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Video Game Programming
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Physical Simulation
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Feature: Level Loading with JSON
Libraries:
• https://sourceforge.net/projects/libjson/
• https://github.com/nlohmann/jso
• others?
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https://sourceforge.net/projects/libjson/
https://github.com/nlohmann/jso
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Loading Entities and Components
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“entities": [
{
"position": {
"x": -1.7193701,
"y": -0.09165986

},
"velocity": {
"x": 0,
"y": 0

},
"color": {
"x": 0.453125,
"y": 0.453125,
"z": 0.453125

},
"type": “Water Animal"

},

{
"position": {
"x": 2.2221813,
"y": -1.2671415

},
"velocity": {
"x": 0,
"y": 1

},
"radius": 0.9300000000000006,
"color": {
"x": 0.40625,
"y": 0.40625,
"z": 0.40625

},
"type": ”Land Animal”

}
]

• Outer list of entities

• Inner list of components

• Create a factory that 
instantiates each 
component type

• Equip components with
toJSON(…) and 
fromJSON(…) functions
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Factory from JSON
Factory:
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void ComponentfromJson(Entity e, JsonObject json)
{     
if(str1.compare(“Motion") != 0) {

Motion& motion = Motion::fromJson(json);
registry->insert(e, motion);

}
else if(str1.compare(“Salmon") != 0)

Motion& component = Motion::fromJson(json);
registry->insert(e, component);

}
…

}

Issues?
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Component from JSON
Component to/from:
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class Vector2D
{

float x,y;
public:
JsonObject toJson()
{

JsonObject json = Json.object();
json.add("x", x);
json.add("y", y);
return json;

}

static Vector2D fromJson(JsonObject json)
{     

double x = json.getFloat("x", 0.0f);
double y = json.getFloat("y", 0.0f);
return Vector2D(x,y);

}
}
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Setup
@Helge: Pressed record?

@Class: Logged into iClicker cloud?
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Overview
1. Equation of Motion
• Examples
• Ordinary Differentiable Equations (ODE)
• Solving ODEs

2. Collision and Reaction Forces

7
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Physics

Learning goals:
• Connect your theoretical math 

knowledge to applications

• Properly simulate object 
motion and their interaction in 
your game
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Recap: Basic Particle Simulation (first try)
How to compute the change in velocity?

𝒅𝒅𝒕𝒕 = 𝒕𝒕𝒊𝒊+𝟏𝟏 − 𝒕𝒕𝒊𝒊
𝒗𝒗𝒊𝒊+𝟏𝟏 = 𝒗𝒗𝒊𝒊 + 𝛥𝛥𝒗𝒗

𝒑𝒑𝒊𝒊+𝟏𝟏 = 𝒑𝒑 𝒕𝒕𝒊𝒊 + 𝒗𝒗𝒊𝒊𝒅𝒅𝒕𝒕



© Alla Sheffer, Helge Rhodin

Recap: Particle-Plane Collision
• In direction of normal

𝒗𝒗− 𝒗𝒗+

�𝒏𝒏
𝛥𝛥𝒗𝒗 = 𝟐𝟐 𝒗𝒗−◦ �𝒏𝒏 �𝒏𝒏

𝒗𝒗+ = 𝒗𝒗− + 𝛥𝛥𝒗𝒗

𝛥𝛥𝒗𝒗 = 𝟏𝟏 + 𝝐𝝐 𝒗𝒗−◦ �𝒏𝒏 �𝒏𝒏

Frictionless

Loss of energy

Velocity along normal
(v projected on normal
by the dot product) Apply change

along normal
(magnitude

times direction)



© Alla Sheffer, Helge Rhodin

Particle-Particle Collisions (spherical objects)

𝒗𝒗𝟏𝟏+ = 𝒗𝒗𝟏𝟏− −
𝟐𝟐𝒎𝒎𝟐𝟐

𝒎𝒎𝟏𝟏 + 𝒎𝒎𝟐𝟐

𝒗𝒗𝟏𝟏− − 𝒗𝒗𝟐𝟐− � 𝒑𝒑𝟏𝟏 − 𝒑𝒑𝟐𝟐
𝒑𝒑𝟏𝟏 − 𝒑𝒑𝟐𝟐 𝟐𝟐 𝒑𝒑𝟏𝟏 − 𝒑𝒑𝟐𝟐

𝒗𝒗𝟐𝟐+ = 𝒗𝒗𝟐𝟐− −
𝟐𝟐𝒎𝒎𝟏𝟏

𝒎𝒎𝟏𝟏 + 𝒎𝒎𝟐𝟐

𝒗𝒗𝟐𝟐− − 𝒗𝒗𝟏𝟏− � 𝒑𝒑𝟐𝟐 − 𝒑𝒑𝟏𝟏
𝒑𝒑𝟐𝟐 − 𝒑𝒑𝟏𝟏 𝟐𝟐 𝒑𝒑𝟐𝟐 − 𝒑𝒑𝟏𝟏

• This is in terms of velocity 
• Today (and next lecture): 

