
© Alla Sheffer, Helge Rhodin

CPSC 427
Video Game Programming

Helge Rhodin

AI and Strategy

1

© Alla Sheffer, Helge Rhodin

Overview
Learning outcome:
• Link data structure and algorithm knowledge to game dev.
• Understand search algorithms (breadth first, depth first, A*, min max)

2

© Alla Sheffer, Helge Rhodin

Recap: Behaviour Trees
• flow of decision making of an AI agent
• tree structured
• Each frame:
• Visit nodes from root to leaves

• depth-first order
• check currently running node

• succeeds or fails:
• return to parent node and evaluate its Success/Failure
• the parent may call new branches in sequence or return Success/Failure
• continues running: recursively return Running till root (usually)

© Alla Sheffer, Helge Rhodin

New: A leaf node with internal state
Example scenarios
1. Run three steps, turn around, run one

step back

2. Turn right, run three steps, turn around

5

© Alla Sheffer, Helge Rhodin

Live demo

6

© Alla Sheffer, Helge Rhodin

Multiple components for one entity?
Classical ECS:
• Each entity
• has one ID
• has or has not a certain

component type

• cannot store multiple
components of the same type

Character inventory:
• A character should be able to

hold multiple portions of the
same type

• Solution:
• Each item is its own entity
• Introduce an inventory component

that stores list of items
(list of entities)

7

© Alla Sheffer, Helge Rhodin

The same b-tree for multiple entities?
• How to store the state with

each entity?
• within the ECS registry?

• add a new state component for each b-
tree node?
• what if multiple nodes of the same

type run on the same entities?

• a custom data structure?
• a lookup table?

• conditioned on entity ID!

8

© Alla Sheffer, Helge Rhodin9

© Alla Sheffer, Helge Rhodin

Strategy
• Given current state, determine BEST next move

• Short term: best among immediate options

• Long term: what brings something closest to a goal
• How?

• Search for path to best outcome
• Across states/state parameters

© Alla Sheffer, Helge Rhodin

Pathfinding
• How do I get from point A to point B?

© Alla Sheffer, Helge Rhodin

DFS: Depth-first search

Explore each path on the
frontier until its end (or until a
goal is found) before
considering any other path.

Shaded nodes
represent the end of
paths on the frontier

© Alla Sheffer, Helge Rhodin

Breadth-first search (BFS)

• Explore all paths of
length L on the frontier,
before looking at path
of length L + 1

© Alla Sheffer, Helge Rhodin

Breadth-first

14 https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Project pitch Team 4

© Alla Sheffer, Helge Rhodin

When to use BFS vs. DFS?
• The search graph has cycles or is infinite

• We need the shortest path to a solution

• There are only solutions at great depth

• There are some solutions at shallow depth

• No way the search graph will fit into memory

DFS

BFS

BFS

BFS

DFS

© Alla Sheffer, Helge Rhodin

Search with Costs

Want to find the solution that
minimizes cost

()),cost(,,cost
1

10 ∑
=

−=
k

i
iik nnnn 

Def.: The cost of a path is the
sum of the costs of its arcs

© Alla Sheffer, Helge Rhodin

Example: Tower Defence

Normal unit motion cost:
• Street: cost 1
• Other: cost infinity

Boss unit: which shortcuts will it take?
• Street: cost 1
• Dirt road: cost 5
• Grass: cost 50
• Purple stuff: cost infinity

Slide 17

© Alla Sheffer, Helge Rhodin

• Lowest-cost-first search finds the path with the
lowest cost to a goal node

• At each stage, it selects the path with the lowest cost
on the frontier.

• The frontier is implemented as a priority queue
ordered by path cost.

Lowest-Cost-First Search (LCFS)

18

© Alla Sheffer, Helge Rhodin

Use of search
• Use search to determine next state (next state on shortest path to

goal/best outcome)
• Measures:

• Evaluate goal/best outcome
• Evaluate distance (shortest path in what metric?)

Problems:
• Cost of full search (at every step) can be prohibitive
• Search in adversarial environment

• Player will try to outsmart you

© Alla Sheffer, Helge Rhodin

• Blind search algorithms do not take goal into account until they reach it

• We often have estimates of distance/cost from node n to a goal node

• Estimate = search heuristic
• a scoring function h(x)

Heuristic Search

20

© Alla Sheffer, Helge Rhodin

• Best First: always choose the path on the frontier with the smallest h
value
• Frontier = priority queue ordered by h
• Once reach goal can discard most unexplored paths…

• Why?
• Worst case: still explore all/most space
• Best case: very efficient

• Greedy: (only) expand path whose last node seems closest to the goal
• Get solution that is locally best

Best First Search (BestFS)

© Alla Sheffer, Helge Rhodin

A* search

22 https://en.wikipedia.org/wiki/A*_search_algorithm

© Alla Sheffer, Helge Rhodin

• A* search takes into account both
• c(p) = cost of path p to current node
• h(p) = heuristic value at node p (estimated “remaining”

path cost)

• Let f(p) = c(p) + h(p).
• f(p) is an estimate of the cost of a path from the start to a

goal via p.

