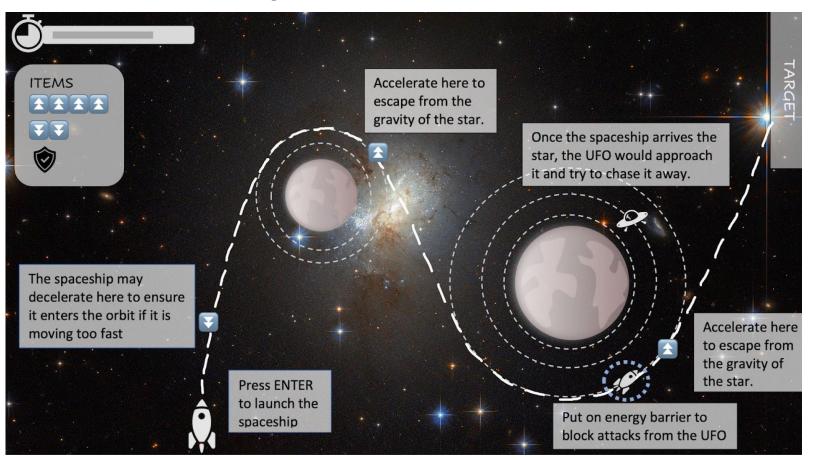
Helge Rhodin

CPSC 427 Video Game Programming

Physical Simulation



Feature: Level Loading with JSON

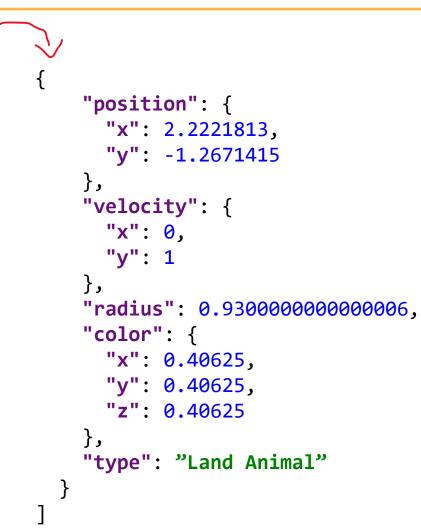
Libraries:

- <u>https://sourceforge.net/projects/libjson/</u>
- <u>https://github.com/nlohmann/jso</u>
- others?

Loading Entities and Components

- Outer list of entities
- Inner list of components
- Create a factory that instantiates each component type
- Equip components with toJSON(...) and fromJSON(...) functions

```
"entities": [
    "position": {
      "x": -1.7193701,
      "v": -0.09165986
    },
    "velocity": {
      "x": 0,
      "v": 0
    },
    "color": {
      "x": 0.453125,
      "y": 0.453125,
      "z": 0.453125
    },
    "type": "Water Animal"
  },
```



Factory from JSON

Factory:

```
void ComponentfromJson(Entity e, JsonObject json)
{
    if(str1.compare("Motion") != 0) {
        Motion& motion = Motion::fromJson(json);
        registry->insert(e, motion);
    }
    else if(str1.compare("Salmon") != 0)
        Motion& component = Motion::fromJson(json);
        registry->insert(e, component);
    }
    ...
}
```

Issues?

Component from JSON

Component to/from:

```
class Vector2D
    float x,y;
    public:
    JsonObject toJson()
       JsonObject json = Json.object();
       json.add("x", x);
       json.add("y", y);
       return json;
    static Vector2D fromJson(JsonObject json)
       double x = json.getFloat("x", 0.0f);
       double y = json.getFloat("y", 0.0f);
       return Vector2D(x,y);
```


Setup

@Helge: Pressed record?

@Class: Logged into iClicker cloud?

Overview

1. Equation of Motion

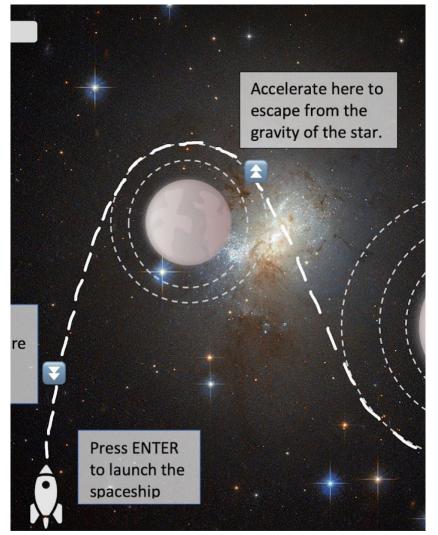
- Examples
- Ordinary Differentiable Equations (ODE)
- Solving ODEs

2. Collision and Reaction Forces

Physics

Learning goals:

- Connect your theoretical math knowledge to applications
- Properly simulate object motion and their interaction in your game

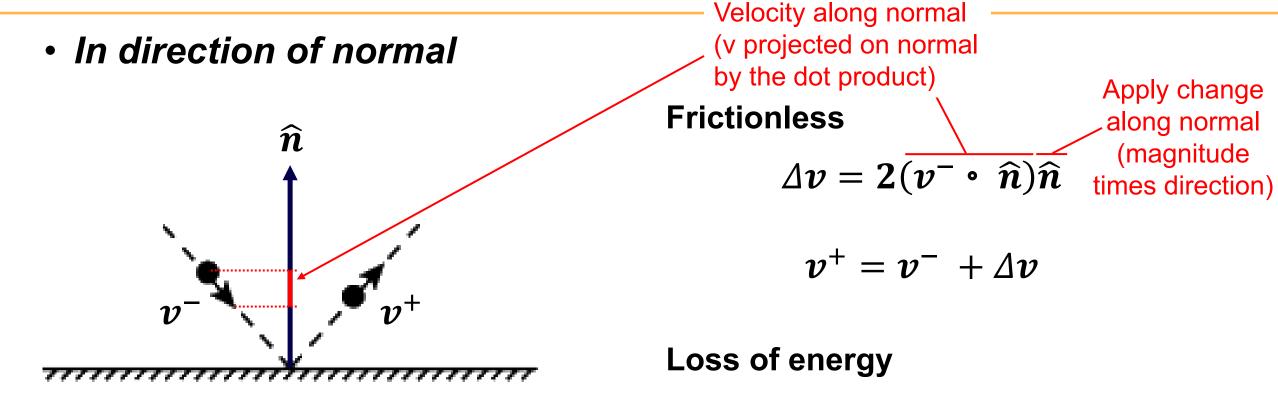


Recap: Basic Particle Simulation (first try)

How to compute the change in velocity?

$$d_t = t_{i+1} - t_i$$
$$\vec{v}_{i+1} = \vec{v}_i + \Delta v$$
$$\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}_i d_t$$

