Helge Rhodin

Game Balancing

Setup

@Helge: Pressed record?

@Class: Logged into iClicker cloud?

Recap: Transformation Hierarchies

Scenes have multiple coordinate systems

- Often strongly related
 - Parts of the body
 - Object on top of each other
 - Next to each other...

Independent definition is bug prone

Solution: Transformation Hierarchies

Recap: Transformation Hierarchy Examples

Recap: Transformation Hierarchy Examples

 θ_{γ}

$$M_{1} = Tr_{(x,y)} \cdot Rot\theta_{1}$$
$$M_{2} = M_{1} \cdot Tr_{(2.5,5.5)} \cdot Rot\theta_{2}$$
$$M_{3} = M_{2} \cdot Tr_{(0,-3.5)} \cdot Rot\theta_{3}$$

Recap: Transformation Hierarchies

Recap: Forward vs. inverse kinematics

Forward kinematics

- given joint axis, angle, and skeleton hierarchy
- compute joint locations
 - start at the end-effector (e.g. arm)
 - rotate all parent joints (up the hierarchy) by θ
 - iteratively continue from child to parent

Inverse kinematics

- given skeleton hierarchy and goal location
- optimize joint angles (e.g. gradient descent)
- minimize distance between end effector (computed by forward kinematics) and goal locations

Cross-play

- Short lecture until ~3:30 pm
- Cross-play
- starting at ~3:30 pm
- four rounds, each (15 min):
 - A plays B's game (5-7min) and also B plays A's game (5-7 min)
- fill out feedback form after each play (5 min)
- https://piazza.com/class/krpu7s953e6wt?cid=363

CPSC 427 Cross-Play Evaluation Form	Cross-play evaluation for v Experiments: which modes / parts of the game did you test?
	Evaluate on
	Controls: were the game interactions / transitions appropriately smooth?
IMPORTANT: Only submit evaluations for other teams games, <u>DO NOT</u> submit evaluations for your teams game. We will consider it cheating if	
we find anyone submitting evaluations for their own game!	Visuals: are the game visuals responsive to the game events?
Student name	
	Gameplay: was the experience playing challenging / fun /?
Student number	
	Any other thoughts you want to share with the developers?
Student number	Any other thoughts you want to share with the developers?

Team Presentations

- Showcase your game (live or video)
- Share one thing that worked well
- Share one thing that did not work/took longer

Update slides here:

https://docs.google.com/presentation/d/1vN4NcaJvd015Ayx Z0GVFnPeu1EaYMISU0 XAEwsc4ts/edit?usp=sharing Helge Rhodin

Game Balancing

Fun to play?

https://www.androidauthority.com/level-design-mobile-games-developersmake-games-fun-661877/

© Alla Sheffer, Helge Rhodin

11

Learning goals

- Know the different aspects of a game that can be balanced.
- Connecting game balancing to game theory
- Learn about common balancing steps
- Practice basic game balancing

Resources on Balancing

<u>https://gamebalanceconcepts.wordpress.com/2010/07/07/le</u> <u>vel-1-intro-to-game-balance/</u>

by lan Schreiber

What does balanced mean?

- Is chess balanced?
- Settlers of Catan?
- Is Tetris balanced?
- Is your game balanced?

Modeling

Indirect relationships

Value of a piece

- *it is not possible to get a knight for 3 pawns*
- one can 'trade' pieces
- a currency

How to determine?

Numeric quantities

• Values in your game?

Relationships

- Linear relations
- Exponential relations
- Triangular relationship
 - 1, 3, 6, 10, 15, 21, 28, ...

- The difference increases linearly
- The function has quadratic complexity
- **Periodic relations** (summer, winter, ...)

Model interactions between relationships

- 2*x* item A + 1*x* item B = 5*x* item C
- Attack speed * damage = damage / second
- Buff: 2x health or +100 health
 - what is better?
- Progression:
 - XP -> level up -> new skill -> ?

Game Theory

A mathematical concept

• Used for trading, road design, ...

