Helge Rhodin

CPSC 427 Video Game Programming

Curves and Animation

https://www.pluralsight.com/blog/filmgames/stepped-vs-spline-curves-blocking-animation

Overview

1. Animation basics

2. Curves

3. Skeleton animation

Is all this math useful?

3

NPC: Neural Point Characters from Video [ICCV 2023]

Side-by-side overlaying of animated surface points and ground truth video frames Setting: unseen, animated poses; fixed camera view

My animation background?

Generalizing Wave Gestures from Sparse Examples for Real-time Character Control © Alla Sheffer, Helge Rhodin

My animation background?

Helge Rhodin

CPSC 427 Video Game Programming

Curves and Animation

https://www.pluralsight.com/blog/filmgames/stepped-vs-spline-curves-blocking-animation

Keyframe animation

Lasseter `87

Recap: Line equation

Parametric form

• 3D: x, y, and z are functions of a parameter value t

$$C(t) := \begin{pmatrix} P_y^0 \\ P_y^0 \\ P_x^0 \end{pmatrix} t + \begin{pmatrix} P_y^1 \\ P_y^1 \\ P_x^1 \end{pmatrix} (1-t)$$

What things can we interpolate?

Interpolating general properties

- position
- aspect ratio?
- scale
- color
- What else?

 S^1

 c^1

 $C(t) := \begin{pmatrix} P_y^0 \\ P_y^0 \\ P_x^0 \end{pmatrix} t + \begin{pmatrix} P_y^1 \\ P_y^1 \\ P_x^1 \end{pmatrix} (1-t)$

s⁰

 c^0

Barycentric coordinates / interpolation

Other Parametric Functions

$$C(t) := \begin{pmatrix} P_y^0 \\ P_x^0 \end{pmatrix} t + \begin{pmatrix} P_y^1 \\ P_x^1 \end{pmatrix} (1-t) \qquad C$$

$$C(t) := \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$

Line segment

Splines

Segments of simple functions

$$f(x) = \begin{cases} f_1(x), & \text{if } x_1 < x \le x_2 \\ f_2(x), & \text{if } x_2 < x \le x_3 \\ \vdots & \vdots \\ f_n(x), & \text{if } x_n < x \le x_{n+1} \end{cases}$$

E.g., linear functions

Splines – Free Form Curves

Usually parametric

• C(t)=[x(t),y(t)] or C(t)=[x(t),y(t),z(t)]**Description = basis functions + coefficients**

$$C(t) = \sum_{i=0}^{n} P_i B_i(t) = (x(t), y(t))$$
$$x(t) = \sum_{i=0}^{n} P_i^x B_i(t)$$
$$y(t) = \sum_{i=0}^{n} P_i^y B_i(t)$$

• Same basis functions for all coordinates

Curves

© Alla Sheffer, Helge Rhodin

Hermite Cubic Basis

Geometrically-oriented coefficients

• 2 positions + 2 tangents

Require $C(0)=P_0$, $C(1)=P_1$, $C'(0)=T_0$, $C'(1)=T_1$

Derivatives of C at 0 and 1

Define basis functions, one per requirement

$$C(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t)$$

Hermite Basis Functions

$$C(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t)$$

To enforce $C(\theta) = P_{\theta}$, $C(1) = P_1$, $C'(\theta) = T_{\theta}$, $C'(1) = T_1$ basis should satisfy

 $h_{ij}(t)$; $i, j = 0, 1, t \in [0,1]$

© Alla Sheffer, Helge Rhodin

Splines – Free Form Curves

Geometric meaning of coefficients (base)

• Approximate/interpolate set of positions, derivatives, etc..

Will see one example

Possible solution?

Hermite Cubic Basis

Can satisfy with cubic polynomials as basis

$$h_{ij}(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0$$

Obtain - solve 4 linear equations in 4 unknowns for each basis function $h_{ii}(t)$; $i, j = 0, 1, t \in [0,1]$

curve	<i>C</i> (0)	<i>C</i> (1)	<i>C'</i> (0)	<i>C</i> '(1)
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

Hermite Cubic Basis

Four cubic polynomials that satisfy the conditions

$$h_{00}(t) = t^{2}(2t-3) + 1 \qquad h_{01}(t) = -t^{2}(2t-3)$$
$$h_{10}(t) = t(t-1)^{2} \qquad h_{11}(t) = t^{2}(t-1)$$

Derivative of h00

 $6\left(-1+t\right)t$

Curves

Applications: Keyframe animation & mesh creation

https://www.youtube. com/watch?v=LLlimJ xTyNw

Dave's Tutorial

Cross play moved, to have more space!

