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CPSC 427
Video Game Programming

ECS is used in Minecraft and many other commercial games

Entity Component System (ECS)
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Learning Goals & Outline
• core game design principles
• Entity component systems (ECS)

First half: 
• issues with inheritance 
• understanding the ECS concept
Second half:
• implementing ECS
• taking the perspective of the inventor of ECS
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Orga
• A0 released today

• play yourself, but ‘peer grading’ is the only submission
• Deadlines

• assignments: on MTA
• milestones: on lecture schedule (will likely add to MTA)

https://docs.google.com/document/d/e/2PACX-1vRZmo-ue-YY-wC9QTdvCm7ujAU-
t1GHmRMGpAdKrhU_dnk9bz0BHeGdjpepe2YrskLW_FObnTWRJhQz/pub

Do you want them on Canvas too?

• MTA participation
• use MTA to answer my questions; raise hand to ask your questions
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https://docs.google.com/document/d/e/2PACX-1vRZmo-ue-YY-wC9QTdvCm7ujAU-t1GHmRMGpAdKrhU_dnk9bz0BHeGdjpepe2YrskLW_FObnTWRJhQz/pub
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Team Milestones
19-Sep: Oral pitch slides
https://docs.google.com/presentation/d/1h9wt4b-
rBJ27OtjOcObe102B3uc59O6IhWNWGSBSibc/edit?usp=sharing

20-Sep: 1 minute oral pitch
20-Sep: 2-page written pitch
25-Sep: game proposal
12-Oct: milestone 1
30-Oct: milestone 2
20-Nov: milestone 3
4-Dec: milestone 4
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https://docs.google.com/presentation/d/1h9wt4b-rBJ27OtjOcObe102B3uc59O6IhWNWGSBSibc/edit?usp=sharing
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The game loop
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Can you imagine a game without?
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A game is a simulator
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1. AI and user input
2. Environment reaction
3. Numerical integration

• compute acceleration, update positions and velocities
4. Collision detection & resolution

We will have a separate 
lecture on physics 

simulation!



© Alla Sheffer, Helge Rhodin

Our game loop (A1, main.cpp)
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How to represent the parts of your world?
• for chess?
• a platformer?
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What are Entities?
• Entities: things that exist in your game world 

BGM

9



© Alla Sheffer, Helge Rhodin

Entities in Traditional Game Programming
• Object-Oriented Programming

• Entities as objects 
• Contains data, behaviors, etc.

• Entity Hierarchy: Entities extend other Entities
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Entity Hierarchy (object oriented design)
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Issues with Object-Oriented Approach

What if we want Mario to 
be able to be squished?
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Issues with Object-Oriented Approach

• Difficult to add new
behaviors
• Choice between 

replicating code or 
• MONSTER SIZE parent 

classes

Both options aren’t 
ideal for big 
games!
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Example ECS Diagram

Goomba is now 
separated from its data 
& methods
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Example ECS Diagram

Now what if we want 
Mario to be able to be 
squished?
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Example ECS Diagram

We can give Mario a 
Physics Component to 
make him squishable. 
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Example ECS Diagram

What would happen to 
Mario here?
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What is ECS?
• Alternative to object-oriented programming
• Data is self-contained & modular

• Similar concept to building blocks
• Entities no longer “own” data
• Entities pick & choose
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What is ECS?
• Entities actions determined only by their data

• Update loop doesn’t need references to Entities
• Systems search for Entities with right parts (data) & update

• For Mario to move he needs a position & velocity
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What is ECS?
• Composition over hierarchy

• Entities are collections of Components 
• Components contain game data 

• Position, velocity, input, etc. 
• Systems are collections of actions

• Render system, motion system, etc.
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Component
• Contains only game data
• Describes one aspect of an Entity

– ex. a trumpet Entity will likely have an audio Component

21
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Component
• Typically implemented with structs.
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What Components to Make?
• What Components would we give to the following Entities?

