

# **Two-player games**



www.npr.org



## Setup

## @Helge: Pressed record?

@Class: Logged into iClicker cloud?



# **Overview**

## First half:

- Shortest paths cont.
- Two-player games

# ... all about traversing trees efficiently

## Second half:

- Physical simulation basics
  - setting and definitions
- Efficient & precise simulation
  - today: what can go wrong?

## ... the core of every game?

## + Some debugging tips

End of the day: be able to implement efficient shortest path, two-player AI, and to simulate flying pebbles (for A3!)



## **Breadth-first vs. A\***



# A\* Search



- A\* search takes into account both
  - c(p) = cost of path p to current node
  - h(p) = heuristic value at node p (estimated "remaining" path cost)
- Let f(p) = c(p) + h(p).
  - f(p) is an estimate of the cost of a path from the start to a goal via p.
     actual estimate



A\* always chooses the path on the frontier with the lowest estimated distance from the start to a goal node constrained to go via that path.

## Init:

- Put starting node on open list: Lo = {6}
- Set its cost to 0: c[6] = 0
- Set closed list to empty list: Lc = {}

#### Step 1:

6

- Find node with smallest f on the list, call it q: q = 6
- Find q's "successors": sucs = {3,4,7}
- For each successor u: for u in sucs ...
- c(u) = c(q) + d(q,u) c[3] = c[6] + 1 = 1 c[4] = c[6] + 1.4 = 1.4c[7] = c[6] + 1 = 1
- h(u) = d(g, u) f(u) = c(u) + h(u) h[3] = 3.6 h[4] = 2.8 h[7] = 3.6 f[3] = c[3] + h[3] = 4.6 f[4] = c[4] + h[4] = 4.2f[7] = c[7] + h[7] = 4.6
- add successors to open list and move q to closed: Lo = {3,4,7}; Lc = {6}







8

9

6







## **Step 2:** Lo = $\{3,4,7\}$ ; Lc = $\{6\}$

- Find node with smallest f on Lo, call it q:
  - f[3] = 4.6f[4] = 4.2f[7] = 4.6-> q = 4
- *Find q's "successors":* sucs = {3,6,7,8}
- for u in sucs...
- •

- Update heuristic and estimated cost f: h[8] = 3.2f[8] = c[8] + h[8] = 5.6
- add successors to open list and move q to closed list:  $Lo = \{3,7,8\}; Lc = \{6,4\}$

#### Frontier (open list)



#### Step cost c







### *Step 3:* Lo = {3,7,8}; Lc = {6,4}

- Find node with smallest f on Lo, call it q:
- f[3] = 4.6 -> q = 3 f[7] = 4.6 f[8] = 5.6
- Find q's "successors": sucs = {4,6,7}
- for u in sucs...

## 

- add successors to open list? no successors!
- move q to closed list: Lo = {7,8}; Lc = {6,4,3}

## Frontier (open list)



Step cost c

8

6

<mark>g</mark> 2

5

9





### **Step 4:** Lo = {7,8}; Lc = {6,4,3}

- Find node with smallest f on Lo, call it q:
- f[7] = 4.6 -> q = 7 f[8] = 5.6
- *Find q's "successors":* sucs = {3,4,6,8} •
- for u in sucs...



- add successors to open list? Already there! •
- move q to closed list: Lo = {8}; Lc = {6,4,3,7}

## Frontier (open list)



#### Step cost c







# Keep track of your parents

• We neglected parent-child relation in previous slides...

 $Lc = \{6, 4, 3\}$ 







## • Note, closed paths have no 'free' neighbors

• impassable or already visited from a shorter path



# A\* search

Key idea: H is a heuristic, and not the real distance:

h(p,q) = |(p.x - q.x)| + |(p.y - q.y)|

- Manhattan distance

$$h(p,q) = sqrt((p.x - q.x)^2 + (p.y - q.y)^2)$$

- Euclidean distance

## **Conditions:**

- a <u>heuristic function</u> is admissible if it never overestimates the cost of reaching the goal
- a <u>heuristic function</u> is said to be **consistent**, or **monotone**, if its estimate is always less than or equal to the estimated distance from any neighbouring vertex to the goal, plus the cost of reaching that neighbour



https://en.wikipedia.org/wiki/Taxicab\_geometry



## Variants

Randomness

## • Make the AI dump/non-perfect

- How?
- Different terrain types?