derivation via impulse and forces

𝒎𝒎𝟏𝟏

𝒎𝒎𝟐𝟐

𝒎𝒎𝟏𝟏

𝒎𝒎𝟐𝟐

𝒗𝒗𝟏𝟏− 𝒗𝒗𝟐𝟐−
𝒗𝒗𝟏𝟏+

𝒗𝒗𝟐𝟐+

Before collision After

Response:
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From Velocities (𝛥𝛥𝒗𝒗) to Forces (F) and back 
Force relates to mass and acceleration

A change in velocity related to acceleration over time

In terms of forces

12
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Recap: Basic Particle Simulation (first try)
How to compute the change in velocity?

𝒅𝒅𝒕𝒕 = 𝒕𝒕𝒊𝒊+𝟏𝟏 − 𝒕𝒕𝒊𝒊
𝒗𝒗𝒊𝒊+𝟏𝟏 = 𝒗𝒗𝒊𝒊 + 𝛥𝛥𝒗𝒗

𝒑𝒑𝒊𝒊+𝟏𝟏 = 𝒑𝒑 𝒕𝒕𝒊𝒊 + 𝒗𝒗𝒊𝒊𝒅𝒅𝒕𝒕
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Forces are omnipresent
• Gravity

𝐹𝐹 = 0
−𝑚𝑚𝑚𝑚

• Viscous damping
𝐹𝐹 = −𝑏𝑏𝑣𝑣

• Spring & dampers
𝐹𝐹 = −𝑘𝑘𝑘𝑘 − 𝑏𝑏𝑣𝑣
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Gravity direction?
Assuming a flat earth:

Assuming a spherical earth:
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𝐹𝐹 = 0
−𝑚𝑚𝑚𝑚

𝐹𝐹 = −𝑚𝑚𝑚𝑚 𝑎𝑎
𝑏𝑏

How to compute the vector (a,b) and g ?

Newton's law of universal gravitation
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Multiple forces?
Forces add up (and cancel):

• This holds for all types of
forces!

• Notation you might see:
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𝐹𝐹 = −𝑚𝑚𝑚𝑚1
𝑎𝑎1
𝑏𝑏1 −𝑚𝑚𝑚𝑚2

𝑎𝑎2
𝑏𝑏2
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Your game idea does not need forces?
Are you sure?
• Particle effects
• Fake forces
• Proxy forces
• Simulate crowd behaviour

Take it as a chance to connect dry math with a practical 
application!

17
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Proxy Forces (= fake forces)
• Behavior forces: [“Boids”, Craig Reynolds, 

SIGGRAPH 1987]
• flocking birds, schooling fish, etc. 

• Attract to goal location (like gravity)

• E.g., waypoint determined by shortest path search

• Repulsion if close

• Align orientation to neighbors

• Center to neighbors

• Forces add up!
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Simulation Basics
Simulation loop…

1. Equations of Motion
• sum forces & torques

• solve for accelerations: 𝑭𝑭 = 𝒎𝒎𝒎𝒎
2. Numerical integration

• update positions, velocities
3. Collision detection
4. Collision resolution
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What we did so far: Forward Euler
Forces only  𝑭𝑭 = 𝒎𝒎𝒎𝒎

𝒅𝒅𝒕𝒕 = 𝒕𝒕𝒊𝒊+𝟏𝟏 − 𝒕𝒕𝒊𝒊
𝒗𝒗𝒊𝒊+𝟏𝟏 = 𝒗𝒗𝒊𝒊 + (𝑭𝑭(𝒕𝒕𝒊𝒊)/𝒎𝒎)𝒅𝒅𝒕𝒕
𝒑𝒑𝒊𝒊+𝟏𝟏 = 𝒑𝒑 𝒕𝒕𝒊𝒊 + 𝒗𝒗𝒊𝒊+𝟏𝟏𝒅𝒅𝒕𝒕

acceleration = 𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

get values at time 𝒕𝒕𝒊𝒊+𝟏𝟏from values at time 𝒕𝒕𝒊𝒊 Issues? Alternatives?

How can we discretize this?
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Issue: extrapolation

22
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Which forces depend on t?

