
© Alla Sheffer, Helge Rhodin

CPSC 427
Video Game Programming

Helge Rhodin

IO and the Observer Pattern

1

© Alla Sheffer, Helge Rhodin

Today
Recap: collisions and simulation

Communication between systems:
• The observer pattern

If time permits, we will start with AI

2

© Alla Sheffer, Helge Rhodin

Feature clarifications
• Particle effects (basic)
• Create particle locations and their motion on the CPU

(smoke, fire, dirt…)
• Render one Quad at every particle location
• Create a shader (similar to light-up of the salmon that renders the

particle in local object coordinates; can also be a texture)
• glDrawArraysInstanced (old technique, no longer used)

• Advanced particle effects
(counts as an additional feature)
• Use the OpenGL point rendering function instead of quads

3

© Alla Sheffer, Helge Rhodin

Reminders:
• Be (better) prepared for face2face grading
• Have your laptop booted
• Have the game compiled
• Have the game running
• Have the game at a point where you can demonstrate the feature

Submit a personal progress report
• Otherwise we will assume you did nothing/little

• Do a late submission for M1 if still missing!
Decision trees – optional
MTA – cross-play (ignore for now)

4

© Alla Sheffer, Helge Rhodin

Collision Configurations?
• Segment/Segment Intersection

• Point on Segment

• Polygon inside polygon

© Alla Sheffer, Helge Rhodin

Separating Axis Theorem

Two convex shapes are not colliding if and only
if there exists a line that separates the two

• In other words, if you can draw a line between two
convex shapes without touching either, then the
two shapes are not colliding.

• Otherwise, if no such line can be found, the
shapes are definitely colliding

• In practice, only a few interesting lines need to be
considered (such as edges)

More reading:
https://en.wikipedia.org/wiki/Hyperplane_separation_
theorem

https://en.wikipedia.org/wiki/Hyperplane_separation_theorem

© Alla Sheffer, Helge Rhodin

Rigid Body Dynamics
(rotational motion of objects?)
• From particles to rigid bodies…

Rigid body

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 =

𝒙𝒙 𝒑𝒑𝒑𝒑𝒔𝒔𝒑𝒑𝒔𝒔𝒑𝒑𝒑𝒑𝒑𝒑
𝒗𝒗 𝒗𝒗𝒔𝒔𝒗𝒗𝒑𝒑𝒗𝒗𝒑𝒑𝒔𝒔𝒗𝒗
𝑹𝑹 𝒓𝒓𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔𝒑𝒑𝒑𝒑𝒑𝒑𝒎𝒎𝒔𝒔𝒔𝒔𝒓𝒓𝒑𝒑𝒙𝒙 𝟑𝟑𝒙𝒙𝟑𝟑
𝒘𝒘 𝒔𝒔𝒑𝒑𝒂𝒂𝒂𝒂𝒗𝒗𝒔𝒔𝒓𝒓 𝒗𝒗𝒔𝒔𝒗𝒗𝒑𝒑𝒗𝒗𝒑𝒑𝒔𝒔𝒗𝒗

ℝ𝟏𝟏𝟏𝟏 in 3D

Particle

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = �𝒙𝒙 𝒑𝒑𝒑𝒑𝒔𝒔𝒑𝒑𝒔𝒔𝒑𝒑𝒑𝒑𝒑𝒑
𝒗𝒗 𝒗𝒗𝒔𝒔𝒗𝒗𝒑𝒑𝒗𝒗𝒑𝒑𝒔𝒔𝒗𝒗

ℝ𝟒𝟒 in 2D
ℝ𝟔𝟔 in 3D

© Alla Sheffer, Helge Rhodin8

© Alla Sheffer, Helge Rhodin

Simulation ingredients
• Plain forces (gravity, springs, …)

• Impulses (collision, player input, …)

• Positional constraints (penetration)

9

𝐹𝐹 = 0
−𝑚𝑚𝑚𝑚

𝒗𝒗𝒑𝒑+𝟏𝟏 = 𝒗𝒗𝒑𝒑 + (𝑭𝑭(𝒔𝒔𝒑𝒑)/𝒎𝒎)𝒅𝒅𝒔𝒔

𝒗𝒗𝒑𝒑+𝟏𝟏 = 𝒗𝒗𝒑𝒑 + 𝒋𝒋/𝒎𝒎
no 𝒅𝒅𝒔𝒔 !