## **Two-player games**



www.npr.org



## **Min-Max Trees**

- Adversarial planning in a turn-taking environment
  - Algorithm seeks to maximize our success **F**
  - Adversary seeks to minimize **F**
  - $a_{we} = \max_{we} \min_{they} F(a_{we}, a_{they})$
- Key idea: at each step the algorithm selects the move that minimizes the highest (estimated) value of F the adversary can reach
  - Assume the opponent does what is best

# Example



(from uliana.lecturer.pens.ac.id/Kecerdasan%20Buatan/ppt/Game%20Playing/gametrees.ppt)



## We are playing X, and it is now our turn.



# **Our options:**



## Number = position after each legal move



# **Opponent options**



Here we are looking at all of the opponent responses to the first possible move we could make.



# **Opponent options**



# **Opponent options after our second possibility. Not good again...**



# **Opponent options**





# **Opponent options => Our options**



Now they don't have a way to win on their next move. So now we have to consider our responses to their responses.



# **Our options**



We have a win for any move they make. Original position in purple is an X win.



# **Other options**



## They win again if we take our fifth move.

# **Summary of the Analysis**





So which move should we make? ;-)



# MinMax algorithm

- Traverse "game tree":
  - Enumerate all possible moves at each node.
  - The children of each node are the positions that result from making each move. A leaf is a position that is a draw or a win for some side.
- Assume that we pick the best move for us, and the opponent picks the best move for them (causes most damage to us)
- Pick the move that maximizes the minimum amount of success for our side.



# **MinMax Algorithm**

- Tic-Tac-Toe: three forms of success: Win, Tie, Lose.
  - If you have a move that leads to a Win make it.
  - If you have no such move, then make the move that gives the tie.
  - If not even this exists, then it doesn't matter what you do.



## **Extensions**

- Challenges: In practice
  - Trees too deep/large to explore
  - Opponent not always makes the 'best' choice
  - Randomness
- Solution Heuristics
  - Rate nodes based on local information.
  - For example, in Chess "rate" a position by examining difference in number of pieces



# **Heuristics in MinMax**

- Strategy that will let us cut off the game tree at fixed depth (layer)
- Apply heuristic scoring to bottom layer
  - instead of just Win, Loss, Tie, we have a score.
- For "our" level of the tree we want the move that yields the node (position) with highest score. For a "them" level "they" want the child with the lowest score.



# Self stuy: Pseudocode

```
int Minimax(Board b, boolean myTurn, int depth) {
    if (depth==0)
        return b.Evaluate(); // Heuristic
    for(each possible move i)
        value[i] = Minimax(b.move(i), !myTurn,
    depth-1);
    if (myTurn)
        return array_max(value);
    else
        return array_min(value);
}
```

Note: we don't use an explicit tree structure. However, the pattern of recursive calls forms a tree on the call stack.



# **Real Minimax Example**



**Evaluation function applied to the leaves!** 



# **Pruning Example**





# Self stuy: Alpha Beta Pruning

#### Idea: Track "window" of expectations. Use two variables

- $\alpha$  Best score so far at a **max** node ('our choice'): increases
  - At a child **min** node:
    - Parent wants **max**. To affect the parent's current  $\alpha$ , our  $\beta$  cannot drop below  $\alpha$ .
  - If  $\beta$  ever gets less:
    - Stop searching further subtrees *of that child*. They do not matter!
- $\beta$  Best score so far at a **min** node ('their choice'): decreases
  - At a child **max** node.
    - Parent wants **min**. To affect the parent's current  $\beta$ , our  $\alpha$  cannot get above the parent's  $\beta$ .
  - If  $\alpha$  gets bigger than  $\beta$ :
    - Stop searching further subtrees of that child. They do not matter!

## Start with an infinite window ( $\alpha = -\infty, \beta = \infty$ )



# Self stuy: Alpha Beta Example II





# **Self stuy:** Pseudo Code

```
int AlphaBeta(Board b, boolean myTurn, int depth, int alpha, int beta) {
    if (depth==0)
        return b.Evaluate(); // Heuristic
    if (myTurn) {
        for(each possible move i && alpha < beta)
            alpha = max(alpha,AlphaBeta(b.move(i),!myTurn,depth-1,alpha,beta));
        return alpha;
    }
    else {
        for(each possible move i && alpha < beta)
            beta = min(beta,AlphaBeta(b.move(i), !myTurn, depth-1,alpha,beta));
        return beta;
    }
</pre>
```



## Variants

- More than two players?
- More than two choices?
- Opponent does not select best move?