AI and Strategy

Helge Rhodin
Overview

Learning outcome:

- Link data structure and algorithm knowledge to game dev.
- Understand search algorithms (breadth first, depth first, A*, min max)
Recap: Behaviour Trees

• flow of decision making of an AI agent
• tree structured

• **Each frame:**
 • Visit nodes from root to leaves
 • *depth-first order*
 • *check currently running node*
 • succeeds or fails:
 • return to parent node and evaluate its **Success/Failure**
 • the parent may call new branches in sequence or return **Success/Failure**
 • continues running: recursively return **Running** till root (usually)
New: A leaf node with internal state

Example scenarios

1. Run three steps, turn around, run one step back

2. Turn right, run three steps, turn around
Live demo
Multiple components for one entity?

Classical ECS:

- *Each entity*
 - has one ID
 - has or has not a certain component type
 - cannot store multiple components of the same type

Character inventory:

- A character should be able to hold multiple portions of the same type
- **Solution:**
 - Each item is its own entity
 - Introduce an inventory component that stores list of items (list of entities)
The same b-tree for multiple entities?

• **How to store the state with each entity?**

 • within the ECS registry?

 • *add a new state component for each b-tree node?*

 • what if multiple nodes of the same type run on the same entities?

• a custom data structure?

 • *a lookup table?*

 • conditioned on entity ID!
Strategy

• Given current state, determine **BEST** next move

• Short term: best among immediate options

• Long term: what brings something closest to a goal
 • *How?*
 • Search for path to best outcome
 • Across states/state parameters
Pathfinding

- How do I get from point A to point B?
DFS: Depth-first search

Explore each path on the frontier until its end (or until a goal is found) before considering any other path.

Shaded nodes represent the end of paths on the frontier.
Breadth-first search (BFS)

• Explore all paths of length L on the frontier, before looking at path of length $L + 1$
Breadth-first

Project pitch Team 4

When to use BFS vs. DFS?

- The search graph has cycles or is infinite
 - BFS

- We need the shortest path to a solution
 - BFS

- There are only solutions at great depth
 - DFS

- There are some solutions at shallow depth
 - BFS

- No way the search graph will fit into memory
 - DFS
Search with Costs

Def.: The cost of a path is the sum of the costs of its arcs

$$\text{cost}(\langle n_0, \ldots, n_k \rangle) = \sum_{i=1}^{k} \text{cost}(\langle n_{i-1}, n_i \rangle)$$

Want to find the solution that minimizes cost
Example: Tower Defence

Normal unit motion cost:
- Street: cost 1
- Other: cost infinity

Boss unit: *which shortcuts will it take?*
- Street: cost 1
- Dirt road: cost 5
- Grass: cost 50
- Purple stuff: cost infinity
Lowest-Cost-First Search (LCFS)

- **Lowest-cost-first search** finds the path with the **lowest cost** to a goal node.
- At each stage, it **selects** the path with the **lowest cost** on the frontier.
- The **frontier** is implemented as a priority queue ordered by path cost.
Use of search

- Use search to determine next state (next state on shortest path to goal/best outcome)
- Measures:
 - Evaluate goal/best outcome
 - Evaluate distance (shortest path in what metric?)

Problems:
- Cost of full search (at every step) can be prohibitive
- Search in adversarial environment
 - Player will try to outsmart you
Heuristic Search

- Blind search algorithms do not take goal into account until they reach it.
- We often have estimates of distance/cost from node n to a goal node.
- Estimate = search heuristic
 - a scoring function $h(x)$
Best First Search (BestFS)

- **Best First**: always choose the path on the frontier with the smallest h value
 - *Frontier = priority queue ordered by $h*
 - *Once reach goal can discard most unexplored paths…*
 - Why?
 - *Worst case: still explore all/most space*
 - *Best case: very efficient*
- **Greedy**: (only) expand path whose last node seems closest to the goal
 - Get solution that is *locally* best
A* search

https://en.wikipedia.org/wiki/A*_search_algorithm
A* Search

- A* search takes into account both:
 - $c(p) = \text{cost of path } p \text{ to current node}$
 - $h(p) = \text{heuristic value at node } p \text{ (estimated “remaining” path cost)}$
- Let $f(p) = c(p) + h(p)$.
 - $f(p)$ is an estimate of the cost of a path from the start to a goal via p.

A* always chooses the path on the frontier with the lowest estimated distance from the start to a goal node constrained to go via that path.
A* implementation

1. Initialize open and closed lists.
 - Put starting node on open list.
2. While open list is not empty:
 - Find node with smallest f on the list, call it q
 - Pop q off of open list
 - Find q’s “successors”, and set their parent nodes to q
A* implementation

1. Initialize open, closed lists. Put starting node on open list.
2. While open list is not empty:
 - Find node with smallest f on the list, call it q
 - Pop q off of open list
 - Find q’s “successors”, and set their parent nodes to q
 - For each successor u:
 - If successor is the goal, done!
 - \(c(u) = c(q) + d(q,u) \)
 - \(h(u) = D(\text{goal}, u) \)
 - \(f(u) = c(u) + h(u) \)
 - If successor u already exists in open list with lower f skip it
 - If successor already exists in closed list with lower f, skip it
 - Otherwise, add successor to open list
A* implementation

1. Initialize open, closed lists. Put starting node on open list.
2. While open list is not empty:
 - Find node with smallest f on the list, call it q
 - Pop q off of open list
 - Find q’s “successors”, and set their parent nodes to q
 - For each successor:
 - If successor is the goal, done!
 - $g(\text{successor}) = g(q) + d(q,\text{successor})$
 - $h(\text{successor}) = d(\text{goal, successor})$
 - If successor already exists in open list with lower f, skip it
 - If successor already exists in closed list with lower f, skip it
 - Otherwise, add successor to open list

Put q on closed list
Variants

- **Randomness**

- **Make the AI dump/non-perfect**
 - *How?*

- **Different terrain types?**
Overview

First half:
• Shortest paths cont.
• Two-player games

... all about traversing trees efficiently

+ Some debugging tips

Second half:
• Physical simulation basics
 • setting and definitions
• Efficient & precise simulation
 • today: what can go wrong?