23

• Gravity

𝐹𝐹 = 0
−𝑚𝑚𝑚𝑚

• Viscous damping
𝐹𝐹 = −𝑏𝑏𝑣𝑣

• Spring & dampers
𝐹𝐹 = −𝑘𝑘𝑘𝑘 − 𝑏𝑏𝑣𝑣

𝐹𝐹 = −𝑚𝑚𝑚𝑚 𝑎𝑎
𝑏𝑏
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Basic Particle Simulation:  Small Problem…

𝒅𝒅𝒕𝒕 = 𝒕𝒕𝒊𝒊+𝟏𝟏 − 𝒕𝒕𝒊𝒊
𝒗𝒗𝒊𝒊+𝟏𝟏 = 𝒗𝒗𝒊𝒊 + (𝑭𝑭(𝒕𝒕???)/𝒎𝒎)𝒅𝒅𝒕𝒕
𝒑𝒑𝒊𝒊+𝟏𝟏 = 𝒑𝒑 𝒕𝒕𝒊𝒊 + 𝒗𝒗𝒊𝒊+𝟏𝟏𝒅𝒅𝒕𝒕

Equations of motion describe state (equilibrium)
• Involves quantities and their derivatives

• -> we need to solve differential equations
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Lets start from scratch
Given:

Desired: the position x at time t

25

�⃑�𝐹 = 𝑚𝑚
𝜕𝜕2𝑘𝑘
𝜕𝜕𝑡𝑡2

Wait!
There is no position x in this equation?! 
Only contains acceleration a!

How to solve such differential equation?
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Newtonian Physics as First-Order Diff. Eq. (DE)

Second-order DE

�⃑�𝐹 = 𝑚𝑚
𝜕𝜕2𝑘𝑘
𝜕𝜕𝑡𝑡2

First-order DE
𝜕𝜕
𝜕𝜕𝑡𝑡

�⃑�𝑘
�⃑�𝑣

= �⃑�𝑣
�⃑�𝐹/𝑚𝑚

acceleration

= 𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

Higher-order DEs can be turned into a first-order DE with additional variables and equations!

velocity
= 𝜕𝜕𝑥𝑥

𝜕𝜕𝑡𝑡
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Newtonian Physics as First-Order DE
• Motion of one particle

Second-order DE

�⃑�𝐹 = 𝑚𝑚
𝜕𝜕2𝑘𝑘
𝜕𝜕𝑡𝑡2

First-order DE
𝜕𝜕
𝜕𝜕𝑡𝑡

�⃑�𝑘
�⃑�𝑣

= �⃑�𝑣
𝛴𝛴�⃑�𝐹/𝑚𝑚

• Motion of many particles

𝜕𝜕
𝜕𝜕𝑡𝑡

𝑘𝑘1
𝑣𝑣1
𝑘𝑘2
𝑣𝑣2
⋮
𝑘𝑘𝑛𝑛
𝑣𝑣𝑛𝑛

=

𝑣𝑣1
𝐹𝐹1/𝑚𝑚1
𝑣𝑣2

𝐹𝐹2/𝑚𝑚2
⋮
𝑣𝑣𝑛𝑛

𝐹𝐹𝑛𝑛/𝑚𝑚𝑛𝑛



© Alla Sheffer, Helge Rhodin

Overview
Different DE solvers
• Forward Euler

(take current accel. to update vel., current vel. to update pos.)

• Midpoint Method & Trapezoid Method
(mix current and approximations of future vel. & acc. Estimates)

• Backwards Euler
(solve for future pos., vel., and accel. jointly)
• May require an iterative solver

30
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Differential Equations

𝜕𝜕
𝜕𝜕𝑡𝑡
�⃑�𝑋(𝑡𝑡) = 𝑓𝑓(�⃑�𝑋 𝑡𝑡 , 𝑡𝑡)

Given that �⃑�𝑋0 = �⃑�𝑋 𝑡𝑡0
Compute �⃑�𝑋 𝑡𝑡 for t > 𝑡𝑡0

e.g., ∆�⃑�𝑋(𝑡𝑡) = 𝑓𝑓(�⃑�𝑋 𝑡𝑡 , 𝑡𝑡)∆𝑡𝑡

• Simulation: 
• path through state-space
• driven by vector field
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DE Numerical Integration: 
Explicit (Forward) Euler

𝜕𝜕
𝜕𝜕𝑡𝑡
�⃑�𝑋(𝑡𝑡) = 𝑓𝑓(�⃑�𝑋 𝑡𝑡 , 𝑡𝑡)