Recap: Particle-Plane Collision



$$\Delta \boldsymbol{v} = (\mathbf{1} + \boldsymbol{\epsilon})(\boldsymbol{v}^{-} \cdot \hat{\boldsymbol{n}})\hat{\boldsymbol{n}}$$

Particle-Particle Collisions (spherical objects)

Response:

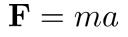
$$v_1^+ = v_1^- - rac{2m_2}{m_1 + m_2} rac{\langle v_1^- - v_2^-
angle \cdot \langle p_1 - p_2
angle}{\|p_1 - p_2\|^2} \langle p_1 - p_2
angle$$

$$v_2^+ = v_2^- - rac{2m_1}{m_1 + m_2} rac{\langle v_2^- - v_1^-
angle \cdot \langle p_2 - p_1
angle}{\|p_2 - p_1\|^2} \langle p_2 - p_1
angle$$

- This is in terms of velocity
- Today (and next lecture): derivation via impulse and forces

From Velocities (Δv) to Forces (F) and back

Force relates to mass and acceleration



A change in velocity related to acceleration over time $\Delta \mathbf{v} = \Delta t a$

In terms of forces

$$\Delta \mathbf{v} = \Delta t \, \frac{F}{m}$$

Recap: Basic Particle Simulation (first try)

How to compute the change in velocity?

$$d_t = t_{i+1} - t_i$$
$$\vec{v}_{i+1} = \vec{v}_i + \Delta v$$
$$\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}_i d_t$$

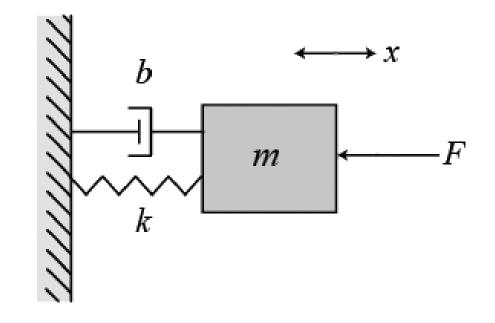
Forces are omnipresent

• Gravity

$$F = \begin{bmatrix} 0\\ -mg \end{bmatrix}$$

- Viscous damping
 - F = -bv

• Spring & dampers F = -kx - bv



Gravity direction?

Assuming a flat earth:

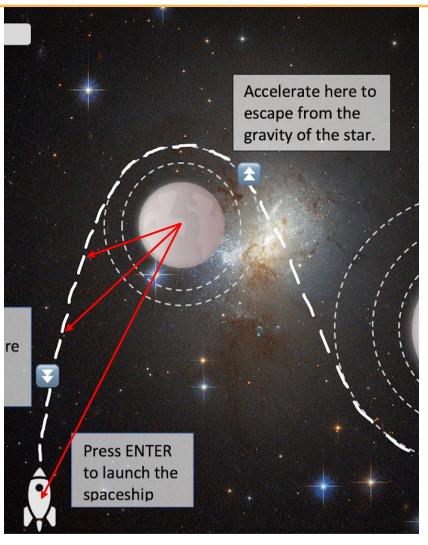
$$F = \begin{bmatrix} 0\\ -mg \end{bmatrix}$$

Assuming a spherical earth:

 $F = -mg \begin{bmatrix} a \\ b \end{bmatrix}$

How to compute the vector (a,b) and g?

Newton's law of universal gravitation $F = G \frac{m_1 m_2}{r^2}$



© Alla Sheffer, Helge Rhodin

Multiple forces?

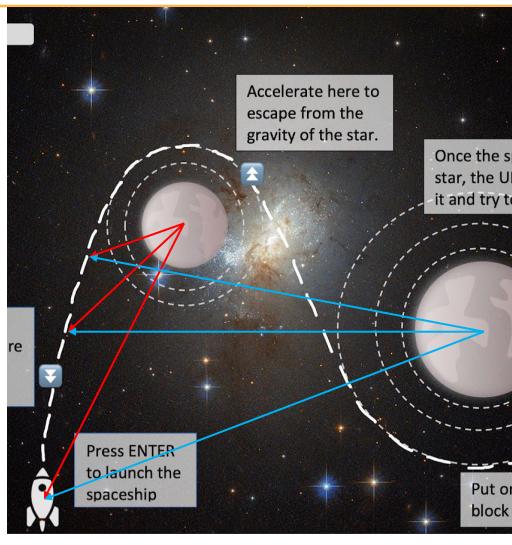
Forces add up (and cancel):

$$F = -mg_1 \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} -mg_2 \begin{bmatrix} a_2 \\ b_2 \end{bmatrix}$$

- This holds for all types of forces!
- Notation you might see:

$$F = \sum_{i} F_{i} = \sum F_{i} = \sum F$$

 $\vec{F} = F$



© Alla Sheffer, Helge Rhodin

Your game idea does not need forces?

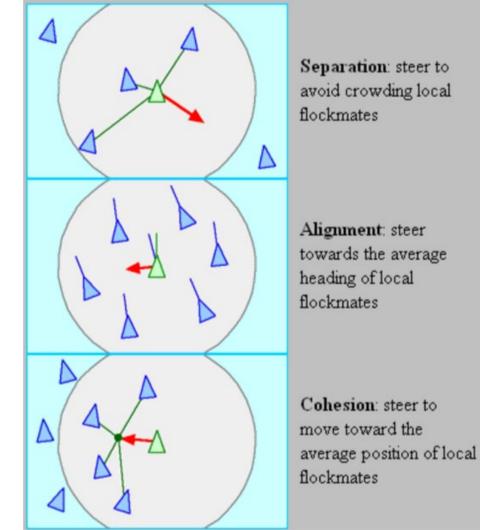
Are you sure?

- Particle effects
- Fake forces
- Proxy forces
- Simulate crowd behaviour

Take it as a chance to connect dry math with a practical application!

Proxy Forces (= fake forces)

- Behavior forces: ["Boids", Craig Reynolds, SIGGRAPH 1987]
- flocking birds, schooling fish, etc.
- Attract to goal location (like gravity)
 - E.g., waypoint determined by shortest path search
- Repulsion if close
- Align orientation to neighbors
- Center to neighbors
- Forces add up!

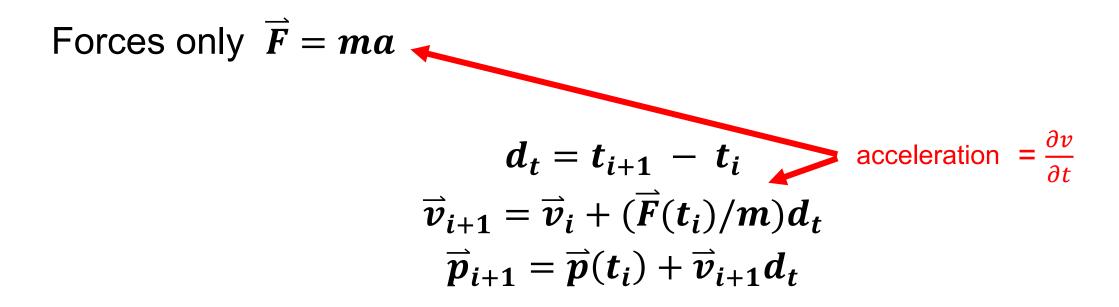


Simulation Basics

Simulation loop...

