
© Alla Sheffer, Helge Rhodin

CPSC 427
Video Game Programming

Helge Rhodin

Game Play and AI

1

© Alla Sheffer, Helge Rhodin

Overview
Today:
• Making decisions (short term)
• State Machines
• Behaviour Trees
• and their implementation

Next:
• Planning (long term)

2

© Alla Sheffer, Helge Rhodin

‘Modern’ AI?
Machine learning has the problem of 1. training, 2. testing
• Takes ages for large models
• Can be real-time for small models (linear regression)

Opportunity of large language models (LLMs)
• General purpose
• Text is a very flexible interface

• Understood by humans
• Understood by machines
• No need to specify the interface (what your game needs) in advance

3

© Alla Sheffer, Helge Rhodin

‘Modern’ AI?
• Use ChatGPT?
• https://github.com/topics/chatgpt-api?l=c%2B%2B

• Chat GPT provides a text-based interface
• Summarise your game state as text (automatically)

• “User is at a distance of 10m, you have an arrow and a sword.
Which one should you use? Answer with a single world.”

• If(output == “sword”) …

4

https://github.com/topics/chatgpt-api?l=c%2B%2B
https://github.com/topics/chatgpt-api?l=c%2B%2B

© Alla Sheffer, Helge Rhodin

CPSC 427
Video Game Programming

Helge Rhodin

State machines

5

© Alla Sheffer, Helge Rhodin

Gameplay

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

© Alla Sheffer, Helge Rhodin

Finite State Machines: States + Transitions

© Alla Sheffer, Helge Rhodin

FSM Example: Pac-Man Ghosts

© Alla Sheffer, Helge Rhodin

FSM Example: Pac-Man Ghosts

Wander Maze

Chase Pac-Man

Return to Base

Flee Pac-Man

Pac-M
an Lost

Pac-M
an Seen

G
host A

ttacked

Pac-Man
Eats
Power
Pellet

© Alla Sheffer, Helge Rhodin

Ghost AI in PAC-MAN
Is the AI for Pac-Man basic?
• chase or run.
• binary state machine?
• Toru Iwatani, designer of Pac-Man explained:

“wanted each ghostly enemy to have a specific character and
its own particular movements, so they weren’t all just chasing
after Pac-Man... which would have been tiresome and flat.”

• the four ghosts have four different behaviors
• different target points in relation to Pac-Man or the maze
• attack phases increase with player progress
• More details: http://tinyurl.com/238l7km

10

© Alla Sheffer, Helge Rhodin

Finite State Machines (FSMs)
• Each frame:
• Something (the player, an enemy) does something in its state
• It checks if it needs to transition to a new state

• If so, it does so for the next iteration
• If not, it stays in the same state

• Applications
• Managing input
• Managing player state
• Simple AI for entities / objects / monsters etc.

© Alla Sheffer, Helge Rhodin

FSMs: States + Transitions

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

© Alla Sheffer, Helge Rhodin

FSMs: Failure to Scale

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

No way to do long-term planning
No way to ask “How do I get here
from there?”
No way to reason about long-term
goals
FSMs can get large and hard to
follow
Can’t generalize for larger games

© Alla Sheffer, Helge Rhodin

Behaviour Trees:
How To Simulate Your Dragon

Start!

Guard Treasure Get More Treasure Post Selfies To Facebook

Make thief flee!

Fly to Castle!
Is there a thief?

Treasure light enough to get home?

Steal treasure!

Take treasure home!

Condition Node

Instruction Node

© Alla Sheffer, Helge Rhodin

Start!

Is there a thief?

No! 40 miles later

Fly to castle! Can I take it home?Steal treasure!

Success

(runs until complete)

© Alla Sheffer, Helge Rhodin

Behaviour Trees:
How To Simulate Your Dragon

Start!

Guard Treasure Get More Treasure Post Selfies To Facebook

Make thief flee!

Fly to Castle!
Is there a thief?

Treasure light enough to get home?

Steal treasure!

Take treasure home!

Condition Node

Instruction Node

© Alla Sheffer, Helge Rhodin

BTs are state machines
• With structure (tree)
• With well-defined interfaces (fail-success-running)

17

© Alla Sheffer, Helge Rhodin

Behaviour Trees
• flow of decision making of an AI agent
• tree structured
• Each frame:
• Visit nodes from root to leaves

• depth-first order
• check currently running node

• succeeds or fails:
• return to parent node and evaluate its Success/Failure
• the parent may call new branches in sequence or return Success/Failure
• continues running: recursively return Running till root (usually)

© Alla Sheffer, Helge Rhodin

Behaviour Tree Elements
• leaves, are the actual commands that control the AI entity

• e.g., walk one step
• upon tick, return: Success, Failure, or Runnin

• branches are utility nodes that control the AI’s walk down the tree
• e.g., door unlocked?
• loop through children: first to last or random
• inverter: turn Failure -> Success
• to reach the sequences of commands best suited to the situation

• trees can be extremely deep
• nodes calling sub-trees of reusable functions
• libraries of behaviours chained together

19

© Alla Sheffer, Helge Rhodin

Schematic examples

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2
21339/Behavior_trees_for_AI_How_they_work.php

© Alla Sheffer, Helge Rhodin

Types

Decorator

Composite

Composite
Composite

Leaf

© Alla Sheffer, Helge Rhodin

Behaviour Tree Elements
Leaf node
• A custom function, does the actual work
• Returns Running/Success/Failure
Decorator node
• has a single child
• Passes on Running/Success/Failure from child
• may invert Success/Failure

Composite node
• has one or more children
• returns ‘Running’ until children stopped running

22

© Alla Sheffer, Helge Rhodin

Useful Composites
Sequence
• execute all children in order
• Success if all children succeed (= AND)

Selector
• execute all children in order
• return Success if any child succeeded (= OR)

Random Selectors / Sequences
• Randomized order of above composites

23

© Alla Sheffer, Helge Rhodin

Useful Decorators
Inverter
• Negates success/failure
Succeeder
• always returns success
Repeater
• Repeat child N times
Repeat Until Fail
• Repeat until child fails

24

return “Success”;

?