End of the day: be able to implement efficient shortest path, two-player AI, and to simulate flying pebbles (for A3!)
Breadth-first vs. A*
A* Search

- A* search takes into account both
 - $c(p) = \text{cost of path } p \text{ to current node}$
 - $h(p) = \text{heuristic value at node } p \text{ (estimated “remaining” path cost)}$
- Let $f(p) = c(p) + h(p)$.
 - $f(p)$ is an estimate of the cost of a path from the start to a goal via p.

A* always chooses the path on the frontier with the lowest estimated distance from the start to a goal node constrained to go via that path.
A* Example

Init:
- Put starting node on open list: Lo = {6}
- Set its cost to 0: c[6] = 0
- Set closed list to empty list: Lc = {}

Step 1:
- Find node with smallest f on the list, call it q: q = 6
- Find q’s “successors”: sucs = {3, 4, 7}
- For each successor u: for u in sucs …
 - c(u) = c(q) + d(q, u)
 - h(u) = d(g, u)
 - h[3] = 3.6
 - h[4] = 2.8
 - h[7] = 3.6
 - f(u) = c(u) + h(u)
- add successors to open list and move q to closed: Lo = {3, 4, 7}; Lc = {6}
A* Example

Step 2: \(Lo = \{3,4,7\}; Lc = \{6\} \)

- **Find node with smallest \(f \) on \(Lo \), call it \(q \):**
 - \(f[3] = 4.6 \)
 - \(f[4] = 4.2 \) → \(q = 4 \)
 - \(f[7] = 4.6 \)

- **Find \(q \)’s “successors”**: \(sucs = \{3,6,7,8\} \)

- for \(u \) in \(sucs \)...
 - \(c\text{_tmp}[6] = c[4] + 1.4 = 2.8 \) > \(c[6] = 0 \), skip
 - \(c\text{_tmp}[8] = c[4] + 1.4 = 2.4 \) not in \(Lo \) or \(Lc \), select \(c[8] = c\text{_tmp}[8] \)

- Update heuristic and estimated cost \(f \):
 - \(h[8] = 3.2 \)

- **add successors to open list and move \(q \) to closed list:**
 - \(Lo = \{3,7,8\}; Lc = \{6,4\} \)
Step 3: \(\text{Lo} = \{3,7,8\}; \text{Lc} = \{6,4\} \)

- **Find node with smallest \(f \) on \(\text{Lo} \), call it \(q \):**
 - \(f[3] = 4.6 \) \(\rightarrow \) \(q = 3 \)
 - \(f[7] = 4.6 \)
 - \(f[8] = 5.6 \)

- **Find \(q \)'s “successors”:** \(\text{sucs} = \{4,6,7\} \)

- for \(u \) in \(\text{sucs} \)...
 - \(c_{\text{tmp}}[6] = c[3] + 1.4 = 2.4 \) \(> \) \(c[6] = 0 \), skip
 - \(c_{\text{tmp}}[7] = c[3] + 1 = 2 \) \(> \) \(c[7] = 1 \), skip

- **add successors to open list? no successors!**

- **move \(q \) to closed list:**
 - \(\text{Lo} = \{7,8\} \);
 - \(\text{Lc} = \{6,4,3\} \)
A* Example

Step 4: \(L_o = \{7,8\}; \ L_c = \{6,4,3\}\)

- **Find node with smallest \(f\) on \(L_o\), call it \(q\):**
 - \(f[7] = 4.6\)
 - \(f[8] = 5.6\)
 - \(q = 7\)

- **Find \(q\)’s “successors”: \(sucs = \{3,4,6,8\}\)**

- **for \(u\) in \(sucs\)...**
 - \(c_{tmp}[3] = c[7] + 1.4 = 2.4\)
 - > \(c[3] = 1\), skip
 - \(c_{tmp}[4] = c[7] + 1 = 2\)
 - > \(c[4] = 1\), skip
 - \(c_{tmp}[6] = c[7] + 1 = 2\)
 - > \(c[6] = 0\), skip
 - \(c_{tmp}[8] = c[7] + 1 = 2\)
 - > \(c[8] = 2.4\), select new \(c[8] = 2\)

- **add successors to open list? Already there!**

- **move \(q\) to closed list:**
 - \(L_o = \{8\};\)
 - \(L_c = \{6,4,3,7\}\)
Keep track of your parents

• **We neglected parent-child relation in previous slides…**

\[L_c = \{6,4,3\} \]

• **Note, closed paths have no ‘free’ neighbors**
 • impassable or already visited from a shorter path

\[L_o = \{8\}; \]
A* search

Key idea: H is a heuristic, and not the real distance:

$$h(p,q) = |(p.x - q.x)| + |(p.y - q.y)|$$
- Manhattan distance

$$h(p,q) = \sqrt{(p.x - q.x)^2 + (p.y - q.y)^2}$$
- Euclidean distance

Conditions:

- a **heuristic function** is **admissible** if it never overestimates the cost of reaching the goal
- a **heuristic function** is said to be **consistent**, or **monotone**, if its estimate is always less than or equal to the estimated distance from any neighbouring vertex to the goal, plus the cost of reaching that neighbour

https://en.wikipedia.org/wiki/Taxicab_geometry