- 1. Equations of Motion
 - sum forces & torques
 - solve for accelerations: $\vec{F} = ma$
- 2. Numerical integration
 - update positions, velocities
- 3. Collision detection
- 4. Collision resolution

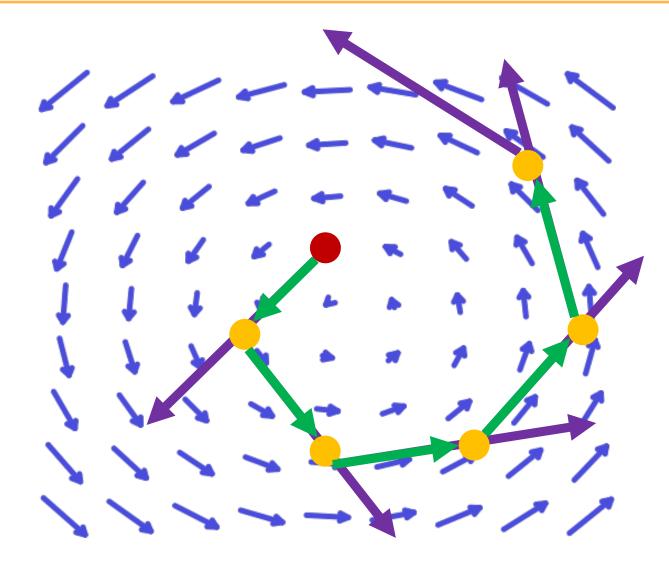
What we did so far: Forward Euler



get values at time t_{i+1} from values at time t_i Issues? Alternatives?

How can we discretize this?

Issue: extrapolation



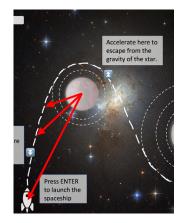
© Alla Sheffer, Helge Rhodin

Which forces depend on t?

• Gravity

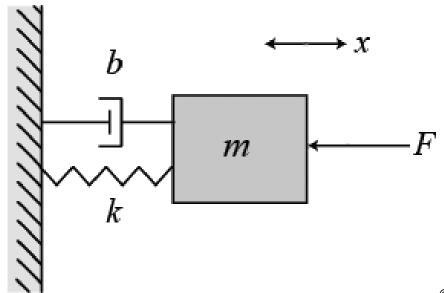
$$F = \begin{bmatrix} 0\\ -mg \end{bmatrix}$$

$$F = -mg \begin{bmatrix} a \\ b \end{bmatrix}$$



- Viscous damping
 - F = -bv

• Spring & dampers F = -kx - bv



Basic Particle Simulation: Small Problem...

$$d_t = t_{i+1} - t_i$$

$$\vec{v}_{i+1} = \vec{v}_i + (\vec{F}(t_{???})/m)d_t$$

$$\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}_{i+1}d_t$$

Equations of motion describe state (equilibrium)

- Involves quantities and their derivatives
 - -> we need to solve differential equations

Lets start from scratch

Given:

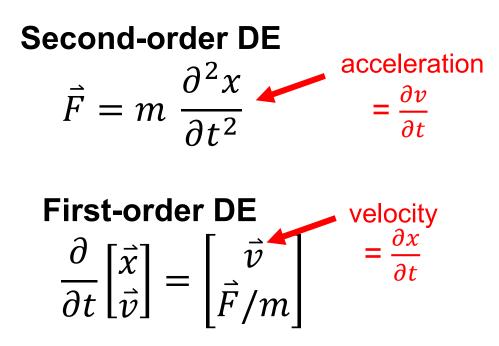
$$\vec{F} = m \; \frac{\partial^2 x}{\partial t^2}$$

Wait! There is no position x in this equation?! Only contains acceleration a!

How to solve such differential equation?

Desired: the position x at time t

Newtonian Physics as First-Order Diff. Eq. (DE)



Higher-order DEs can be turned into a first-order DE with additional variables and equations!

© Alla Sheffer, Helge Rhodin

Newtonian Physics as First-Order DE

Motion of one particle

Motion of many particles

Second-order DE $\vec{F} = m \frac{\partial^2 x}{\partial t^2}$ First-order DE

$$\frac{\partial}{\partial t} \begin{bmatrix} \vec{x} \\ \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{v} \\ \Sigma \vec{F}/m \end{bmatrix}$$

$$\frac{\partial}{\partial t} \begin{bmatrix} \overline{x_1} \\ \overline{v_1} \\ \overline{x_2} \\ \overline{v_2} \\ \overline{v_2} \\ \vdots \\ \overline{x_n} \\ \overline{v_n} \end{bmatrix} = \begin{bmatrix} \overline{v_1} \\ \overline{F_1}/m_1 \\ \overline{v_2} \\ \overline{F_2}/m_2 \\ \vdots \\ \overline{v_n} \\ \overline{F_n}/m_n \end{bmatrix}$$

Overview

Different DE solvers

• Forward Euler

(take current accel. to update vel., current vel. to update pos.)

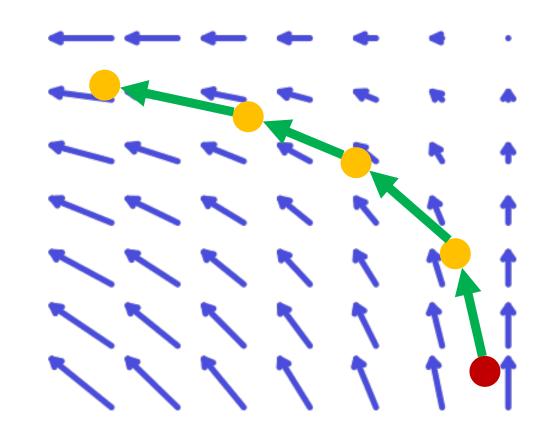
- Midpoint Method & Trapezoid Method (mix current and approximations of future vel. & acc. Estimates)
- Backwards Euler (solve for future pos., vel., and accel. jointly)
 - May require an iterative solver