Given that �⃑�𝑋0 = �⃑�𝑋 𝑡𝑡0
Compute �⃑�𝑋 𝑡𝑡 for t > t0

∆𝑡𝑡 = t𝑖𝑖 − t𝑖𝑖−1

∆�⃑�𝑋 t𝑖𝑖−1 = ∆𝑡𝑡 𝑓𝑓(�⃑�𝑋 t𝑖𝑖−1 , t𝑖𝑖−1)

�⃑�𝑋𝑖𝑖 = �⃑�𝑋𝑖𝑖−1 + ∆𝑡𝑡 𝑓𝑓(�⃑�𝑋𝑖𝑖−1, t𝑖𝑖−1)

𝟏𝟏𝟏𝟏 ∗ 𝒇𝒇(𝑿𝑿 𝒕𝒕 , 𝒕𝒕)

∆𝒕𝒕 𝒇𝒇(𝑿𝑿 𝒕𝒕 , 𝒕𝒕)

𝑿𝑿 𝒕𝒕

𝑿𝑿 𝒕𝒕 + ∆𝒕𝒕
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Explicit Euler Problems

• Solution spirals out
• Even with small time steps
• Although smaller time steps 

are still better

Definition: Explicit
• Closed-form/analytic solution
• no iterative solve required
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Explicit Euler Problems

• Can lead to instabilities
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Midpoint Method
1. ½ Euler step
2. evaluate fm at 𝑿𝑿𝒎𝒎
3. full step using fm

10*𝒇𝒇𝒎𝒎

𝑿𝑿 𝒕𝒕
𝑿𝑿 𝒕𝒕 + ∆𝒕𝒕 𝒇𝒇𝒎𝒎

½ (∆𝒕𝒕 𝒇𝒇 𝑿𝑿 𝒕𝒕 , 𝒕𝒕 )

𝑿𝑿𝒎𝒎 = 𝑿𝑿 𝒕𝒕 + ½ ∆𝑿𝑿(𝒕𝒕)

𝟏𝟏𝟏𝟏 ∗ 𝒇𝒇(𝑿𝑿 𝒕𝒕 , 𝒕𝒕)
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Trapezoid Method

10*𝒇𝒇𝒕𝒕

𝑿𝑿 𝒕𝒕

𝑿𝑿𝒎𝒎 = 𝑿𝑿 + ∆𝑿𝑿(𝒕𝒕)

∆𝒕𝒕 𝒇𝒇(𝑿𝑿 𝒕𝒕 , 𝒕𝒕)

𝑿𝑿𝒃𝒃 = 𝑿𝑿 𝒕𝒕 + ∆𝒕𝒕 𝒇𝒇𝒕𝒕

½𝑿𝑿𝒎𝒎 + ½𝑿𝑿𝒃𝒃

1. full Euler step get 𝑿𝑿𝒎𝒎
2. evaluate ft at 𝑿𝑿𝒎𝒎
3. full step using ft get 𝑿𝑿𝒃𝒃
4. average 𝑿𝑿𝒎𝒎 and 𝑿𝑿𝒃𝒃

𝟏𝟏𝟏𝟏 ∗ 𝒇𝒇(𝑿𝑿 𝒕𝒕 , 𝒕𝒕)
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Midpoint & Trapezoid Method

𝑻𝑻𝑻𝑻𝒎𝒎𝒑𝒑𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊𝒅𝒅𝒎𝒎𝑻𝑻𝒕𝒕𝒎𝒎𝑻𝑻𝒅𝒅

• Not exactly the same
– But same order of accuracy

𝑴𝑴𝒊𝒊𝒅𝒅𝒑𝒑𝑻𝑻𝒊𝒊𝒏𝒏𝒕𝒕 𝒎𝒎𝑻𝑻𝒕𝒕𝒎𝒎𝑻𝑻𝒅𝒅

𝑿𝑿 𝒕𝒕
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Explicit Euler: Code
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Midpoint Method: Code

𝒇𝒇𝒎𝒎

𝑿𝑿 𝒕𝒕

𝑿𝑿 𝒕𝒕 + ∆𝒕𝒕 𝒇𝒇𝒎𝒎

½ (∆𝒕𝒕 𝒇𝒇 𝑿𝑿 𝒕𝒕 , 𝒕𝒕 )

𝑿𝑿𝒎𝒎 = 𝑿𝑿 𝒕𝒕 + ½ ∆𝑿𝑿(𝒕𝒕)
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How do we combine force, position & velocity?
�⃑�𝑋0 = (�⃑�𝑝0, 𝑣𝑣0)

𝜕𝜕
𝜕𝜕𝑡𝑡
�⃑�𝑝(𝑡𝑡) = �⃑�𝑣 𝑡𝑡

𝜕𝜕
𝜕𝜕𝑡𝑡
�⃑�𝑣(𝑡𝑡) = 𝐹𝐹(�⃑�𝑝 𝑡𝑡 , �⃑�𝑣 𝑡𝑡 , 𝑡𝑡)

