
© Alla Sheffer, Helge Rhodin

Two-player games

1

www.npr.org

© Alla Sheffer, Helge Rhodin

Setup
@Helge: Pressed record?

@Class: Logged into iClicker cloud?

2

© Alla Sheffer, Helge Rhodin

Overview
First half:
• Shortest paths cont.
• Two-player games

… all about traversing trees
efficiently

+ Some debugging tips

Second half:
• Physical simulation basics

• setting and definitions

• Efficient & precise simulation
• today: what can go wrong?

… the core of every game?

3

End of the day: be able to implement efficient shortest path,
two-player AI, and to simulate flying pebbles (for A3!)

© Alla Sheffer, Helge Rhodin

Breadth-first vs. A*

4

© Alla Sheffer, Helge Rhodin

• A* search takes into account both
• c(p) = cost of path p to current node
• h(p) = heuristic value at node p (estimated “remaining”

path cost)

• Let f(p) = c(p) + h(p).
• f(p) is an estimate of the cost of a path from the start to a

goal via p.

A* Search

c(p) h(p)

f(p)A* always chooses the path on the frontier with the lowest
estimated distance from the start to a goal node constrained to
go via that path.

© Alla Sheffer, Helge Rhodin

A* Example
Init:
• Put starting node on open list: Lo = {6}
• Set its cost to 0: c[6] = 0
• Set closed list to empty list: Lc = {}
Step 1:
• Find node with smallest f on the list, call it q: q = 6
• Find q’s “successors”: sucs = {3,4,7}
• For each successor u: for u in sucs …

• c(u) = c(q) + d(q,u) c[3] = c[6] + 1 = 1
c[4] = c[6] + 1.4 = 1.4
c[7] = c[6] + 1 = 1

• h(u) = d(g, u) h[3] = 3.6 f[3] = c[3] + h[3] = 4.6
f(u) = c(u) + h(u) h[4] = 2.8 f[4] = c[4] + h[4] = 4.2

h[7] = 3.6 f[7] = c[7] + h[7] = 4.6

• add successors to open list and move q to closed:
Lo = {3,4,7}; Lc = {6}6

2

3 4 5

6 7 8 9

1

s

g

2

3 4 5

6 7 8 9

1

s

g
2

3 4 5

6 7 8 9

1

s

g

Heuristic dist. hStep cost c

Frontier (open list)

© Alla Sheffer, Helge Rhodin

A* Example
Step 2: Lo = {3,4,7}; Lc = {6}
• Find node with smallest f on Lo, call it q:

• f[3] = 4.6
f[4] = 4.2 -> q = 4
f[7] = 4.6

• Find q’s “successors”: sucs = {3,6,7,8}
• for u in sucs…

• c_tmp[3] = c[4] + 1 = 2.4 > c[3] = 1, skip
c_tmp[6] = c[4] + 1.4 = 2.8 > c[6] = 0, skip
c_tmp[7] = c[4] + 1 = 2.4 > c[7] = 1, skip
c_tmp[8] = c[4] + 1.4 = 2.4 not in Lo or Lc, select c[8] = c_tmp[8]

• Update heuristic and estimated cost f:
h[8] = 3.2
f[8] = c[8] + h[8] = 5.6

• add successors to open list and move q to closed list:
Lo = {3,7,8}; Lc = {6,4}

7

2

3 4 5

6 7 8 9

1
g

2

3 4 5

6 7 8 9

1

s

g
2

3 4 5

6 7 8 9

1

s

g

Heuristic dist. hStep cost c

s

Frontier (open list)

© Alla Sheffer, Helge Rhodin

A* Example
Step 3: Lo = {3,7,8}; Lc = {6,4}
• Find node with smallest f on Lo, call it q:

• f[3] = 4.6 -> q = 3
f[7] = 4.6
f[8] = 5.6

• Find q’s “successors”: sucs = {4,6,7}
• for u in sucs…

• c_tmp[4] = c[3] + 1 = 2 > c[4] = 1.4, skip
c_tmp[6] = c[3] + 1.4 = 2.4 > c[6] = 0, skip
c_tmp[7] = c[3] + 1 = 2 > c[7] = 1, skip

• add successors to open list? no successors!
• move q to closed list:

Lo = {7,8};
Lc = {6,4,3}

8

2

3 4 5

6 7 8 9

1
g

2

3 4 5

6 7 8 9

1

s

g
2

3 4 5

6 7 8 9

1

s

g

Heuristic dist. hStep cost c

s

Frontier (open list)