Differential Equations

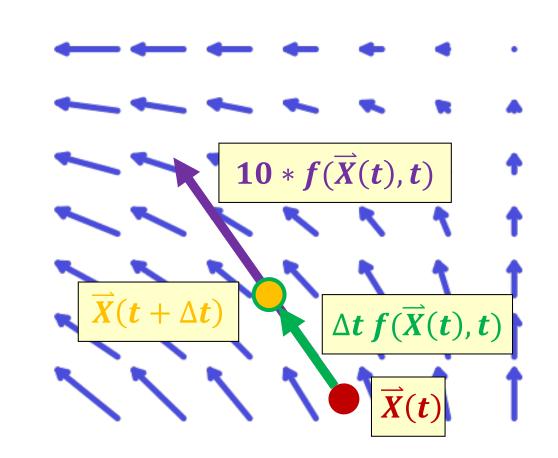
$$\frac{\partial}{\partial t}\vec{X}(t) = f(\vec{X}(t), t)$$

Given that $\vec{X}_0 = \vec{X}(t_0)$
Compute $\vec{X}(t)$ for $t > t_0$
e.g., $\Delta \vec{X}(t) = f(\vec{X}(t), t)\Delta t$

- Simulation:
 - path through state-space
 - driven by vector field



DE Numerical Integration: Explicit (Forward) Euler



$$\frac{\partial}{\partial t}\vec{X}(t) = f(\vec{X}(t), t)$$

Given that $\vec{X}_0 = \vec{X}(t_0)$
Compute $\vec{X}(t)$ for $t > t_0$

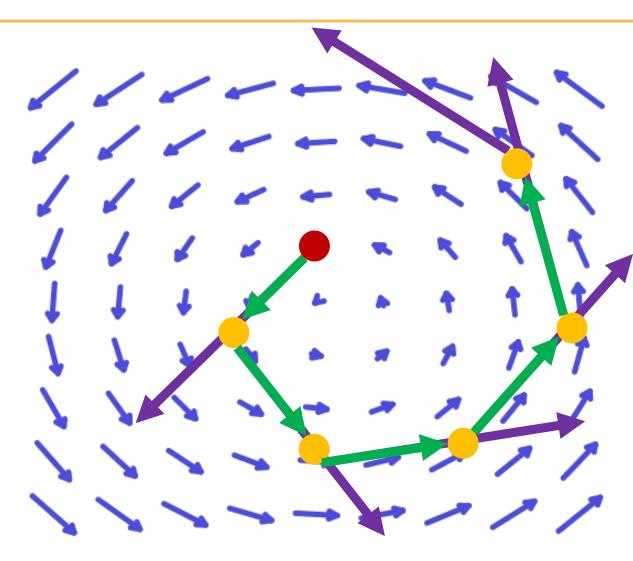
$$\Delta t = t_i - t_{i-1}$$
$$\Delta \vec{X}(t_{i-1}) = \Delta t f(\vec{X}(t_{i-1}), t_{i-1})$$
$$\vec{X}_i = \vec{X}_{i-1} + \Delta t f(\vec{X}_{i-1}, t_{i-1})$$

Explicit Euler Problems

- Solution spirals out
 - Even with small time steps
 - Although smaller time steps
 are still better

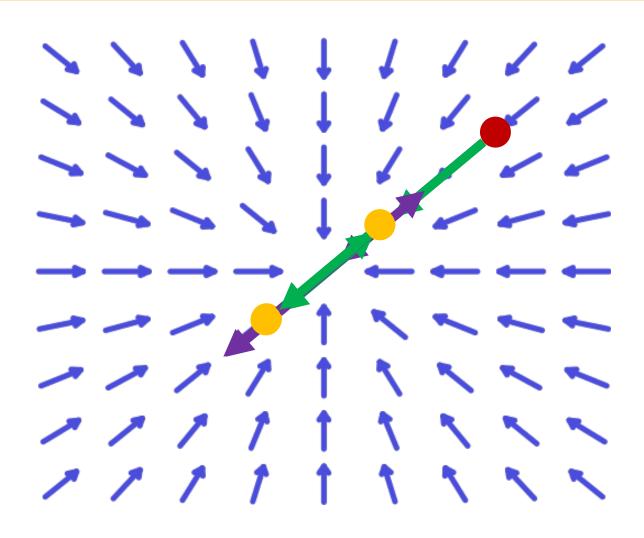
Definition: Explicit

- Closed-form/analytic solution
- no iterative solve required



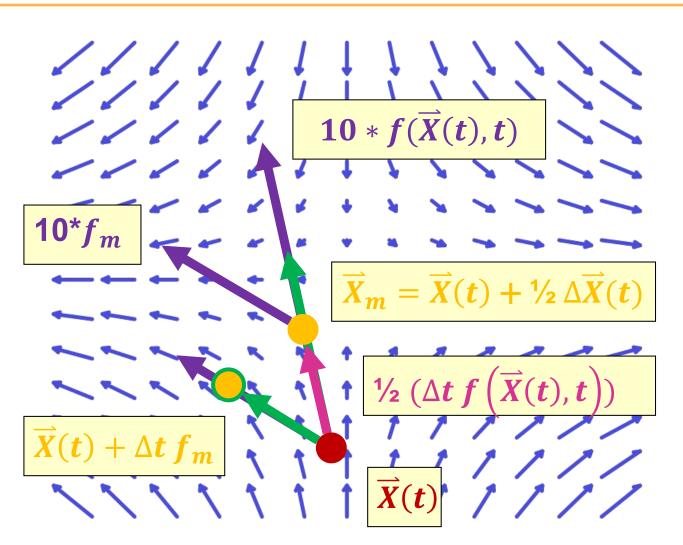
Explicit Euler Problems

Can lead to instabilities



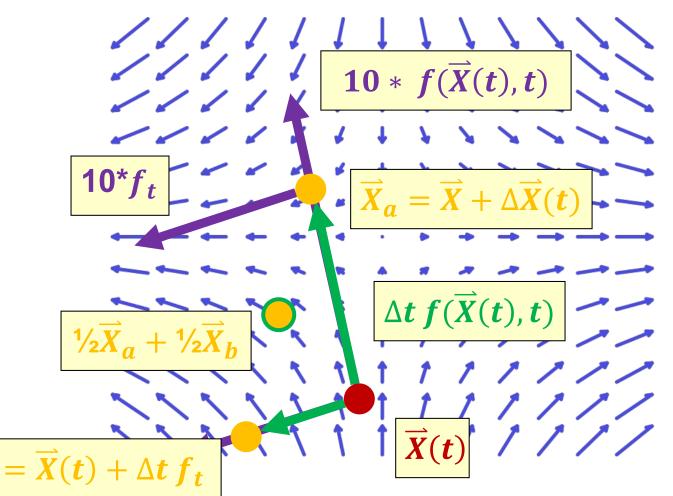
Midpoint Method

- 1. ¹/₂ Euler step
- **2.** evaluate f_m at \vec{X}_m
- **3.** full step using f_m