Terminology

- **Dominant strategy**: one path that is stronger than all others
- Fairness: equal chances to win
- Nash equilibrium: each player's strategy is optimal when considering the decisions of other players

Kevin Leyton-Brown

Important Considerations

- Determinism vs. randomness
- Solvability
 - Has a best/dominant strategy
 - Is this desirable?
 - Can you solve a non-deterministic game?
- Intransitive games
 - simultaneous choice between opponents, e.g. Rock-Paper-Scissors
- Symmetric
 - same chances
- Game and meta game

Learning goals

- Know the different aspects of a game that can be balanced.
- Connecting game balancing to game theory
- Learn about common balancing steps
- Practice basic game balancing

© Alla Sheffer, Helge Rhodin

Breakout

- List all relevant quantities in your game
- List their relations:
- Type: e.g., linear
- Quantitatively: e.g., +5 gold per round, 1 gold = 100 silver
- Investigate interactions between relations
- What is your game's currency?
 - Gold, life, ...?

Self study? Numerical Methods - Optimization

- Iterative optimizers
- Single variable?
- Multiple variables?
- Gradient descent?

Lecture: https://youtu.be/ZNsNZOnrM50

- Balancing demo starts at 1h20
- Optimizer used at ~ 1h30

Learning goals

- Know the different aspects of a game that can be balanced.
- Connecting game balancing to game theory
- Learn about common balancing steps
- Practice basic game balancing

Balancing example

- 10 enemies per level
- One tower does 1 damage / sec
- One tower costs 2 gold
- It takes enemies 10 seconds to pass

- How much gold should the player start with?
- Enemy health increases: 11,12,14,17,21,...
- How much gold should the player get in round 2?
- How much gold should each eliminated enemy give?
 G Alla Sheffer, Helge

Demo

Difficulties:

- Placement of towers changes the time damage is dealt
- Path of enemies can be hindered to increase time
- Measure during playtest

cross-play

- Some enemies are resistant to fire/magic/...?
 - kind of a periodic feature

Learning goals

- Know the different aspects of a game that can be balanced.
- Connecting game balancing to game theory
- Learn about common balancing steps
- Practice basic game balancing

Counter Measures

Transitive Mechanics

- Repair costs
- Consumables (food, potions, ...)

Asymptotic analysis?

- Linear * linear?
- Linear + linear?
- *Linear* + *exponential*?
- Linear * exponential?

350 health dmg 300 250 200 150 100 50 0 1 2 3 4 5

Formally, given functions f(x) and g(x), we define a binary relation

$$f(x)\sim g(x)\quad ({
m as}\ x
ightarrow\infty)$$

if and only if (de Bruijn 1981, §1.4)

$$\lim_{x o\infty}rac{f(x)}{g(x)}=1.$$

Numerical Methods - Optimization

- Iterative optimizers
- Single variable?
- Multiple variables?
- Gradient descent?

Lecture: https://youtu.be/ZNsNZOnrM50

- Balancing demo starts at 1h20
- Optimizer used at ~ 1h30

How to quantify difficulty?

- Player vs. enemy strength
- Likelihood of winning
- Required skill
 - Knowledge of the game
 - Reaction
 - Precision
 - Tactics

-> Estimate player strength in relationskill level: beginner, intermediate, pro?-> requires user studies!

M4 balancing requirement

- Carefully balance one aspect of your game (e.g., movement-speed, health points, strength, bonus,...).
- Report on the theoretical analysis
- Change log with testing results
 (before/after balancing)

Breakout II

- Sketch progression
 - Quantities over time
 - Interactions between quantities
- Use pen & paper, plotting tool, or python
- Start balancing your game

A/B Testing

Testing two variants of your game (with and w/o a feature)

- randomized participants (same pool)
- with respect to a measurable objective (e.g., clicks on website)

Related to

- two-sample hypothesis testing
- Clinical tests, e.g., testing of a COVID-19 vaccine
- Placebo effect

