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Overview
Today:
• Making decisions (short term)
• State Machines
• Behaviour Trees
• and their implementation

Next:
• Planning (long term)
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‘Modern’ AI?
Machine learning has the problem of 1. training, 2. testing
• Takes ages for large models
• Can be real-time for small models (linear regression)

Opportunity of large language models (LLMs)
• General purpose
• Text is a very flexible interface

• Understood by humans
• Understood by machines
• No need to specify the interface (what your game needs) in advance
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‘Modern’ AI?
• Use ChatGPT?
• https://github.com/topics/chatgpt-api?l=c%2B%2B

• Chat GPT provides a text-based interface
• Summarise your game state as text (automatically)

• “User is at a distance of 10m, you have an arrow and a sword. 
Which one should you use? Answer with a single world.”

• If(output == “sword”) …
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Gameplay

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf
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Finite State Machines: States + Transitions
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FSM Example: Pac-Man Ghosts
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FSM Example: Pac-Man Ghosts

Wander Maze

Chase Pac-Man

Return to Base

Flee Pac-Man
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Ghost AI in PAC-MAN
Is the AI for Pac-Man basic? 
• chase or run.
• binary state machine?
• Toru Iwatani, designer of Pac-Man explained:

“wanted each ghostly enemy to have a specific character and 
its own particular movements, so they weren’t all just chasing 
after Pac-Man... which would have been tiresome and flat.”

• the four ghosts have four different behaviors
• different target points in relation to Pac-Man or the maze
• attack phases increase with player progress
• More details: http://tinyurl.com/238l7km
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Finite State Machines (FSMs)
• Each frame:
• Something (the player, an enemy) does something in its state
• It checks if it needs to transition to a new state

• If so, it does so for the next iteration
• If not, it stays in the same state

• Applications
• Managing input
• Managing player state
• Simple AI for entities / objects / monsters etc.
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FSMs: States + Transitions

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf
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FSMs: Failure to Scale

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

No way to do long-term planning
No way to ask “How do I get here 
from there?”
No way to reason about long-term 
goals
FSMs can get large and hard to 
follow
Can’t generalize for larger games
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Behaviour Trees: 
How To Simulate Your Dragon

Start!

Guard Treasure Get More Treasure Post Selfies To Facebook

Make thief flee!

Fly to Castle!
Is there a thief?

Treasure light enough to get home?

Steal treasure!

Take treasure home!

Condition Node

Instruction Node
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Start!

Is there a thief?

No! 40 miles later

Fly to castle! Can I take it home?Steal treasure!

Success

(runs until complete)
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BTs are state machines
• With structure (tree)
• With well-defined interfaces (fail-success-running)
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Behaviour Trees
• flow of decision making of an AI agent
• tree structured
• Each frame:
• Visit nodes from root to leaves

• depth-first order
• check currently running node

• succeeds or fails:
• return to parent node and evaluate its Success/Failure
• the parent may call new branches in sequence or return Success/Failure
• continues running: recursively return Running till root (usually)
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Behaviour Tree Elements
• leaves, are the actual commands that control the AI entity

• e.g., walk one step
• upon tick, return: Success, Failure, or Runnin

• branches are utility nodes that control the AI’s walk down the tree 
• e.g., door unlocked?
• loop through children: first to last or random
• inverter: turn Failure -> Success 
• to reach the sequences of commands best suited to the situation

• trees can be extremely deep
• nodes calling sub-trees of reusable functions
• libraries of behaviours chained together
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Schematic examples

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2
21339/Behavior_trees_for_AI_How_they_work.php
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Types

Decorator

Composite

Composite
Composite

Leaf
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Behaviour Tree Elements
Leaf node
• A custom function, does the actual work
• Returns Running/Success/Failure
Decorator node
• has a single child
• Passes on Running/Success/Failure from child
• may invert Success/Failure

Composite node
• has one or more children
• returns ‘Running’ until children stopped running
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Useful Composites
Sequence
• execute all children in order
• Success if all children succeed ( = AND)

Selector
• execute all children in order
• return Success if any child succeeded ( = OR)

Random Selectors / Sequences
• Randomized order of above composites
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Useful Decorators
Inverter
• Negates success/failure
Succeeder
• always returns success
Repeater
• Repeat child N times
Repeat Until Fail
• Repeat until child fails

24

return “Success”;

?