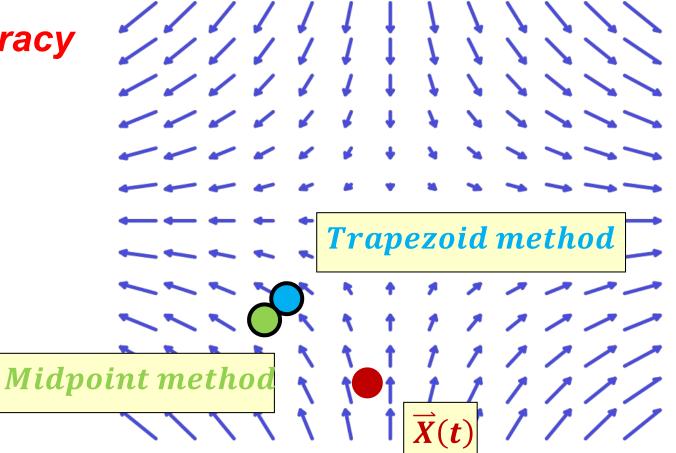
Trapezoid Method

- **1.** full Euler step get \overline{X}_a
- **2.** evaluate $f_t \text{ at } \overrightarrow{X}_a$
- **3.** full step using $f_t \text{ get } \overrightarrow{X}_b$ **4.** average \overrightarrow{X}_a and \overrightarrow{X}_b

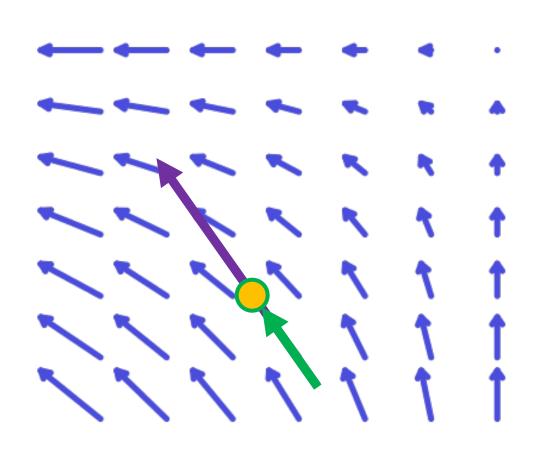


Midpoint & Trapezoid Method

- Not exactly the same
 - But same order of accuracy



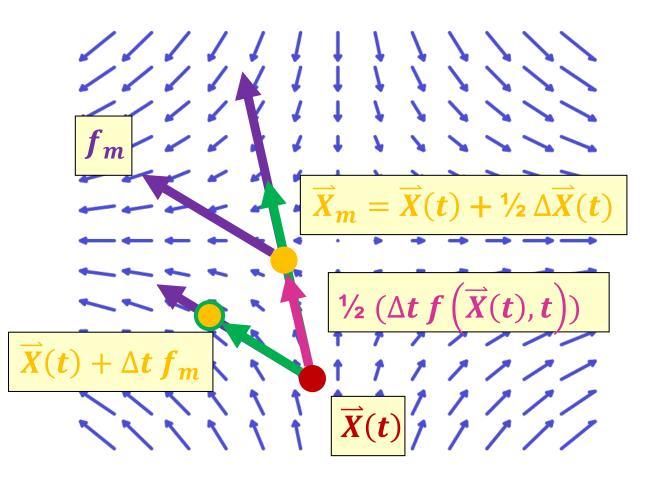
Explicit Euler: Code



void takeStep(ParticleSystem* ps, float h)

velocities = ps->getStateVelocities() positions = ps->getStatePositions() forces = ps->getForces(positions, velocities) masses = ps->getMasses() accelerations = forces / masses newPositions = positions + h*velocities newVelocities = velocities + h*accelerations ps->setStatePositions(newPositions) ps->setStateVelocities(newVelocities)

Midpoint Method: Code



void takeStep(ParticleSystem* ps, float h)

velocities = ps->getStateVelocities() positions = ps->getStatePositions() forces = ps->getForces(positions, velocities) masses = ps->getMasses() accelerations = forces / masses midPositions = positions + 0.5*h*velocities midVelocities = velocities + 0.5*h*accelerations midForces = ps->getForces(midPositions, midVelocities) midAccelerations = midForces / masses newPositions = positions + h*midVelocities newVelocities = velocities + h*midAccelerations ps->setStatePositions(newPositions) ps->setStateVelocities(newVelocities)

How do we combine force, position & velocity?

$$\vec{X}_0 = (\vec{p}_0, \ \vec{v}_0)$$

$$\frac{\partial}{\partial t}\vec{p}(t) = \vec{v}(t)$$

 $\frac{\partial}{\partial t}\vec{v}(t) = F(\vec{p}(t), \vec{v}(t), t)$

Requires two: velocity field & force field

Group work: Draw these two fields for an example setting

• groups of 3-4, pen & paper, 5-10 minutes + presentation

 $\frac{\partial}{\partial t}\vec{X}(t) = f(\vec{X}(t), t)$ Given that $\vec{X}_0 = \vec{X}(t_0)$ Compute $\vec{X}(t)$ for $t > t_0$ e.g., $\Delta \vec{X}(t) = f(\vec{X}(t), t)\Delta t$

Possible scenarios

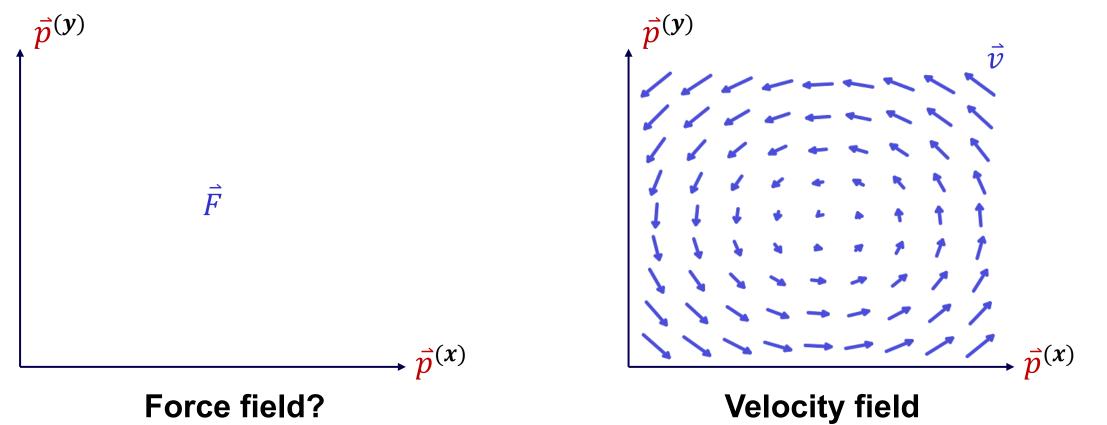
- Gravity in space
 only force: gravity towards the center; no resistance
- Gravity on a flat earth e.g. jump and run, how to model the ground?
- A train decelerating initial velocity, viscous damping; no gravity
- A submarine buoyancy only; no resistance
- Spongebob collision with ground (spring & dampers; no gravity)