𝒗𝒗𝒑𝒑+𝟏𝟏 = 𝒗𝒗𝒑𝒑 + 𝜷𝜷 ∗ 𝒔𝒔 s𝒑𝒑𝒑𝒑+𝟏𝟏 = 𝒑𝒑𝒑𝒑 + 𝜷𝜷 ∗ 𝒔𝒔or

May lead to overshooting Instead: fix position directly! (hacky but effective)

© Alla Sheffer, Helge Rhodin

Particle-Particle Collisions (radius=0)
• Particle-particle frictionless elastic impulse response

• Momentum is preserved
𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏− + 𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏− = 𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏+ + 𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏+

• Kinetic energy is preserved

½𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏−
𝟏𝟏

+ ½𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏−
𝟏𝟏

= ½𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏+
𝟏𝟏

+ ½𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏+
𝟏𝟏

𝒎𝒎𝟏𝟏

𝒎𝒎𝟏𝟏

𝒎𝒎𝟏𝟏

𝒎𝒎𝟏𝟏

𝒗𝒗𝟏𝟏− 𝒗𝒗𝟏𝟏−
𝒗𝒗𝟏𝟏+

𝒗𝒗𝟏𝟏+

Before After

• Velocity is preserved
in tangential direction
𝒔𝒔◦𝒗𝒗𝟏𝟏− = 𝒔𝒔◦𝒗𝒗𝟏𝟏+ , 𝒔𝒔 ◦𝒗𝒗𝟏𝟏−= 𝐭𝐭◦𝒗𝒗𝟏𝟏+

© Alla Sheffer, Helge Rhodin

Particle-Plane Collisions
• Apply an ‘impulse’ of magnitude j

• Inversely proportional to mass of particle

• In direction of normal

𝒗𝒗− 𝒗𝒗+

�𝒑𝒑 𝒋𝒋 = 𝟏𝟏 + 𝝐𝝐 𝒗𝒗−◦ �𝒑𝒑 𝒎𝒎

𝒋𝒋 = 𝒋𝒋 �𝒑𝒑

𝒗𝒗+ =
𝒋𝒋
𝒎𝒎

+ 𝒗𝒗−

Impulse in physics: Integral of F over time
In games: an instantaneous step change
(not physically possible), i.e., the force
applied over one time step of the simulation

What is the
effect of 𝝐𝝐 ?

© Alla Sheffer, Helge Rhodin

Explicit Euler Problems

• Solution spirals out
• Even with small time steps
• Although smaller time steps

are still better

Definition: Explicit
• Closed-form/analytic solution
• no iterative solve required

© Alla Sheffer, Helge Rhodin

Midpoint Method
1. ½ Euler step
2. evaluate fm at 𝑿𝑿𝒎𝒎
3. full step using fm

10*𝒇𝒇𝒎𝒎

𝑿𝑿 𝒔𝒔
𝑿𝑿 𝒔𝒔 + ∆𝒔𝒔 𝒇𝒇𝒎𝒎

½ (∆𝒔𝒔 𝒇𝒇 𝑿𝑿 𝒔𝒔 , 𝒔𝒔)

𝑿𝑿𝒎𝒎 = 𝑿𝑿 𝒔𝒔 + ½ ∆𝑿𝑿(𝒔𝒔)

𝟏𝟏𝟏𝟏 ∗ 𝒇𝒇(𝑿𝑿 𝒔𝒔 , 𝒔𝒔)

© Alla Sheffer, Helge Rhodin

Issues:
• Complex relations

• Multiple entities

14

© Alla Sheffer, Helge Rhodin

Self study: Sequential impulse updates
Idea:
• Apply each constraint (e.g, collision between two bodies)

one-by-one
• Resolve inaccuracies iteratively

• An inner loop of ~10 iterations
• Compute v+ at pt

Excellent resource:

