Unsupported MacOS Installation Instructions

1 Important Preface

The following are instructions for building and running the source template on a device
running MacOS. Although we provide these instructions, we do not officially support MacOS
with this course. Use either a Linux machine (available in the department lab) or a Windows
machine unless absolutely necessary. All submitted assignments must build and run on the
department machines, and this may not be the case if you configure it to run on MacOS.
Make sure you test on a department machine to be sure it runs before submitting.

Much of the time these instructions are not enough to get your code running on MacOS.
Due to the deprecation of OpenGL on MacOS as well as the introduction of Apple Silicon,
there will likely be a plethora of other issues that need to be resolved. Depending on your
specific device, there may not even be a workaround. Resolving the issues that arise with
MacOS will require a high level of knowledge of OpenGL and C++ in general. Do not try
to do this if you are not familiar with both.

2 Alternatives and Frequent Issues

1. If you own a Mac device that uses Intel hardware, and not Apple Silicon, using Boot-
Camp to install a Windows partition on your device is an option to develop using
Windows. We have had students do this in the past and it seems to work, but we do
not endorse it.

2. If your device uses Apple Silicon, there are alternatives to emulate Windows on ARM,
but they will likely not work well and we do not endorse any of them.

3. One of the frequent issues with building on MacOS is due to the libraries not being
found during the compilation process. Sometimes this is because Homebrew installs
them in a different location than is assumed in the CMakeLists file. Inside of the
CMakelLists file, consider adding the 2 lines

”include_directories(” /opt /homebrew /include”)”
"link_directories(” /opt/homebrew/lib”)”

after the ”include_directories(/usr/local /include)”
"link_directories(/usr/local/lib)” lines.



CPSC 427 Unsupported MacOS Installation Instructions

4. Another common issue is that the main() function in main.cpp is not recognized prop-
erly. In this case, the issue is because the signature is not accepted by some MacOS
compilers. This can often be fixed by replacing the signature of the function to:

int main(int argc, char* argv())

5. Finally, another common issue arises due to OpenGL being deprecated for MacOS.
This means that features for newer versions of OpenGL are not available, so when
they are used they either not compile or give errors when running. An example is that
in shader code, the layout() format cannot be used in some MacOS devices. Sometimes
this can be replaced with a usage of a uniform variable, but it can be quite inconvenient
to not have access to this feature, among many others.

3 Instructions for Al

1. Download and unzip the source template. It should match the structure specified in
the Template section of this document. The package can be downloaded from the
course website.

2. The template is built using CMake, installed as detailed in the preliminary assignment.

For MacOS users, install dependencies using Homebrew (https://brew.sh/):

brew install pkg-config
brew install glfw3
brew install sdl2
brew install sdl2_mixer

And for MacPorts (https://www.macports.org/):

port install pkgconfig
port install glfw

port install libsdl2

port install libsdl2_mixer

Create an empty directory as the build directory, which we assume is named build,
you could place it in template/build. Note that running CMake and building the
project will copy files and data to this folder. Do not edit any files in the build
folder since they can be overwritten during the build process. Only edit files in the
src and shader folders (create new assets in data).

You can configure the project using CMake GUI or the command line. For the GUI,
enter the assignment template folder (which should contain a CMakeLists.txt file) as
Source and the build folder as the Build. Then, press configure, and if the configu-
ration if successful, press generate. For the command line, cd inside the build and
run:

Page 2 of 3



CPSC 427 Unsupported MacOS Installation Instructions

cmake [path_of_assignment_template] -DCMAKE_BUILD_TYPE=[Debug|Release]

Now you can build the generated project using make or your favorite IDE. CMake
can be configured to output project folders for Visual Studio, Xcode and others. You
require a compiler that supports C++14.

3. To verify that the installation was successful, compile and start the program in your
IDE. It should start an OpenGL window with a salmon and turtles appearing. Make
sure that your debugger works, as detailed in the previous assignment.

Page 3 of 3



	Important Preface
	Alternatives and Frequent Issues
	Instructions for A1