buoyancy weight force

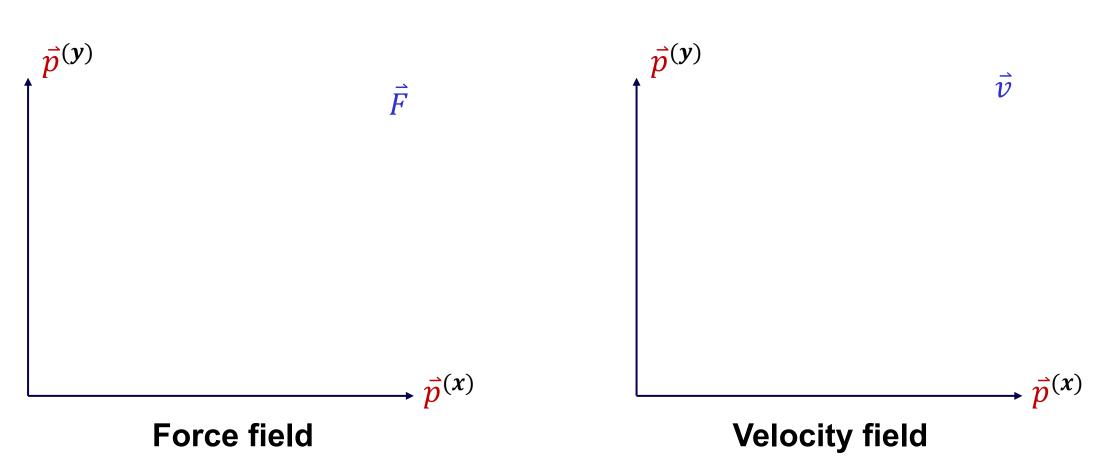
Reactior

Possible scenarios (difficult!)

• Balloon in strong wind negligible momentum, how to derive the force?



Your scenario - template



Recap: Forward Euler

Forces only $\vec{F} = ma$ $d_t = t_{i+1} - t_i$ acceleration $= \frac{\partial v}{\partial t}$ $\vec{v}_{i+1} = \vec{v}_i + (\vec{F}(t_i)/m)d_t$ $\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}_i d_t$

get values at time t_{i+1} from values at time t_i Issues? Alternatives?

Idea: Backwards Euler

Viscous damping F = -bv
Spring & dampers F = -kx - bv

$$d_t = t_{i+1} - t_i$$

$$\vec{v}_{i+1} = \vec{v}_i + (\vec{F}(t_{i+1})/m)d_t$$

$$\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}_{i+1}d_t$$

get values at time t_{i+1} from states at time t_i and forces at t_{i+1} lssues?

Implicit (Backward) Euler:

Use forces at destination

Solve system of equations $\frac{\partial}{\partial t} \begin{bmatrix} \vec{x} \\ \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{v} \\ \Sigma \vec{F}/m \end{bmatrix}$

$$x_{n+1} = x_n + h v_{n+1}$$
$$v_{n+1} = v_n + h \left(\frac{F_{n+1}}{m}\right)$$

• Types of forces:

Gravity

$$F = \begin{bmatrix} 0\\ -mq \end{bmatrix}$$

Viscous damping

$$F = -bv$$

Spring & dampers

$$F = -kx - bv$$

Implicit (Backward) Euler:

Use forces at destination +
 velocity at the destination

Solve system of equations $\frac{\partial}{\partial t} \begin{bmatrix} \vec{x} \\ \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{v} \\ \Sigma \vec{F}/m \end{bmatrix}$

$$x_{n+1} = x_n + h v_{n+1}$$
$$v_{n+1} = v_n + h \left(\frac{F_{n+1}}{m}\right)$$

Example: Spring Force F = -kxk

$$x_{n+1} = x_n + h v_{n+1}$$
$$v_{n+1} = v_n + h \left(\frac{-k x_{n+1}}{m}\right)$$

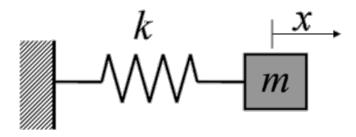
Analytic or iterative solve?

Forward vs Backward

$$\vec{X}_{n+1} \qquad \vec{X}_{n+1} = \vec{X}_n + \Delta t f(\vec{X}_n)$$

$$\vec{X}_{n+1} \qquad \vec{X}_{n+1} = \vec{X}_n + \Delta t f(\vec{X}_{n+1})$$

Could one apply the Trapezoid Method?



Forward Euler

$$x_{n+1} = x_n + h v_n$$
$$v_{n+1} = v_n + h \left(\frac{-k x_n}{m}\right)$$

Backward Euler

$$x_{n+1} = x_n + h v_{n+1}$$
$$v_{n+1} = v_n + h \left(\frac{-k x_{n+1}}{m}\right)$$

Particles: Newtonian Physics as First-Order DE

Motion of many particles?

$$\frac{\partial}{\partial t} \begin{bmatrix} \overline{x_1} \\ \overline{v_1} \\ \overline{x_2} \\ \overline{v_2} \\ \vdots \\ \overline{v_2} \\ \vdots \\ \overline{x_n} \\ \overline{v_n} \end{bmatrix} = \begin{bmatrix} \overline{v_1} \\ \overline{F_1}/m_1 \\ \overline{v_2} \\ \overline{F_2}/m_2 \\ \vdots \\ \overline{v_n} \\ \overline{F_n}/m_n \end{bmatrix}$$

Interaction of particles?

Multiple-particle collision

- naïve implementation is likely unstable
 - Objects pushing inside each other

- Further reading:
- <u>https://box2d.org/publications/</u>
 - In particular <u>https://box2d.org/files/ErinCatto_ModelingAndSolvingConstraints_GD</u> <u>C2009.pdf</u>

Simulation Basics

Simulation loop...

- 1. Equations of Motion
- 2. Numerical integration
- 3. Collision detection
- 4. Collision resolution

Collisions

- Collision detection
 - Broad phase: AABBs, bounding spheres
 - Narrow phase: detailed checks
- Collision response
 - Collision impulses
 - Constraint forces: resting, sliding, hinges,

Basic Particle Simulation (first try)

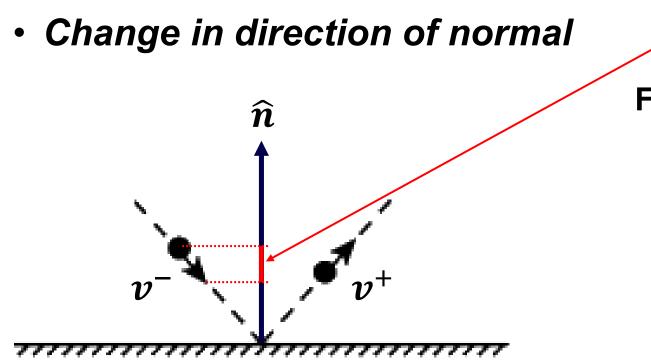
Forces only $\vec{F} = ma$

$$d_t = t_{i+1} - t_i$$

$$\vec{v}_{i+1} = \vec{v}(t_i) + (\vec{F}(t_i)/m)d_t$$

$$\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}(t_{i+1})d_t$$

Recap: Particle-Plane Collisions (in terms of vel.)