A* Search

c(p) h(p)

f(p)A* always chooses the path on the frontier with the lowest
estimated distance from the start to a goal node constrained to
go via that path.

© Alla Sheffer, Helge Rhodin

A* implementation
• 1. Initialize open and closed lists.

• Put starting node on open list.
• 2. While open list is not empty:

• Find node with smallest f on the list, call it q
• Pop q off of open list
• Find q’s “successors”, and set their parent nodes to q

© Alla Sheffer, Helge Rhodin

A* implementation
• 1. Initialize open, closed lists. Put starting node on open list.
• 2. While open list is not empty:

• Find node with smallest f on the list, call it q
• Pop q off of open list
• Find q’s “successors”, and set their parent nodes to q

• For each successor u:
• If successor is the goal, done!
• c(u) = c(q) + d(q,u)

h(u) = D(goal, u)
f(u) = c(u) + h(u)

• If successor u already exists in open list with lower
f skip it

• If successor already exists in closed list with lower f,
skip it

• Otherwise, add successor to open list

© Alla Sheffer, Helge Rhodin

A* implementation
• 1. Initialize open, closed lists. Put starting node on open list.
• 2. While open list is not empty:

• Find node with smallest f on the list, call it q
• Pop q off of open list
• Find q’s “successors”, and set their parent nodes to q
• For each successor:

• If successor is the goal, done!
• g(successor) = g(q) + d(q,successor)

h(successor) = d(goal, successor)
• If successor already exists in open list with lower f, skip it
• If successor already exists in closed list with lower f, skip it
• Otherwise, add successor to open list

• Put q on closed list

© Alla Sheffer, Helge Rhodin

Variants
• Randomness

• Make the AI dump/non-perfect
• How?

• Different terrain types?

27

© Alla Sheffer, Helge Rhodin

Overview
First half:
• Shortest paths cont.
• Two-player games

… all about traversing trees
efficiently

+ Some debugging tips

Second half:
• Physical simulation basics

• setting and definitions

• Efficient & precise simulation
• today: what can go wrong?

28

End of the day: be able to implement efficient shortest path,
two-player AI, and to simulate flying pebbles (for A3!)

© Alla Sheffer, Helge Rhodin

Breadth-first vs. A*

29

© Alla Sheffer, Helge Rhodin

• A* search takes into account both
• c(p) = cost of path p to current node
• h(p) = heuristic value at node p (estimated “remaining”

path cost)

• Let f(p) = c(p) + h(p).
• f(p) is an estimate of the cost of a path from the start to a

goal via p.

A* Search

c(p) h(p)

f(p)A* always chooses the path on the frontier with the lowest
estimated distance from the start to a goal node constrained to
go via that path.

© Alla Sheffer, Helge Rhodin

A* Example
Init:
• Put starting node on open list: Lo = {6}
• Set its cost to 0: c[6] = 0
• Set closed list to empty list: Lc = {}
Step 1:
• Find node with smallest f on the list, call it q: q = 6
• Find q’s “successors”: sucs = {3,4,7}
• For each successor u: for u in sucs …

• c(u) = c(q) + d(q,u) c[3] = c[6] + 1 = 1
c[4] = c[6] + 1.4 = 1.4
c[7] = c[6] + 1 = 1

• h(u) = d(g, u) h[3] = 3.6 f[3] = c[3] + h[3] = 4.6
f(u) = c(u) + h(u) h[4] = 2.8 f[4] = c[4] + h[4] = 4.2

h[7] = 3.6 f[7] = c[7] + h[7] = 4.6

• add successors to open list and move q to closed:
Lo = {3,4,7}; Lc = {6}31

2

3 4 5

6 7 8 9

1

s

g

2

3 4 5

6 7 8 9

1

s

g
2

3 4 5

6 7 8 9

1

s

g

Heuristic dist. hStep cost c

Frontier (open list)

© Alla Sheffer, Helge Rhodin

A* Example
Step 2: Lo = {3,4,7}; Lc = {6}
• Find node with smallest f on Lo, call it q:

• f[3] = 4.6
f[4] = 4.2 -> q = 4
f[7] = 4.6

• Find q’s “successors”: sucs = {3,6,7,8}
• for u in sucs…

• c_tmp[3] = c[4] + 1 = 2.4 > c[3] = 1, skip
c_tmp[6] = c[4] + 1.4 = 2.8 > c[6] = 0, skip
c_tmp[7] = c[4] + 1 = 2.4 > c[7] = 1, skip
c_tmp[8] = c[4] + 1.4 = 2.4 not in Lo or Lc, select c[8] = c_tmp[8]