Requires two: velocity field & force field

Group work: Draw these two fields for an example setting
• groups of 3-4, pen & paper, 5-10 minutes + presentation

40
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Possible scenarios
• Gravity in space 

only force: gravity towards the center; no resistance
• Gravity on a flat earth

e.g. jump and run, how to model the ground?
• A train decelerating 

initial velocity, viscous damping; no gravity
• A submarine

buoyancy only; no resistance
• Spongebob collision with ground

(spring & dampers; no gravity)

41



© Alla Sheffer, Helge Rhodin

Possible scenarios (difficult!)
• Balloon in strong wind

negligible momentum, how to derive the force?

42

Velocity fieldForce field?
�⃑�𝑝(𝒙𝒙)

�⃑�𝑝(𝒚𝒚)

�⃑�𝑝(𝒙𝒙)

�⃑�𝑝(𝒚𝒚)
�⃑�𝑣

�⃑�𝐹
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Your scenario - template

43

Velocity fieldForce field
�⃑�𝑝(𝒙𝒙)

�⃑�𝑝(𝒚𝒚)

�⃑�𝑝(𝒙𝒙)

�⃑�𝑝(𝒚𝒚)
�⃑�𝑣�⃑�𝐹
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Recap: Forward Euler
Forces only  𝑭𝑭 = 𝒎𝒎𝒎𝒎

𝒅𝒅𝒕𝒕 = 𝒕𝒕𝒊𝒊+𝟏𝟏 − 𝒕𝒕𝒊𝒊
𝒗𝒗𝒊𝒊+𝟏𝟏 = 𝒗𝒗𝒊𝒊 + (𝑭𝑭(𝒕𝒕𝒊𝒊)/𝒎𝒎)𝒅𝒅𝒕𝒕
𝒑𝒑𝒊𝒊+𝟏𝟏 = 𝒑𝒑 𝒕𝒕𝒊𝒊 + 𝒗𝒗𝒊𝒊𝒅𝒅𝒕𝒕

acceleration = 𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

get values at time 𝒕𝒕𝒊𝒊+𝟏𝟏from values at time 𝒕𝒕𝒊𝒊 Issues? Alternatives?
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Idea: Backwards Euler

𝒅𝒅𝒕𝒕 = 𝒕𝒕𝒊𝒊+𝟏𝟏 − 𝒕𝒕𝒊𝒊
𝒗𝒗𝒊𝒊+𝟏𝟏 = 𝒗𝒗𝒊𝒊 + (𝑭𝑭(𝒕𝒕𝒊𝒊+𝟏𝟏)/𝒎𝒎)𝒅𝒅𝒕𝒕
𝒑𝒑𝒊𝒊+𝟏𝟏 = 𝒑𝒑 𝒕𝒕𝒊𝒊 + 𝒗𝒗𝒊𝒊+𝟏𝟏𝒅𝒅𝒕𝒕

get values at time 𝒕𝒕𝒊𝒊+𝟏𝟏from states at time 𝒕𝒕𝒊𝒊 and forces at 𝒕𝒕𝒊𝒊+𝟏𝟏 Issues? 
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• Types of forces:
• Gravity

𝐹𝐹 = 0
−𝑚𝑚𝑚𝑚

• Viscous damping
𝐹𝐹 = −𝑏𝑏𝑣𝑣

• Spring & dampers
𝐹𝐹 = −𝑘𝑘𝑘𝑘 − 𝑏𝑏𝑣𝑣

• Use forces at destination

Implicit (Backward) Euler: 

𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏 + 𝒎𝒎 𝒗𝒗𝒏𝒏+𝟏𝟏

𝒗𝒗𝒏𝒏+𝟏𝟏 = 𝒗𝒗𝒏𝒏 + 𝒎𝒎
𝑭𝑭𝒏𝒏+𝟏𝟏
𝒎𝒎

Solve system of equations
𝜕𝜕
𝜕𝜕𝑡𝑡

�⃑�𝑘
�⃑�𝑣

= �⃑�𝑣
𝛴𝛴�⃑�𝐹/𝑚𝑚
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• Use forces at destination + 
velocity at the destination

Implicit (Backward) Euler: 

𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏 + 𝒎𝒎 𝒗𝒗𝒏𝒏+𝟏𝟏

𝒗𝒗𝒏𝒏+𝟏𝟏 = 𝒗𝒗𝒏𝒏 + 𝒎𝒎
𝑭𝑭𝒏𝒏+𝟏𝟏
𝒎𝒎

Solve system of equations
𝜕𝜕
𝜕𝜕𝑡𝑡

�⃑�𝑘
�⃑�𝑣

= �⃑�𝑣
𝛴𝛴�⃑�𝐹/𝑚𝑚

𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏 + 𝒎𝒎 𝒗𝒗𝒏𝒏+𝟏𝟏

𝒗𝒗𝒏𝒏+𝟏𝟏 = 𝒗𝒗𝒏𝒏 + 𝒎𝒎
−𝒌𝒌 𝒙𝒙𝒏𝒏+𝟏𝟏

𝒎𝒎

Example: Spring Force
𝐹𝐹 = −𝑘𝑘𝑘𝑘

Analytic or iterative solve?
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Forward vs Backward

Backward Euler

Forward Euler
𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏 + 𝒎𝒎 𝒗𝒗𝒏𝒏

𝒗𝒗𝒏𝒏+𝟏𝟏 = 𝒗𝒗𝒏𝒏 + 𝒎𝒎
−𝒌𝒌 𝒙𝒙𝒏𝒏
𝒎𝒎

𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏 + 𝒎𝒎 𝒗𝒗𝒏𝒏+𝟏𝟏

𝒗𝒗𝒏𝒏+𝟏𝟏 = 𝒗𝒗𝒏𝒏 + 𝒎𝒎
−𝒌𝒌 𝒙𝒙𝒏𝒏+𝟏𝟏

𝒎𝒎
Could one apply the Trapezoid Method?
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Particles: 
Newtonian Physics as First-Order DE
• Motion of many particles?

𝜕𝜕
𝜕𝜕𝑡𝑡

𝑘𝑘1
𝑣𝑣1
𝑘𝑘2
𝑣𝑣2
⋮
𝑘𝑘𝑛𝑛
𝑣𝑣𝑛𝑛

=

𝑣𝑣1
𝐹𝐹1/𝑚𝑚1
𝑣𝑣2

𝐹𝐹2/𝑚𝑚2
⋮
𝑣𝑣𝑛𝑛

𝐹𝐹𝑛𝑛/𝑚𝑚𝑛𝑛

• Interaction of particles?
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Multiple-particle collision
• naïve implementation is likely unstable

• Objects pushing inside each other

• Further reading:
• https://box2d.org/publications/

• In particular 
https://box2d.org/files/ErinCatto_ModelingAndSolvingConstraints_GD
C2009.pdf

52

https://box2d.org/publications/
https://box2d.org/files/ErinCatto_ModelingAndSolvingConstraints_GDC2009.pdf
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Simulation Basics
Simulation loop…

1. Equations of Motion
2. Numerical integration
3. Collision detection
4. Collision resolution
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Collisions
• Collision detection

• Broad phase: AABBs,  bounding spheres
• Narrow phase: detailed checks

• Collision response
• Collision impulses
• Constraint forces: resting, sliding, hinges, ….
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Basic Particle Simulation (first try)
Forces only  𝑭𝑭 = 𝒎𝒎𝒎𝒎

𝒅𝒅𝒕𝒕 = 𝒕𝒕𝒊𝒊+𝟏𝟏 − 𝒕𝒕𝒊𝒊
𝒗𝒗𝒊𝒊+𝟏𝟏 = 𝒗𝒗 𝒕𝒕𝒊𝒊 + (𝑭𝑭(𝒕𝒕𝒊𝒊)/𝒎𝒎)𝒅𝒅𝒕𝒕
𝒑𝒑𝒊𝒊+𝟏𝟏 = 𝒑𝒑 𝒕𝒕𝒊𝒊 + 𝒗𝒗(𝒕𝒕𝒊𝒊+𝟏𝟏)𝒅𝒅𝒕𝒕
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Recap: Particle-Plane Collisions (in terms of vel.)

• Change in direction of normal

𝛥𝛥𝒗𝒗 = 𝟐𝟐 𝒗𝒗−◦ �𝒏𝒏 �𝒏𝒏

𝒗𝒗+ = 𝒗𝒗− + 𝛥𝛥𝒗𝒗

Frictionless

Velocity along normal
(v projected on normal
by the dot product) Apply change

along normal
(magnitude

times direction)

𝒗𝒗− 𝒗𝒗+

�𝒏𝒏
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Why use ‘Impulse’?
• Integrates with the physics solver

• How to integrate damping?

57
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Recap: Particle-Plane Collisions (in terms of vel.)