23
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Components
• Easy to add new Entity characteristics

– Just create the desired Component & give to Entity

How do we change our 
playable hero from 
Mario to Luigi?
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Components
• Empty Components can be used to tag Entities

26

Empty components are useful, a flag indicating an ability!
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Components
• Empty Components can be used to tag Entities

Now Luigi can be 
identified as the active 
player
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Systems
• Groups of Components describe behavior/action

– ex. bounding box, position & velocity describe collisions
• Systems code behaviors/actions
• Operate on Entities with related groups of components

– Related: describe same (type of) behavior/action
– ex. render all Entities with sprite & position

• Entity behavior can be dynamic
– Add/remove components on the fly

28
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System Example
• What systems might these related groups of components 

describe?

29

Enemy Motion System Player Motion System
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System Examples

30

for(int entity : velocity_entities)
if (position_components.has(entity))

position_components.get(entity)+= velocity_components.get(entity);

for(Velocity& velocity : velocity_components)
velocity += 9.81 * dt

Physics System

Motion System

… iterates over all components of type velocity

… iterates over all entities that have velocity and position

The physics system may not
care about entities at all!

Need to know all entities that have component X
Need to retrieve a component X from an entity

Game loop
Entity player;

if(! alive_components.has(player) ) exit();
Simple checks
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Break

31
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ECS implementations

32

Where do we store our Components?
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Where/How do we store components?

• Inside Systems?
• NO!

• Component may be used by different systems

33
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Problem: associating entities and components
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Object-oriented-programming (OOP)?

ECS = containers of components?
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Memory & ECS
Where do we store our Components?
• Inside Entities?

position

collision
sprite

velocity

Update loop has to 
access non-contiguous 
memory repeatedly!

Memory Blocks35

Slow memory access!
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The Map Approach
(entity ID to component address)
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Concept: 
• A map to lookup components (fast if implemented correctly) 
Implementation: std:map<Entity, Component>

ID
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Recall: Red-black trees
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• Usually used for std::map
• A type of self-balancing binary search trees
• Hash map could be used too
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Assignment 0 (A0)
• Released today

• You have to grade ECS implementations
• Suggested: Implement your own ECS using std::map 

(see previous slides)

• Simple and complex versions

• Requires C++:
• pointer, reference, value
• templates (simple template classes)

38

Attend tutorial if rusty!
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Memory & ECS
Where do we store our Components?
• In a map?

position

collision
sprite

velocity

Update loop has to 
access non-contiguous 
memory repeatedly!

Memory Blocks

Slow memory access!
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The (giant) Sparse Array
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Issues?
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ID

Concept: A huge data matrix of size Nr. Entities x Nr. components
Implementation: std:vector<Position>; std:vector<Velocity>
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Memory & ECS
Where do we store our Components?
• Array with holes?

position

collision
sprite

velocity

Better cache utilization!

Memory Blocks

Not memory efficient!
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Bitset / Bitmap
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Concept: Each entity has a bitset that is true for its ‘owned’ components
Implementation: long bitset; 

If(bitset & query == query)  // has the entity all query components?

Problem: How to know that an entity has a component?

How many components can we support?
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Key & Lock Metaphor

position

Unique Entity IDEntity

velocity

sprite

health

position

velocity

delta time
calculations

Motion System
Systems will only operate 
on Entities with the required 
Components

44
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Further Improvements

45
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Dense Component Vectors 
(an attempt, needs more)
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Concept: One array/vector per component, but how to associate?
Implementation: std:vector<Position>; std:vector<Velocity> + X?

