Array

41

Mario

Luigi
Goomba1

Goomba2

Po
si

tio
n

Ve
lo

ci
ty

Ju
m

ps

Pl
ay

er

Sq
ui

sh
ab

le

Issues?

1
2

ID

Concept: A huge data matrix of size Nr. Entities x Nr. components
Implementation: std:vector<Position>; std:vector<Velocity>

© Alla Sheffer, Helge Rhodin

Memory & ECS
Where do we store our Components?
• Array with holes?

position

collision
sprite

velocity

Better cache utilization!

Memory Blocks

Not memory efficient!

42

© Alla Sheffer, Helge Rhodin

Bitset / Bitmap

43

Mario

Luigi
Goomba1

Goomba2
Po

si
tio

n

Ve
lo

ci
ty

Ju
m

ps

Pl
ay

er

Sq
ui

sh
ab

le

Issues?

1
2
3
4

ID Bi
ts

et
11110
11001

Concept: Each entity has a bitset that is true for its ‘owned’ components
Implementation: long bitset;

If(bitset & query == query) // has the entity all query components?

Problem: How to know that an entity has a component?

How many components can we support?

© Alla Sheffer, Helge Rhodin

Key & Lock Metaphor

position

Unique Entity IDEntity

velocity

sprite

health

position

velocity

delta time
calculations

Motion System
Systems will only operate
on Entities with the required
Components

44

© Alla Sheffer, Helge Rhodin

Further Improvements

45

© Alla Sheffer, Helge Rhodin

Dense Component Vectors
(an attempt, needs more)

46

Mario

Luigi
Goomba1

Goomba2

Po
si

tio
n

Ve
lo

ci
ty

Ju
m

ps

Pl
ay

er

Sq
ui

sh
ab

le

Issues?

1
2

ID

Concept: One array/vector per component, but how to associate?
Implementation: std:vector<Position>; std:vector<Velocity> + X?

How to find the position of
Goomba’s squishable component?

© Alla Sheffer, Helge Rhodin

Map + Dense Component Vectors
(entity ID to component address index)

47

Mario

Luigi
Goomba1

Goomba2

Po
si

tio
n

in
de

x

Ju
m

ps
 in

de
x

Sq
ui

sh
ab

le
 in

d.

Mario
Luigi

1
2

ID

1
3

ID

1
2

1
2

1
3

Goomba1
Goomba2

Issues?
Concept: Combine dense vectors with a map
Implementation: std::vector<Component>; std::map<Entity,unsigned int>

© Alla Sheffer, Helge Rhodin

Map + Dense Vector (different visualization)

48

Mario

Luigi
Goomba1

Goomba2

Po
si

tio
n

Ve
lo

ci
ty

Ju
m

ps

Pl
ay

er

Sq
ui

sh
ab

le

1
2

ID

2
3

© Alla Sheffer, Helge Rhodin

Cache is Key
• Each Component type has a statically allocated array
• Minimizes costly cache misses

– Keeps components we access around the same time close
to each other

position

collision
sprite

velocity

Memory Blocks49

© Alla Sheffer, Helge Rhodin

Map + Component Vector + Entity Vector

50

1 135

0.5

map

keys (entity ID)

value array (components) 0.3 0.3

10 12

0 -0.1

for(int entity : velocity_entities) // using the key array
if (position_entity_map.has(entity)) // using the map

position_entity_map.get(entity)+= velocity_entity_map.get(entity); // using component array

Easy to iterate over all velocity components that belong to an entity with a position

Registry for
one component

Concept: Add a dense vector of entities to facilitate quick iteration over entities
Implementation: std::vector<Entities>; std::vector<Component>; std::map<Entity,unsigned int>

© Alla Sheffer, Helge Rhodin

Faster iteration via entity and component array

51

for(int entity : velocity_entities) // efficient
if (position_entity_map.has(entity)) // inefficient lookup

position_entity_map.get(entity)+= velocity_entity_map.get(entity); // 2x inefficient lookup

for(int vel_i = 0; vel_i < velocity_entities.size(); vel_i++) // efficient
Entity entity : velocity_entities[vel_i]; // efficient
int pos_i = position_entity_map.getIndex(entity); // inefficient lookup
if (pos_i)

position_components[pos_i]+= reg_velocity_components[vel_i]; // efficient

Accessing the velocity map (reg_velocity.map) is an unnecessary indirection

We can access the velocity components in linear fashion

© Alla Sheffer, Helge Rhodin

Map + Component Vectors + Entity Vector
Cache is Key

position

collision
sprite

velocity

Memory Blocks

Update loop
accesses contiguous
memory IDEAL?