• Change in direction of normal

𝛥𝛥𝒗𝒗 = 𝟐𝟐 𝒗𝒗−◦ �𝒏𝒏 �𝒏𝒏

𝒗𝒗+ = 𝒗𝒗− + 𝛥𝛥𝒗𝒗

𝛥𝛥𝒗𝒗 = 𝟏𝟏 + 𝝐𝝐 𝒗𝒗−◦ �𝒏𝒏 �𝒏𝒏

Frictionless

Loss of energy

Velocity along normal
(v projected on normal
by the dot product) Apply change

along normal
(magnitude

times direction)

𝒗𝒗− 𝒗𝒗+

�𝒏𝒏
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Particle-Plane Collisions
• Apply an ‘impulse’ of magnitude j

• Inversely proportional to mass of particle

• In direction of normal

𝒗𝒗− 𝒗𝒗+

�𝒏𝒏 𝒋𝒋 = 𝟏𝟏 + 𝝐𝝐 𝒗𝒗−◦ �𝒏𝒏 𝒎𝒎

𝒋𝒋 = 𝒋𝒋 �𝒏𝒏

𝒗𝒗+ =
𝒋𝒋
𝒎𝒎

+ 𝒗𝒗−

Impulse in physics: Integral of F over time
In games: an instantaneous step change
(not physically possible), i.e., the force 
applied over one time step of the simulation

What is the
effect of 𝝐𝝐 ?
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Hint for A2: Check for velocity direction!
• Only collide if objects are moving towards each other
• Ignore collision if moving away from each other

Q: Should I work in terms of velocity or forces?

60
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Particle-Particle Collisions (radius=0)
• Particle-particle frictionless elastic impulse response

• Momentum is preserved
𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏− + 𝒎𝒎𝟐𝟐𝒗𝒗𝟐𝟐− = 𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏+ + 𝒎𝒎𝟐𝟐𝒗𝒗𝟐𝟐+

• Kinetic energy is preserved

½𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏−
𝟐𝟐

+ ½𝒎𝒎𝟐𝟐𝒗𝒗𝟐𝟐−
𝟐𝟐

= ½𝒎𝒎𝟏𝟏𝒗𝒗𝟏𝟏+
𝟐𝟐

+ ½𝒎𝒎𝟐𝟐𝒗𝒗𝟐𝟐+
𝟐𝟐

𝒎𝒎𝟏𝟏

𝒎𝒎𝟐𝟐

𝒎𝒎𝟏𝟏

𝒎𝒎𝟐𝟐

𝒗𝒗𝟏𝟏− 𝒗𝒗𝟐𝟐−
𝒗𝒗𝟏𝟏+

𝒗𝒗𝟐𝟐+

Before After

• Velocity is preserved 
in tangential direction
𝒕𝒕◦𝒗𝒗𝟏𝟏− = 𝒕𝒕◦𝒗𝒗𝟏𝟏+ , 𝒕𝒕 ◦𝒗𝒗𝟐𝟐−= 𝐭𝐭◦𝒗𝒗𝟐𝟐+
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Particle-Particle Collisions (radius >0)

𝒗𝒗𝟏𝟏−

𝒑𝒑𝟐𝟐: 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

𝒑𝒑𝟏𝟏: 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒗𝒗𝟐𝟐−

𝒎𝒎𝟐𝟐

𝒎𝒎𝟏𝟏

• What we know…
• Particle centers
• Initial velocities
• Particle Masses

• What we can calculate…
• Contact normal
• Contact tangent
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• Impulse direction
reflected across 
tangent

• Impulse magnitude 
proportional to 
mass of other 
particle

Particle-Particle Collisions (radius >0)

𝒗𝒗𝟏𝟏−

𝒗𝒗𝟐𝟐−

𝒗𝒗𝟏𝟏+

𝒗𝒗𝟐𝟐+

𝒎𝒎𝟐𝟐

𝒎𝒎𝟏𝟏
𝒎𝒎𝟐𝟐 < 𝒎𝒎1

𝒑𝒑𝟐𝟐: 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

𝒑𝒑𝟏𝟏: 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏
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Particle-Particle Collisions (radius >0)