15

https://box2d.org/files/ErinCatto_UnderstandingConstraints_GDC2014.pdf
https://box2d.org/files/ErinCatto_ModelingAndSolvingConstraints_GDC2009.pdf

© Alla Sheffer, Helge Rhodin

Self study: Sequential impulse updates
Step 1: Forces acting on individual objects
• Gravity, air resistance, wind…
• Compute forces, then update velocity
Step 2: Pairwise forces (or group-wise)
• Detect collisions, compute penetration and restitution (bouncing) forces, update

velocity of the involved entities right after the force computation (no
accumulation!)

• Iterate by computing impulses and updating velocities (repeat K=~10 times,
until corrective impulses are small)

Step 3: Update positions
• Use velocities from the previous step
Step 4: Apply positional constraints (to mitigate drift)

16

© Alla Sheffer, Helge Rhodin

Self study: Sequential impulse updates
Pitfalls:
• Important to update velocity right after computing

constraint/forces
• Important to update the velocity of both objects at the

same time for a collision event
• Restitution (bouncing) is complex

• The outgoing velocities depend on the relative masses of objects
• What if multiple objects are stacked?
• The ones below influence the one above
• Inaccurate with sequential updates, requires block optimization

(optimization of multiple constraints at once; system of equations)
17

© Alla Sheffer, Helge Rhodin

© Alla Sheffer, Helge Rhodin

© Alla Sheffer, Helge Rhodin

© Alla Sheffer, Helge Rhodin

© Alla Sheffer, Helge Rhodin

Self-study: Constrained physics

22

By Nilson Souto
https://www.toptal.com/game/video-
game-physics-part-iii-constrained-rigid-
body-simulation

© Alla Sheffer, Helge Rhodin

Questions
Which solver to use? For a space simulator

(with accurate orbits, e.g., satellites)

1: Forward Euler
2: Backwards Euler
3: Midpoint
4: Trapezoid
5: Seq. Impulses

23

© Alla Sheffer, Helge Rhodin

Questions
Which solver to use? For a jump & run

1: Forward Euler
2: Backwards Euler
3: Midpoint
4: Trapezoid
5: Seq. Impulses

24

© Alla Sheffer, Helge Rhodin

Questions
Which solver to use? For a billiard game

(with many balls that can stack)

1: Forward Euler
2: Backwards Euler
3: Midpoint
4: Trapezoid
5: Seq. Impulses

25

© Alla Sheffer, Helge Rhodin

CPSC 427
Video Game Programming

Helge Rhodin

IO and the Observer Pattern

26

© Alla Sheffer, Helge Rhodin

Mainloop

int main(int argc, char* argv[]) {
…

2. Mainloop:

while (!world.is_over()) {

2
7

© Alla Sheffer, Helge Rhodin

Event Processing

2
8

Mouse event,
Keyboard event,
etc.

Credits:
https://pixabay.com/en/mouse-mouse-silhouette-lab-mouse-
2814846/
https://svgsilh.com/image/25711.html

© Alla Sheffer, Helge Rhodin

Event Processing: Event Queuing

2
9

Mouse event,
Keyboard event,
etc.

Event queue

Credits:
https://pixabay.com/en/mouse-mouse-silhouette-lab-mouse-
2814846/
https://svgsilh.com/image/25711.html

© Alla Sheffer, Helge Rhodin

Event Processing: Event Polling

3
0

Mouse event,
Keyboard event,
etc.

Event queue

while (!world.is_over()) {

glfwPollEvents();

}
Credits:
https://pixabay.com/en/mouse-mouse-silhouette-lab-mouse-
2814846/
https://svgsilh.com/image/25711.html

© Alla Sheffer, Helge Rhodin

Event Processing: Event Callback

3
1

GLFW calls corresponding callbacks:
• void World::on_key(GLFWwindow*, int key, int, int action, int mod)

—-> You need to set salmon motion here.