N
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Leaf Nodes
Functionality
• init(…)

• Called by parent to initialize
• Sets state to Running
• Not called gain before returning 

Success/Failure

• process() 
• Called every frame/tick the node is 

running
• Does internal processing, interacts with 

the world
• Returns Running/Success/Failure

Example: Walk to goal location

• Sets goal position for
path finding

• Computes shortest path
• Sets character velocity
• Returns

- success: Reached destination
- failure: No path found
- running: En route26
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Early exit?
• All parents of the currently 

running leaf node are 
running too

• A node early in the tree can 
return Success/Failure
• Terminates children implicitly

• Trying again?
• Re-initialize children with new 

parameters to init(…)

Example

• upon alarm 
• abort sleeping
• init running node 

• try to sleep if alarm is off 
• init sleeping node 

27

Running

Running

Running
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How to implement a tree in C++?
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Implementation example
Basics: An if condition (inflexible) 
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Implementation example II
A leaf node
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Behaviour Trees are Modular!

• Can re-use behaviours for different purposes
• Can implement a behaviour as a smaller FSM
• Can be data-driven (loaded from a file, not hard coded)

• JSON?!
• Can easily be constructed by non-programmers
• Can be used for goal based programming
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Modular design?

33
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Modular design?
Tree construction

Game loop
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class BTIfCondition : public BTNode
{

std::shared_ptr<BTNode> m_child;
std::function<bool(ECS::Entity)> m_condition;

public:
BTIfCondition(std::shared_ptr<BTNode> child, std::function<bool(ECS::Entity)> condition)

: m_child(std::move(child)), m_condition(condition){}

virtual void init(ECS::Entity e) override {
m_child->init(e);}

virtual BTState process(ECS::Entity e) override {
if (m_condition(e))

return m_child->process(e);
else

return BTState::Success;
}

};

Decorators - Conditions

35

BTNode standing = BTIfCondition(child_ptr, [](ECS::Entity e) {return ECS::registry<Motion>.get(e).velocity == 0;})

Instantiation
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AND Sequences

36

• Iterate through children until end or 
until child returns Failure

• Similar to ‘and’ in ‘if(child[0] && child[1] && …)’
• Expressions following the first ‘false’ will be ignored

• Further useful composites:
• Repeat N times
• Repeat indefinitely
• Negate Success/Failure
• OR Sequence
• If … else
• Exit condition

• What else???
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Leaf Nodes – Generic Version

Minor addition to ECS::Entity

37

class RunThreeMeters : public BTNode
{

std::map<ECS::Entity, int> n;
void init(ECS::Entity e) {

n[e] = 3;
}

BTState process(ECS::Entity e) {
// update internal state
n[e]--;

// modify world
ECS::registry<Motion>.get(e).position 
+= ECS::registry<Motion>.get(e).velocity;

// return progress
if (n[e] > 0)

return BTState::Running;
else

return BTState::Success;
}

};

// Comparator to use as key in std::map
bool operator <(const Entity& rhs) const
{

return id < rhs.id;
}

How can we apply the same BT 
on different entities?

• How to store internal states?
• store the state for every entity
• use an std::map
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When not to use ECS?
• When information is not shared across 

Systems
• AND ECS does not fit naturally
• multiple components of the same type associated 

to the same entity
• previous slide: multiple class instances store the 

same information type in a different context

• Entities and Components are still be useful locally
• Storing Components in ECS instead of locally is equally 

performant. Use ECS whenever possible!
• The unique Entity ID can still be useful to associate local 

information to a global entity!

ECS solves every problem?
Entity
Component
System

38

std::map<ECS::Entity, int> n;
void init(ECS::Entity e) {

n[e] = 3;
}
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