N

© Alla Sheffer, Helge Rhodin

Leaf Nodes
Functionality
• init(…)

• Called by parent to initialize
• Sets state to Running
• Not called gain before returning

Success/Failure

• process()
• Called every frame/tick the node is

running
• Does internal processing, interacts with

the world
• Returns Running/Success/Failure

Example: Walk to goal location

• Sets goal position for
path finding

• Computes shortest path
• Sets character velocity
• Returns

- success: Reached destination
- failure: No path found
- running: En route26

© Alla Sheffer, Helge Rhodin

Early exit?
• All parents of the currently

running leaf node are
running too

• A node early in the tree can
return Success/Failure
• Terminates children implicitly

• Trying again?
• Re-initialize children with new

parameters to init(…)

Example

• upon alarm
• abort sleeping
• init running node

• try to sleep if alarm is off
• init sleeping node

27

Running

Running

Running

© Alla Sheffer, Helge Rhodin

How to implement a tree in C++?

28

© Alla Sheffer, Helge Rhodin

Implementation example
Basics: An if condition (inflexible)

29

© Alla Sheffer, Helge Rhodin

Implementation example II
A leaf node

30

© Alla Sheffer, Helge Rhodin

Behaviour Trees are Modular!

• Can re-use behaviours for different purposes
• Can implement a behaviour as a smaller FSM
• Can be data-driven (loaded from a file, not hard coded)

• JSON?!
• Can easily be constructed by non-programmers
• Can be used for goal based programming

© Alla Sheffer, Helge Rhodin

Modular design?

33

© Alla Sheffer, Helge Rhodin

Modular design?
Tree construction

Game loop

34

© Alla Sheffer, Helge Rhodin

class BTIfCondition : public BTNode
{

std::shared_ptr<BTNode> m_child;
std::function<bool(ECS::Entity)> m_condition;

public:
BTIfCondition(std::shared_ptr<BTNode> child, std::function<bool(ECS::Entity)> condition)

: m_child(std::move(child)), m_condition(condition){}

virtual void init(ECS::Entity e) override {
m_child->init(e);}

virtual BTState process(ECS::Entity e) override {
if (m_condition(e))

return m_child->process(e);
else

return BTState::Success;
}

};

Decorators - Conditions

35

BTNode standing = BTIfCondition(child_ptr, [](ECS::Entity e) {return ECS::registry<Motion>.get(e).velocity == 0;})

Instantiation

© Alla Sheffer, Helge Rhodin

AND Sequences

36

• Iterate through children until end or
until child returns Failure

• Similar to ‘and’ in ‘if(child[0] && child[1] && …)’
• Expressions following the first ‘false’ will be ignored

• Further useful composites:
• Repeat N times
• Repeat indefinitely
• Negate Success/Failure
• OR Sequence
• If … else
• Exit condition

• What else???

© Alla Sheffer, Helge Rhodin

Leaf Nodes – Generic Version

Minor addition to ECS::Entity

37

class RunThreeMeters : public BTNode
{

std::map<ECS::Entity, int> n;
void init(ECS::Entity e) {

n[e] = 3;
}

BTState process(ECS::Entity e) {
// update internal state
n[e]--;

// modify world
ECS::registry<Motion>.get(e).position
+= ECS::registry<Motion>.get(e).velocity;

// return progress
if (n[e] > 0)

return BTState::Running;
else

return BTState::Success;
}

};

// Comparator to use as key in std::map
bool operator <(const Entity& rhs) const
{

return id < rhs.id;
}

How can we apply the same BT
on different entities?

• How to store internal states?
• store the state for every entity
• use an std::map

© Alla Sheffer, Helge Rhodin

When not to use ECS?
• When information is not shared across

Systems
• AND ECS does not fit naturally
• multiple components of the same type associated

to the same entity
• previous slide: multiple class instances store the

same information type in a different context

• Entities and Components are still be useful locally
• Storing Components in ECS instead of locally is equally

performant. Use ECS whenever possible!
• The unique Entity ID can still be useful to associate local

information to a global entity!

ECS solves every problem?
Entity
Component
System

38

std::map<ECS::Entity, int> n;
void init(ECS::Entity e) {

n[e] = 3;
}

	CPSC 427�Video Game Programming
	Overview
	‘Modern’ AI?
	‘Modern’ AI?
	CPSC 427�Video Game Programming
	Gameplay
	Finite State Machines: States + Transitions
	FSM Example: Pac-Man Ghosts
	FSM Example: Pac-Man Ghosts
	Ghost AI in PAC-MAN
	Finite State Machines (FSMs)
	FSMs: States + Transitions
	FSMs: Failure to Scale
	Behaviour Trees: �How To Simulate Your Dragon
	Start!
	Behaviour Trees: �How To Simulate Your Dragon
	BTs are state machines
	Behaviour Trees
	Behaviour Tree Elements
	Schematic examples
	Types
	Behaviour Tree Elements
	Useful Composites
	Useful Decorators
	Leaf Nodes
	Early exit?
	How to implement a tree in C++?
	Implementation example
	Implementation example II
	Behaviour Trees are Modular!
	Modular design?
	Modular design?
	Decorators - Conditions
	AND Sequences
	Leaf Nodes – Generic Version
	ECS solves every problem?