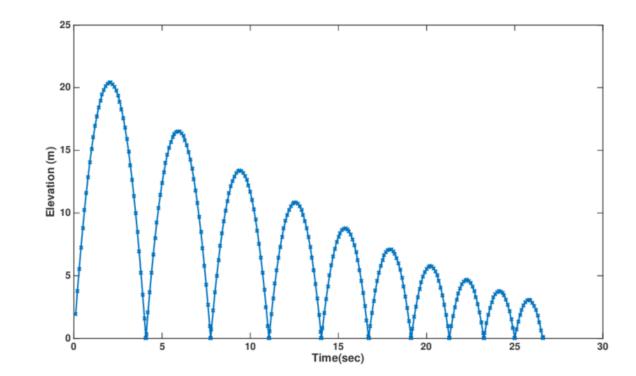


Velocity along normal (v projected on normal by the dot product) Frictionless $\Delta v = 2(v^- \cdot \hat{n})\hat{n}$ Apply change along normal (magnitude times direction)

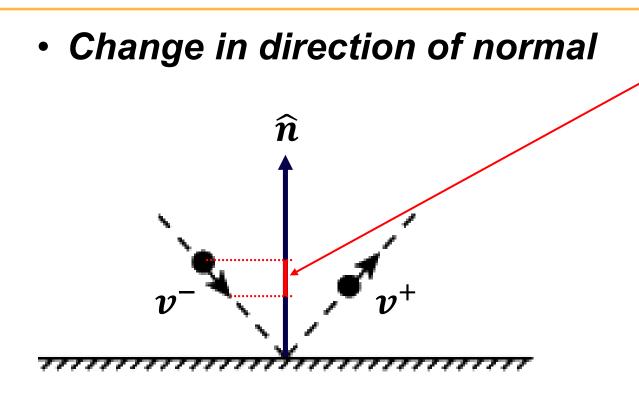
$$\boldsymbol{v}^+ = \boldsymbol{v}^- + \Delta \boldsymbol{v}$$

Why use 'Impulse'?

- Integrates with the physics solver
- How to integrate damping?



Recap: Particle-Plane Collisions (in terms of vel.)



Velocity along normal (v projected on normal by the dot product) Frictionless $\Delta v = 2(v^- \cdot \hat{n})\hat{n}$ (r

Apply change along normal (magnitude times direction)

$$\boldsymbol{v}^+ = \boldsymbol{v}^- + \Delta \boldsymbol{v}$$

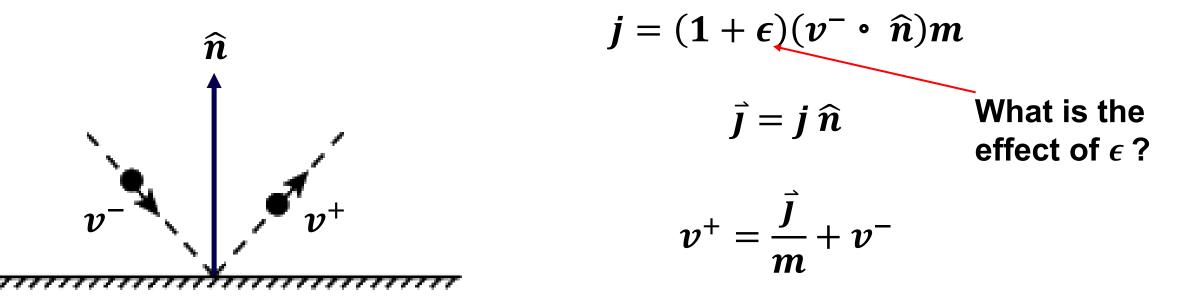
Loss of energy

 $\Delta \boldsymbol{v} = (\mathbf{1} + \boldsymbol{\epsilon})(\boldsymbol{v}^{-} \circ \hat{\boldsymbol{n}})\hat{\boldsymbol{n}}$

Particle-Plane Collisions

- Apply an 'impulse' of magnitude j
 - Inversely proportional to mass of particle
- In direction of normal

Impulse in physics: Integral of F over time In games: an instantaneous step change (not physically possible), i.e., the force applied over one time step of the simulation



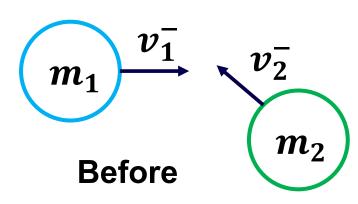
Hint for A2: Check for velocity direction!

- Only collide if objects are moving towards each other
- Ignore collision if moving away from each other

Q: Should I work in terms of velocity or forces?

Particle-Particle Collisions (radius=0)

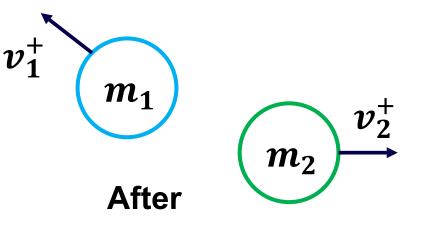
Particle-particle frictionless elastic impulse response



 $m_1v_1^- + m_2v_2^- = m_1v_1^+ + m_2v_2^+$

Kinetic energy is preserved

$$\frac{1}{2}m_1v_1^{-2} + \frac{1}{2}m_2v_2^{-2} = \frac{1}{2}m_1v_1^{+2} + \frac{1}{2}m_2v_2^{+2}$$