How to find the position of 
Goomba’s squishable component?
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Map + Dense Component Vectors 
(entity ID to component address index)
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Issues?
Concept: Combine dense vectors with a map
Implementation: std::vector<Component>; std::map<Entity,unsigned int>
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Map + Dense Vector (different visualization)
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Cache is Key 
• Each Component type has a statically allocated array
• Minimizes costly cache misses 

– Keeps components we access around the same time close 
to each other

position

collision
sprite

velocity

Memory Blocks49
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Map + Component Vector + Entity Vector
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1 135

0.5

map

keys (entity ID)

value array (components) 0.3 0.3

10 12

0 -0.1

for(int entity : velocity_entities) // using the key array
if (position_entity_map.has(entity)) // using the map

position_entity_map.get(entity)+= velocity_entity_map.get(entity); // using component array

Easy to iterate over all velocity components that belong to an entity with a position

Registry for 
one component

Concept: Add a dense vector of entities to facilitate quick iteration over entities
Implementation: std::vector<Entities>; std::vector<Component>; std::map<Entity,unsigned int>
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Faster iteration via entity and component array
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for(int entity : velocity_entities) // efficient
if (position_entity_map.has(entity)) // inefficient lookup

position_entity_map.get(entity)+= velocity_entity_map.get(entity); // 2x inefficient lookup

for(int vel_i = 0; vel_i < velocity_entities.size(); vel_i++) // efficient
Entity entity : velocity_entities[vel_i]; // efficient
int pos_i = position_entity_map.getIndex(entity); // inefficient lookup
if (pos_i)

position_components[pos_i]+= reg_velocity_components[vel_i]; // efficient

Accessing the velocity map (reg_velocity.map) is an unnecessary indirection

We can access the velocity components in linear fashion
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Map + Component Vectors + Entity Vector
Cache is Key 

position

collision
sprite

velocity

Memory Blocks

Update loop 
accesses contiguous 
memory IDEAL?

52

position entity IDs

collision entity IDs
sprite entity IDs

velocity entity IDs

Map access
slow
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Advanced ECS: Archetypes / prototypes / pools

53

• Concept: store all types with the
same components in dense arrays

• Used by the Unity ECS system
• Difficult to implement
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How Does a System Find its Entities?
Extension: Entity Manager
• Each system has a list of entity IDs it is interested in
• Systems register their bitsets/bitmaps with the Entity Manager
• Whenever an Entity is added…

– Evaluate which systems are interested & update their ID lists

54
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Self-study: A special map approach
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Self-study: The ‘Sparse Set’
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Implementation: std:vector<Entity> entities; std:vector<unsigned int> indices; 
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Self-study: Faster Lookup with Sparse Sets

57

Insert:

Lookup:

1 2 3 4 5 6 70

[https://skypjack.github.io/2020-08-02-ecs-baf-part-9/]

The map lookup (map.get(entity)) is costly 
• A hashmap is O(1), but that 1 is big

Sparse set:
• An array as large as the number 

of entities in the game
• Crazy waste of memory?!
• 32 bit integer -> ???
• a sparsely filled array

• A small dense array of all entities 
in sequence (as before)

• Extremely fast lookup, insert, & clear
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Entity Summary
• Each Entity is typically just a unique identifier to its 

components
• Store Entities in a big static array in the Entity Manager

– Monitor removed entities

ID 2

Entities

ID 9

59
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Memory & ECS
Where do we store our Components?
• Inside a registry!

• Systems don’t own components
• One big array for each Component type
• Takes advantage of modular architecture of ECS

YES!
60
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Cache is Key 
• When we “delete” an entity we must delete corresponding 

components to.
• Different approaches to this, 

– Fill deleted components in arrays with the last entities data
 Extra care must be taken when managing indices

– Mark spots in arrays as rewritable
 Big systems will suffer from poor memory management

61
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Entity Component Systems: Benefits
• Complexity

– Game code tends to grow exponentially
– Complexity of ECS architecture does not grow with it
– Easy to maintain

• Customization
– Games have a lot of dynamic operations
– Add/remove components to change Entity behavior
– ECS is highly modular

• Can be very memory efficient!
62
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Backup

63
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