© Alla Sheffer, Helge Rhodin

A* Example
Step 4: Lo = {7,8}; Lc = {6,4,3}
• Find node with smallest f on Lo, call it q:

• f[7] = 4.6 -> q = 7
f[8] = 5.6

• Find q’s “successors”: sucs = {3,4,6,8}
• for u in sucs…

• c_tmp[3] = c[7] + 1.4 = 2.4 > c[3] = 1, skip
c_tmp[4] = c[7] + 1 = 2 > c[4] = 1, skip
c_tmp[6] = c[7] + 1 = 2 > c[6] = 0, skip
c_tmp[8] = c[7] + 1 = 2 > c[8] = 2.4, select new c[8] = 2

• add successors to open list? Already there!
• move q to closed list:

Lo = {8};
Lc = {6,4,3,7}

9

2

3 4 5

6 7 8 9

1
g

2

3 4 5

6 7 8 9

1

s

g
2

3 4 5

6 7 8 9

1

s

g

Heuristic dist. hStep cost c

s

Frontier (open list)

© Alla Sheffer, Helge Rhodin

Keep track of your parents
• We neglected parent-child relation in previous slides…

Lc = {6,4,3}

• Note, closed paths have no ‘free’ neighbors
• impassable or already visited from a shorter path

10

2

3 4 5

6 7 8 9

1

s

g

Path to 3

2

3 4 5

6 7 8 9

1

s

g

Path to 4

2

3 4 5

6 7 8 9

1

s

g

Path to 6

2

3 4 5

6 7 8 9

1

s

g

Path to 7

2

3 4 5

6 7 8 9

1

s

g

Path to 8

Lo = {8};

© Alla Sheffer, Helge Rhodin

A* search
Key idea: H is a heuristic, and not the real distance:

h(p,q) = |(p.x – q.x)| + |(p.y – q.y)|
- Manhattan distance

h(p,q) = sqrt((p.x – q.x)^2 + (p.y – q.y)^2)
- Euclidean distance

Conditions:
• a heuristic function is admissible if it never overestimates the

cost of reaching the goal
• a heuristic function is said to be consistent, or monotone, if its

estimate is always less than or equal to the estimated distance
from any neighbouring vertex to the goal, plus the cost of
reaching that neighbour

https://en.wikipedia.org/wiki/Taxicab_geometry

https://en.wikipedia.org/wiki/Heuristic_function
https://en.wikipedia.org/wiki/Heuristic_function

© Alla Sheffer, Helge Rhodin

Variants
• Randomness

• Make the AI dump/non-perfect
• How?

• Different terrain types?

12

© Alla Sheffer, Helge Rhodin

Two-player games

13

www.npr.org

© Alla Sheffer, Helge Rhodin

Min-Max Trees
• Adversarial planning in a turn-taking environment

• Algorithm seeks to maximize our success F
• Adversary seeks to minimize F
• 𝒂𝒂𝒘𝒘𝒘𝒘 = max

𝒘𝒘𝒘𝒘
min
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝑭𝑭(𝒂𝒂𝒘𝒘𝒘𝒘, 𝒂𝒂𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)

• Key idea: at each step the algorithm selects the move that minimizes the
highest (estimated) value of F the adversary can reach
• Assume the opponent does what is best

© Alla Sheffer, Helge Rhodin

Example
(from uliana.lecturer.pens.ac.id/Kecerdasan%20Buatan/ppt/Game%20Playing/gametrees.ppt)

We are playing X, and it is now our turn.

© Alla Sheffer, Helge Rhodin

Our options:

Number = position after each legal move

© Alla Sheffer, Helge Rhodin

Opponent options

Here we are looking at all of the opponent responses
to the first possible move we could make.

© Alla Sheffer, Helge Rhodin

Opponent options

Opponent options after our second
possibility. Not good again…

© Alla Sheffer, Helge Rhodin

Opponent options

© Alla Sheffer, Helge Rhodin

Opponent options => Our options

Now they don’t have a way to win on their next move. So
now we have to consider our responses to
their responses.

© Alla Sheffer, Helge Rhodin

Our options

We have a win for any move they make.
Original position in purple is an X win.

© Alla Sheffer, Helge Rhodin

Other options

They win again if we take our fifth move.

© Alla Sheffer, Helge Rhodin

Summary of the Analysis

So which move should we make? ;-)

© Alla Sheffer, Helge Rhodin

MinMax algorithm
• Traverse “game tree”:

• Enumerate all possible moves at each node.
• The children of each node are the positions that result from making each

move. A leaf is a position that is a draw or a win for some side.