9	Mon	30-Oct	Lecture: Curves and splines	Milestone 2	
	Wed	1-Nov	Lecture: Team-report M2 Tutorial: Face2Face grading M2		
10	Mon	6-Nov	Lecture: Simple Al Lecture: Two-player Al	Assignment 2	
	Wed	8-Nov	Cross-play M2 Tutorial: Face2Face grading A2	Peer review A2 (due on Thursday)	
11	Mon	13-Nov	Break		
	Wed	15-Nov	Break		
12	Mon	20-Nov	Lecture: Balancing games Guest lecture by Tink Leguiader? (Behaviour Interactive)	Milestone 3	
	Wed	22-Nov	Lecture: Cross-play M3 Tutorial: Face2Face grading M3		
13	Mon	27-Nov	Guest lecture by Yggy King (Blackbird Interactive) on "ECS in practice" Team-report M3		
	Wed	29-Nov	Guest lecture by Cloé Veilleux (Relic Entertainment) "Cutting corners in Al"		
14	Mon	4-Dec	Lecture: The history and future of game technology Guest Lecture by Alex Denford and Cate Mackenzie (SkyBox) "Empowering Creators"	M4 submission	
	Wed	6-Dec	Lecture: Team-report M3 Tutorial: Face2Face grading M4		
Exan	n slot TB	D	Cross-play M4 Awards		

© Alla Sheffer, Helge Rhodin

Transformation Hierarchies

Transformation Hierarchies

Scenes have multiple coordinate systems

- Often strongly related
 - Parts of the body
 - Object on top of each other
 - Next to each other...

Independent definition is bug prone

Solution: Transformation Hierarchies

Transformation Hierarchy Examples

Transformation Hierarchy Examples

$$\begin{split} M_1 &= Tr_{(x,y)} \cdot Rot\theta_1 \\ M_2 &= M_1 \cdot Tr_{(2.5,5.5)} \cdot Rot \,\theta_2 \\ M_3 &= M_2 \cdot Tr_{(0,-3.5)} \cdot Rot \,\theta_3 \end{split}$$

Transformation Hierarchies

Transformation Hierarchy Quiz

Which color house will we draw?

- A. Red
- B. Blue
- C. Green
- D. Orange
- E. Purple

Hierarchical Modeling

Advantages

- Define object once, instantiate multiple copies
- Transformation parameters often good control knobs
- Maintain structural constraints if well-designed

Limitations

- Expressivity: not always the best controls
- Can't do closed kinematic chains
 - E.g., how to keep a hand on the hip?

Inverse Kinematics

- How to reach goal position?
- Chain of transformation to reach a certain point?

• What kind of a problem is this?

- linear/non-linear?
- convex/non-convex?
- How can we solve it?

Forward vs. inverse kinematics

Forward kinematics

- given joint axis, angle, and skeleton hierarchy
- compute joint locations
 - start at the end-effector (e.g. arm)
 - rotate all parent joints (up the hierarchy) by θ
 - iteratively continue from child to parent

Inverse kinematics

- given skeleton hierarchy and goal location
- optimize joint angles (e.g. gradient descent)
- minimize distance between end effector (computed by forward kinematics) and goal locations

Inverse kinematics (IK)

• non-linear in the angle (due to cos and sin)

$$M_1 = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0\\ \sin \theta_1 & \cos \theta_1 & 0 \end{bmatrix} \quad M_2 = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 & -l_1\\ \sin \theta_2 & \cos \theta_2 & 0 \end{bmatrix}$$

• linear/affine given a set of rotation matrices $p_2(\theta_1, \theta_2) = M_1 M_2 (p_2^{(0)} - p_1^{(0)})$

Inverse kinematics

• minimize objective to reach goal location

 $O(\theta_1, \theta_2) = \|q - p_2(\theta_1, \theta_2)\|$

Example IK framework:

https://rgl.s3.eu-central-1.amazonaws.com/media/pages/hw4/CS328_-_Homework_4_3.ipynb

37