52

position entity IDs

collision entity IDs
sprite entity IDs

velocity entity IDs

Map access
slow

© Alla Sheffer, Helge Rhodin

Advanced ECS: Archetypes / prototypes / pools

53

• Concept: store all types with the
same components in dense arrays

• Used by the Unity ECS system
• Difficult to implement

Mario

Luigi
Goomba1
Goomba2

Po
si

tio
n

Ve
lo

ci
ty

Ju
m

ps

Pl
ay

er

Sq
ui

sh
ab

le

Po
si

tio
n

Ve
lo

ci
ty

Ju
m

ps

Po
si

tio
n

Ve
lo

ci
ty

© Alla Sheffer, Helge Rhodin

How Does a System Find its Entities?
Extension: Entity Manager
• Each system has a list of entity IDs it is interested in
• Systems register their bitsets/bitmaps with the Entity Manager
• Whenever an Entity is added…

– Evaluate which systems are interested & update their ID lists

54

© Alla Sheffer, Helge Rhodin

Self-study: A special map approach

55

Mario

Luigi
Goomba1

Goomba2

Po
si

tio
n

Ve
lo

ci
ty

Ju
m

ps

Pl
ay

er

Sq
ui

sh
ab

le

1
2

ID

2
3

© Alla Sheffer, Helge Rhodin

Self-study: The ‘Sparse Set’

56

Mario

Luigi
Goomba1

Goomba2

In
de

x
Po

s

In
de

x
Ve

l

In
de

x
Ju

m
p

In
de

x
Pl

ay
er

1

In
de

x
Sq

ui
sh

Issues?

1
2

ID

2
2

1
1

Concept: Sparse array + dense array
Implementation: std:vector<Entity> entities; std:vector<unsigned int> indices;
std:vector<Components> components;

Po
si

tio
n

Ve
lo

ci
ty

Ju
m

ps

Pl
ay

er

Sq
ui

sh
ab

le

3
4

© Alla Sheffer, Helge Rhodin

Self-study: Faster Lookup with Sparse Sets

57

Insert:

Lookup:

1 2 3 4 5 6 70

[https://skypjack.github.io/2020-08-02-ecs-baf-part-9/]

The map lookup (map.get(entity)) is costly
• A hashmap is O(1), but that 1 is big

Sparse set:
• An array as large as the number

of entities in the game
• Crazy waste of memory?!
• 32 bit integer -> ???
• a sparsely filled array

• A small dense array of all entities
in sequence (as before)

• Extremely fast lookup, insert, & clear

© Alla Sheffer, Helge Rhodin

Entity Summary
• Each Entity is typically just a unique identifier to its

components
• Store Entities in a big static array in the Entity Manager

– Monitor removed entities

ID 2

Entities

ID 9

59

© Alla Sheffer, Helge Rhodin

Memory & ECS
Where do we store our Components?
• Inside a registry!

• Systems don’t own components
• One big array for each Component type
• Takes advantage of modular architecture of ECS

YES!
60

© Alla Sheffer, Helge Rhodin

Cache is Key
• When we “delete” an entity we must delete corresponding

components to.
• Different approaches to this,

– Fill deleted components in arrays with the last entities data
 Extra care must be taken when managing indices

– Mark spots in arrays as rewritable
 Big systems will suffer from poor memory management

61

© Alla Sheffer, Helge Rhodin

Entity Component Systems: Benefits
• Complexity

– Game code tends to grow exponentially
– Complexity of ECS architecture does not grow with it
– Easy to maintain

• Customization
– Games have a lot of dynamic operations
– Add/remove components to change Entity behavior
– ECS is highly modular

• Can be very memory efficient!
62

© Alla Sheffer, Helge Rhodin

Backup

63

	CPSC 427�Video Game Programming
	Learning Goals & Outline
	Orga
	Team Milestones
	The game loop
	A game is a simulator
	Our game loop (A1, main.cpp)
	How to represent the parts of your world?
	What are Entities?
	Entities in Traditional Game Programming
	Entity Hierarchy (object oriented design)
	Issues with Object-Oriented Approach
	Issues with Object-Oriented Approach
	Example ECS Diagram
	Example ECS Diagram
	Example ECS Diagram
	Example ECS Diagram
	What is ECS?
	What is ECS?
	What is ECS?
	Component
	Component
	What Components to Make?
	Components
	Components
	Components
	Systems
	System Example
	System Examples
	Break
	ECS implementations
	Where/How do we store components?
	Problem: associating entities and components
	Memory & ECS
	The Map Approach�(entity ID to component address)
	Recall: Red-black trees
	Assignment 0 (A0)
	Memory & ECS
	The (giant) Sparse Array
	Memory & ECS
	Bitset / Bitmap
	Key & Lock Metaphor
	Further Improvements
	Dense Component Vectors �(an attempt, needs more)
	Map + Dense Component Vectors �(entity ID to component address index)
	Map + Dense Vector (different visualization)
	Cache is Key
	Map + Component Vector + Entity Vector
	Faster iteration via entity and component array
	Map + Component Vectors + Entity Vector�Cache is Key
	Advanced ECS: Archetypes / prototypes / pools
	How Does a System Find its Entities?
	Self-study: A special map approach
	Self-study: The ‘Sparse Set’
	Self-study: Faster Lookup with Sparse Sets
	Entity Summary
	Memory & ECS
	Cache is Key
	Entity Component Systems: Benefits
	Backup