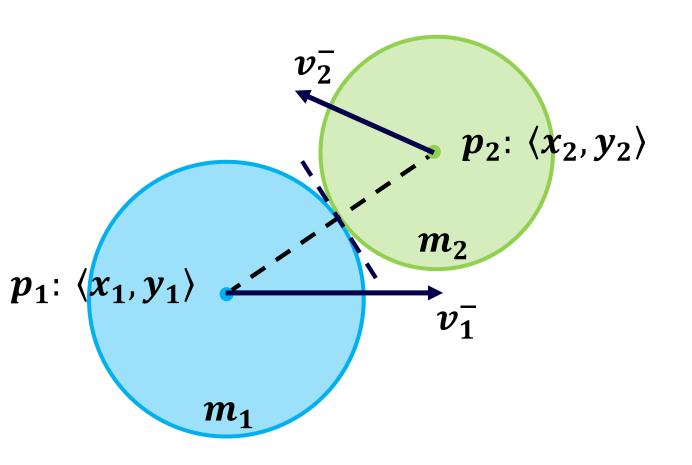


 Velocity is preserved in tangential direction

$$t \circ v_1^- = t \circ v_1^+$$
, $t \circ v_2^- = t \circ v_2^+$

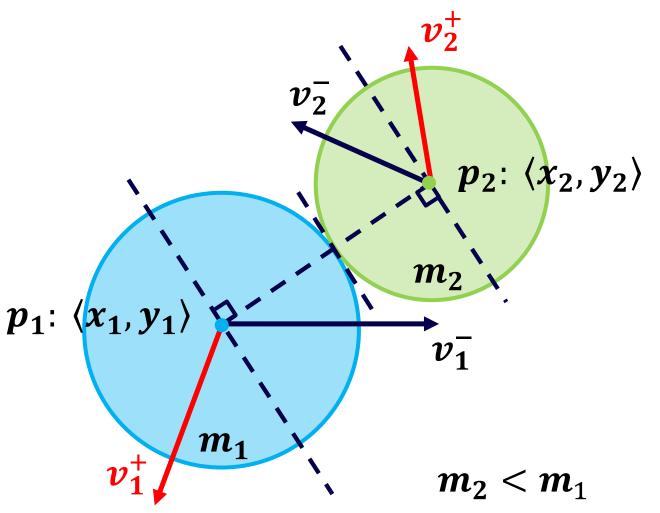
Particle-Particle Collisions (radius >0)

- What we know...
 - Particle centers
 - Initial velocities
 - Particle Masses
- What we can calculate...
 - Contact normal
 - Contact tangent



Particle-Particle Collisions (radius >0)

- Impulse direction reflected across tangent
- Impulse magnitude proportional to mass of other particle



Particle-Particle Collisions (radius >0)

More formally...

$$egin{aligned} &v_1^+ = v_1^- - rac{2m_2}{m_1 + m_2} rac{\langle v_1^- - v_2^-
angle \cdot \langle p_1 - p_2
angle}{\|p_1 - p_2\|^2} \langle p_1 - p_2
angle \ &v_2^+ = v_2^- - rac{2m_1}{m_1 + m_2} rac{\langle v_2^- - v_1^-
angle \cdot \langle p_2 - p_1
angle}{\|p_2 - p_1\|^2} \langle p_2 - p_1
angle \end{aligned}$$

• This is in terms of velocity, what would the corresponding impulse be?

ng test

Hints: Sequential impulse updates

- Important to update velocity right after computing constraint/forces
- Important to update the velocity of both objects at the same time for a collision event
- Clamping does not work with bouncing constraints
- Accumulated clamping has no effect in the simple stacking test
 - Requires Bounce/restitution to be implemented as velocity bias (not updated during inner iterations)
 - Since the other half of the velocity is taken care of by the contact constraint
- Pseudo velocities don't give a huge improvement
- Perhaps different when including rotational motion?

Rigid Body Dynamics (rotational motion of objects?)

• From particles to rigid bodies...

 $state = \begin{cases} \vec{x} \text{ position} \\ \vec{v} \text{ velocity} \end{cases}$

 \mathbb{R}^4 in 2D \mathbb{R}^6 in 3D

Particle

$$state = \begin{cases} \vec{x} \text{ position} \\ \vec{v} \text{ velocity} \\ R \text{ rotation matrix } 3x3 \\ \vec{w} \text{ angular velocity} \end{cases}$$

Rigid body

 \mathbb{R}^{12} in 3D

Rigid Body Dynamics

• From particles to rigid bodies...

Newton's equations of motion $\Sigma \vec{F} = m \vec{a}$

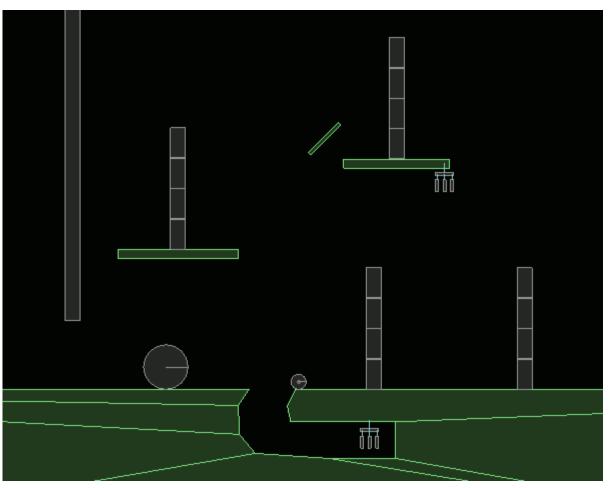
$$\begin{bmatrix} m & & \\ & m & \\ & & m \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} = \begin{bmatrix} \Sigma \vec{F} \end{bmatrix}$$

 $M\overrightarrow{a} = \Sigma \overline{F}$

Angular vel. **Newton-Euler equations of motion** a_x m a_{v} \boldsymbol{m} a_{7} \boldsymbol{m} W_{x} W_{ν} $\sum \vec{\tau} - \vec{w} \times 1$ Inertia tensor

Box2D – an excellent 2D physics engine

Particle and rigid body dynamics!



Organizational

- M1 face2face grading this week
- have a laptop ready, with the game running

M1 Team presentations

- Add your slides <u>https://docs.google.com/presentation/d/1Y4h7ns1uFLlyWO-</u>
 - 1 minute presentation
 - add slides to this presentation
 - if applicable, share screen on zoom for live demo (have everything ready!)
 - sales pitch style
 - hype us about your progress and features
 - all team members must be present (such that we all know who works with whom)
 - at least two students must present (different ones for each milestone)
 - e.g. each explaining one feature

ing

Outlook – Guest lectures

11	Mon	13-Nov	Break		
	Wed	15-Nov	Break		
12	Mon	20-Nov	Lecture: Balancing games Guest lecture by Gavin Young (Behaviour Interactive)	Milestone 3	
	Wed	22-Nov	Lecture: Team-report M3 Tutorial: Face2Face grading M3		
13	Mon	27-Nov	Guest lecture by Yggy King (Blackbird Interactive) on "ECS in practice" Cross-play M3		
	Wed	29-Nov	Guest lecture by Cloé Veilleux (Relic Entertainment) "Cutting corners in Al"		
14	Mon	4-Dec	Lecture: The history and future of game technology Guest Lecture by Alex Denford and Cate Mackenzie (SkyBox) "Empowering Creators"	M4 submission	
	Wed	6-Dec	Lecture: Team-report M3 Tutorial: Face2Face grading M4		
Exam slot TBD			Cross-play M4 Awards		