𝒗𝒗𝟏𝟏+ = 𝒗𝒗𝟏𝟏− −
𝟐𝟐𝒎𝒎𝟐𝟐

𝒎𝒎𝟏𝟏 + 𝒎𝒎𝟐𝟐

𝒗𝒗𝟏𝟏− − 𝒗𝒗𝟐𝟐− � 𝒑𝒑𝟏𝟏 − 𝒑𝒑𝟐𝟐
𝒑𝒑𝟏𝟏 − 𝒑𝒑𝟐𝟐 𝟐𝟐 𝒑𝒑𝟏𝟏 − 𝒑𝒑𝟐𝟐

𝒗𝒗𝟐𝟐+ = 𝒗𝒗𝟐𝟐− −
𝟐𝟐𝒎𝒎𝟏𝟏

𝒎𝒎𝟏𝟏 + 𝒎𝒎𝟐𝟐

𝒗𝒗𝟐𝟐− − 𝒗𝒗𝟏𝟏− � 𝒑𝒑𝟐𝟐 − 𝒑𝒑𝟏𝟏
𝒑𝒑𝟐𝟐 − 𝒑𝒑𝟏𝟏 𝟐𝟐 𝒑𝒑𝟐𝟐 − 𝒑𝒑𝟏𝟏

• More formally…

• This is in terms of velocity, what would the 
corresponding impulse be?
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Hints: Sequential impulse updates
• Important to update velocity right after computing 

constraint/forces
• Important to update the velocity of both objects at 

the same time for a collision event
• Clamping does not work with bouncing constraints
• Accumulated clamping has no effect in the simple stacking test

• Requires Bounce/restitution to be implemented as velocity bias (not 
updated during inner iterations)

• Since the other half of the velocity is taken care of by the contact constraint
• Pseudo velocities don’t give a huge improvement
• Perhaps different when including rotational motion?

65
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Rigid Body Dynamics 
(rotational motion of objects?)
• From particles to rigid bodies…

Rigid body

𝒔𝒔𝒕𝒕𝒎𝒎𝒕𝒕𝑻𝑻 =

𝒙𝒙 𝒑𝒑𝑻𝑻𝒔𝒔𝒊𝒊𝒕𝒕𝒊𝒊𝑻𝑻𝒏𝒏
𝒗𝒗 𝒗𝒗𝑻𝑻𝒗𝒗𝑻𝑻𝒗𝒗𝒊𝒊𝒕𝒕𝒚𝒚
𝑹𝑹 𝑻𝑻𝑻𝑻𝒕𝒕𝒎𝒎𝒕𝒕𝒊𝒊𝑻𝑻𝒏𝒏𝒎𝒎𝒎𝒎𝒕𝒕𝑻𝑻𝒊𝒊𝒙𝒙 𝟑𝟑𝒙𝒙𝟑𝟑
𝒘𝒘 𝒎𝒎𝒏𝒏𝒂𝒂𝒂𝒂𝒗𝒗𝒎𝒎𝑻𝑻 𝒗𝒗𝑻𝑻𝒗𝒗𝑻𝑻𝒗𝒗𝒊𝒊𝒕𝒕𝒚𝒚

ℝ𝟏𝟏𝟐𝟐 in 3D

Particle

𝒔𝒔𝒕𝒕𝒎𝒎𝒕𝒕𝑻𝑻 = �𝒙𝒙 𝒑𝒑𝑻𝑻𝒔𝒔𝒊𝒊𝒕𝒕𝒊𝒊𝑻𝑻𝒏𝒏
𝒗𝒗 𝒗𝒗𝑻𝑻𝒗𝒗𝑻𝑻𝒗𝒗𝒊𝒊𝒕𝒕𝒚𝒚

ℝ𝟒𝟒 in 2D
ℝ𝟔𝟔 in 3D
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• From particles to rigid bodies…

Newton-Euler equations of motion
𝒎𝒎

𝒎𝒎
𝒎𝒎

𝚰𝚰

𝒎𝒎𝒙𝒙
𝒎𝒎𝒚𝒚
𝒎𝒎𝑻𝑻
𝒘𝒘𝒙𝒙
𝒘𝒘𝒚𝒚
𝒘𝒘𝑻𝑻

=
𝚺𝚺𝑭𝑭

Inertia tensor 𝚺𝚺𝝉𝝉 − 𝒘𝒘 × 𝚰𝚰𝒘𝒘

Rigid Body Dynamics

Newton’s equations of motion
𝚺𝚺𝑭𝑭 = 𝒎𝒎𝒎𝒎

𝒎𝒎
𝒎𝒎

𝒎𝒎

𝒎𝒎𝒙𝒙
𝒎𝒎𝒚𝒚
𝒎𝒎𝑻𝑻

= 𝚺𝚺𝑭𝑭

𝑴𝑴𝒎𝒎 = 𝚺𝚺𝑭𝑭

Angular vel.
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Box2D – an excellent 2D physics engine
Particle and rigid body dynamics!

68
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Organizational
• M1 face2face grading this week
• have a laptop ready, with the game running

• M1 Team presentations
• Add your slides

https://docs.google.com/presentation/d/1Y4h7ns1uFLIyWO-
0qCk1etltFCUOyJhshw-JmjKTapw/edit?usp=sharing

69
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Outlook – Guest lectures
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