• Update heuristic and estimated cost f:
h[8] = 3.2
f[8] = c[8] + h[8] = 5.6

• add successors to open list and move q to closed list:
Lo = {3,7,8}; Lc = {6,4}

32

2

3 4 5

6 7 8 9

1
g

2

3 4 5

6 7 8 9

1

s

g
2

3 4 5

6 7 8 9

1

s

g

Heuristic dist. hStep cost c

s

Frontier (open list)

© Alla Sheffer, Helge Rhodin

A* Example
Step 3: Lo = {3,7,8}; Lc = {6,4}
• Find node with smallest f on Lo, call it q:

• f[3] = 4.6 -> q = 3
f[7] = 4.6
f[8] = 5.6

• Find q’s “successors”: sucs = {4,6,7}
• for u in sucs…

• c_tmp[4] = c[3] + 1 = 2 > c[4] = 1.4, skip
c_tmp[6] = c[3] + 1.4 = 2.4 > c[6] = 0, skip
c_tmp[7] = c[3] + 1 = 2 > c[7] = 1, skip

• add successors to open list? no successors!
• move q to closed list:

Lo = {7,8};
Lc = {6,4,3}

33

2

3 4 5

6 7 8 9

1
g

2

3 4 5

6 7 8 9

1

s

g
2

3 4 5

6 7 8 9

1

s

g

Heuristic dist. hStep cost c

s

Frontier (open list)

© Alla Sheffer, Helge Rhodin

A* Example
Step 4: Lo = {7,8}; Lc = {6,4,3}
• Find node with smallest f on Lo, call it q:

• f[7] = 4.6 -> q = 7
f[8] = 5.6

• Find q’s “successors”: sucs = {3,4,6,8}
• for u in sucs…

• c_tmp[3] = c[7] + 1.4 = 2.4 > c[3] = 1, skip
c_tmp[4] = c[7] + 1 = 2 > c[4] = 1, skip
c_tmp[6] = c[7] + 1 = 2 > c[6] = 0, skip
c_tmp[8] = c[7] + 1 = 2 > c[8] = 2.4, select new c[8] = 2

• add successors to open list? Already there!
• move q to closed list:

Lo = {8};
Lc = {6,4,3,7}

34

2

3 4 5

6 7 8 9

1
g

2

3 4 5

6 7 8 9

1

s

g
2

3 4 5

6 7 8 9

1

s

g

Heuristic dist. hStep cost c

s

Frontier (open list)

© Alla Sheffer, Helge Rhodin

Keep track of your parents
• We neglected parent-child relation in previous slides…

Lc = {6,4,3}

• Note, closed paths have no ‘free’ neighbors
• impassable or already visited from a shorter path

35

2

3 4 5

6 7 8 9

1

s

g

Path to 3

2

3 4 5

6 7 8 9

1

s

g

Path to 4

2

3 4 5

6 7 8 9

1

s

g

Path to 6

2

3 4 5

6 7 8 9

1

s

g

Path to 7

2

3 4 5

6 7 8 9

1

s

g

Path to 8

Lo = {8};

© Alla Sheffer, Helge Rhodin

A* search
Key idea: H is a heuristic, and not the real distance:

h(p,q) = |(p.x – q.x)| + |(p.y – q.y)|
- Manhattan distance

h(p,q) = sqrt((p.x – q.x)^2 + (p.y – q.y)^2)
- Euclidean distance

Conditions:
• a heuristic function is admissible if it never overestimates the

cost of reaching the goal
• a heuristic function is said to be consistent, or monotone, if its

estimate is always less than or equal to the estimated distance
from any neighbouring vertex to the goal, plus the cost of
reaching that neighbour

https://en.wikipedia.org/wiki/Taxicab_geometry

https://en.wikipedia.org/wiki/Heuristic_function
https://en.wikipedia.org/wiki/Heuristic_function

	CPSC 427�Video Game Programming
	Overview
	Recap: Behaviour Trees
	New: A leaf node with internal state
	Live demo
	Multiple components for one entity?
	The same b-tree for multiple entities?
	Slide Number 9
	Strategy
	Pathfinding
	DFS: Depth-first search
	Breadth-first search (BFS)
	Breadth-first
	When to use BFS vs. DFS?
	Search with Costs
	Example: Tower Defence
	Lowest-Cost-First Search (LCFS)
	Use of search
	Heuristic Search
	Best First Search (BestFS)
	A* search
	A* Search
	A* implementation
	A* implementation
	A* implementation
	Variants
	Overview
	Breadth-first vs. A*
	A* Search
	A* Example
	A* Example
	A* Example
	A* Example
	Keep track of your parents
	A* search