• void World::on_mouse_move(GLFWwindow* window, double xpos, double ypos)

—-> You need to fill this function to set salmon rotation.

© Alla Sheffer, Helge Rhodin

Event Processing: Event Callback

3
2

How does GLFW know which callback to call?

© Alla Sheffer, Helge Rhodin

Event Processing: Event Callback

3
3

How does GLFW know which callback to call?

—-> Registered in initialization:
world.init(…)
glfwSetKeyCallback
glfwSetCursorPosCallback

© Alla Sheffer, Helge Rhodin

Mainloop

int main(int argc, char* argv[]) {

…

2. Mainloop:

while (!world.is_over()) {

2.1 Event processing

2.2 Game state update

2.3 Rendering a frame

}

…

}

3
4

© Alla Sheffer, Helge Rhodin

The Observer Pattern
• Gang of Four (GoF)

• Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
• Design Patterns: Elements of Reusable Object-Oriented

Software (1994)

• A pattern described by the GoF
• event-driven

• clients register for an event

3
7

Good ref (object oriented):
https://gameprogrammingpatterns.com/observer.html

© Alla Sheffer, Helge Rhodin

Use Cases
• Rewards

• Communication between systems (in ECS)

• User input

• Have you encountered this problem yet ?

3
8

© Alla Sheffer, Helge Rhodin

Observer Pattern – OOP
• Define a common interface
• All observers inherit from that interface

3
9

Called Subject
by GoF

© Alla Sheffer, Helge Rhodin

Do we want inheritance?

4
0

© Alla Sheffer, Helge Rhodin

Observer Pattern – With Functions
• function with matching signature instead of class

4
1

?

© Alla Sheffer, Helge Rhodin

A function that accepts a function
• Using std::function

• Using templates

• use templates to accept any argument with an operator()
4
2

© Alla Sheffer, Helge Rhodin

Observer Pattern – With Functions
• function with matching signature instead of class

4
3

?

std::vector<std::function<void ()>> callbacks

attach(std::function<void ()> fn)

callbacks

© Alla Sheffer, Helge Rhodin

Issues with passing member functions?

• You may have to std::bind the this pointer

• Or use lambda functions as a wrapper (C++ 11)

• Make sure that the object is not moved
• E.g., components within the ECS system can be moved

around
� Don’t create a callback to components!

4
4

© Alla Sheffer, Helge Rhodin

Lambda Functions
Definition:
• auto y = [] (int first, int second) { return first + second; };
Call: int z = y(1+3);
• Infers return type for simple functions (single return statement)

• otherwise
auto y = [] (int first, int second) -> int { return first + second; };

• Can capture variables from the surrounding scope.
int scale;
auto y = [] (int first, int second) -> int { return scale*first + second; };

4
5auto y = [&] (int first, int second) -> int { return scale*first + second; };

© Alla Sheffer, Helge Rhodin

Performance?
• Isn’t this slow?

• Is it dangerous?

4
6

	CPSC 427�Video Game Programming
	Today
	Feature clarifications
	Reminders:
	Collision Configurations?
	Separating Axis Theorem
	Rigid Body Dynamics �(rotational motion of objects?)
	Slide Number 8
	Simulation ingredients
	Particle-Particle Collisions (radius=0)
	Particle-Plane Collisions
	��Explicit Euler Problems
	�Midpoint Method
	Issues:
	Self study: Sequential impulse updates
	Self study: Sequential impulse updates
	Self study: Sequential impulse updates
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Self-study: Constrained physics
	Questions
	Questions
	Questions
	CPSC 427�Video Game Programming
	Mainloop
	Event Processing
	Event Processing: Event Queuing
	Event Processing: Event Polling
	Event Processing: Event Callback
	Event Processing: Event Callback
	Event Processing: Event Callback
	Mainloop
	The Observer Pattern
	Use Cases
	Observer Pattern – OOP
	Do we want inheritance?
	Observer Pattern – With Functions
	A function that accepts a function
	Observer Pattern – With Functions
	Issues with passing member functions?
	Lambda Functions
	Performance?