• Assume that we pick the best move for us, and the opponent picks the best
move for them (causes most damage to us)

• Pick the move that maximizes the minimum amount of success for our side.

© Alla Sheffer, Helge Rhodin

MinMax Algorithm
• Tic-Tac-Toe: three forms of success: Win, Tie, Lose.

• If you have a move that leads to a Win make it.
• If you have no such move, then make the move that gives the tie.
• If not even this exists, then it doesn’t matter what you do.

© Alla Sheffer, Helge Rhodin

Extensions
• Challenges: In practice

• Trees too deep/large to explore
• Opponent not always makes the ‘best’ choice
• Randomness

• Solution - Heuristics
• Rate nodes based on local information.
• For example, in Chess “rate” a position by examining difference in number of

pieces

© Alla Sheffer, Helge Rhodin

Heuristics in MinMax
• Strategy that will let us cut off the game tree at fixed depth (layer)
• Apply heuristic scoring to bottom layer

• instead of just Win, Loss, Tie, we have a score.
• For “our” level of the tree we want the move that yields the node

(position) with highest score. For a “them” level “they” want the child
with the lowest score.

© Alla Sheffer, Helge Rhodin

Self stuy: Pseudocode

int Minimax(Board b, boolean myTurn, int depth) {
if (depth==0)

return b.Evaluate(); // Heuristic
for(each possible move i)

value[i] = Minimax(b.move(i), !myTurn,
depth-1);

if (myTurn)
return array_max(value);

else
return array_min(value);

}

Note: we don’t use an explicit tree structure.
However, the pattern of recursive calls forms a tree on the call stack.

© Alla Sheffer, Helge Rhodin

Real Minimax Example

10 2 12 16 2 7 -5 -80

10 16 7 -5

10 -5

10Max

Max

Min

Min

Evaluation function applied to the leaves!

© Alla Sheffer, Helge Rhodin

10 2 12

10 12

10

Pruning Example

Max

Max

Min

Min

β =10

α = 12

α > β!

© Alla Sheffer, Helge Rhodin

Self stuy: Alpha Beta Pruning
Idea: Track “window” of expectations.
Use two variables
• α – Best score so far at a max node (‘our choice’): increases

• At a child min node:
• Parent wants max. To affect the parent’s current α, our β cannot drop below α.

• If β ever gets less:
• Stop searching further subtrees of that child. They do not matter!

• β – Best score so far at a min node (‘their choice’): decreases
• At a child max node.

• Parent wants min. To affect the parent’s current β, our α cannot get above the parent’s β.
• If α gets bigger than β:

• Stop searching further subtrees of that child. They do not matter!

Start with an infinite window (α = -∞, β = ∞)

© Alla Sheffer, Helge Rhodin

Self stuy: Alpha Beta Example II

10 2 12 2 7

10 12 7

10 7

10Max

Max

Min

Min

α = 10

β =7

α > β!

© Alla Sheffer, Helge Rhodin

Self stuy: Pseudo Code
int AlphaBeta(Board b, boolean myTurn, int depth, int alpha, int beta) {

if (depth==0)
return b.Evaluate(); // Heuristic

if (myTurn) {
for(each possible move i && alpha < beta)

alpha = max(alpha,AlphaBeta(b.move(i),!myTurn,depth-1,alpha,beta));
return alpha;

}
else {

for(each possible move i && alpha < beta)
beta = min(beta,AlphaBeta(b.move(i), !myTurn, depth-1,alpha,beta));

return beta;
}

}

© Alla Sheffer, Helge Rhodin

Variants
• More than two players?

• More than two choices?

• Opponent does not select
best move?

35

	Two-player games
	Setup
	Overview
	Breadth-first vs. A*
	A* Search
	A* Example
	A* Example
	A* Example
	A* Example
	Keep track of your parents
	A* search
	Variants
	Two-player games
	Min-Max Trees
	Example �(from uliana.lecturer.pens.ac.id/Kecerdasan%20Buatan/ppt/Game%20Playing/gametrees.ppt)
	Our options:
	Opponent options
	Opponent options
	Opponent options
	Opponent options => Our options
	Our options
	Other options
	Summary of the Analysis�
	MinMax algorithm
	MinMax Algorithm
	Extensions
	Heuristics in MinMax
	Self stuy: Pseudocode
	Real Minimax Example
	Pruning Example
	Self stuy: Alpha Beta Pruning
	Self stuy: Alpha Beta Example II
	Self stuy: Pseudo Code
	Variants

