
A1: Game Graphics Assignment

Course: CPSC 427 - Sep 2023
Due: see course schedule

1 Introduction

The goal of this assignment is to introduce you to basic graphics interface programming. You
will experiment with rendering, shaders, and event-driven frameworks in general. It builds
upon the tinyECS framework covered in the preparatory assignment, which you should at
least partially solve before starting this one.

In the assignment you will implement a simple 2D game where the user controls a salmon
swimming upstream. Can your salmon dodge the turtles that rush by? How many fish will
you eat? You will implement this game by building on top of an instructor-provided template,
adding the required code.

2 Template

The template code provides a starting base for your work. You will find comments throughout
the files to help guide you in the right direction. The directory is structured as follows:

� The directory src contains all the header (.hpp) and source (.cpp) files used by the
project. The entry point is located in main.cpp while most of the logic will be imple-
mented in the world system (world system.cpp) and physics system (physics system

.cpp).

� The data directory contains all audio files, meshes, textures, and shaders used in the
code.

� The external dependencies are located in the ext subdirectory, which is referenced by
the project files, it contains header files and precompiled libraries for:

– gl3w: OpenGL function pointer loading (header-only)

– GLFW: Cross-platform window and input

– SDL/SDL mixer: Playing music and sounds

– stb image: Image loading (header-only)

1



CPSC 427 Programming Assignment 1 (Individual)

– glm: The GLM library provides vector and matrix operations as in GLSL

– tinyECS: A minimal entity component system library

2.1 Transformations and Rendering

The template uses modern OpenGL with object transformation and projection matrices
passed to the shaders. The projection matrix is set to orthographic with a view frustum
of 800 × 1200 that matches the window resolution (in RenderSystem::draw()). In
order to ease the concatenation of multiple object transformations, such as scaling and
translation, we provide the following functions (semantics resemble legacy OpenGL
with glTranslate(), glRotate() etc.):

– transform(): The transformation is initialized to the identity

– transform.rotate(): Applies a rotation matrix to the current transform

– transform.scale(): Applies a scale matrix to the current transform

– transform.translate(): Applies a translation matrix to the current transform

– The sequence of transformations is stored as a 3 × 3 matrix that is then passed
to the Vertex Shader and multiplied by the (orthographic) projection matrix.

Be careful about the order of transformations as they are being multiplied before
being passed as uniform data to the shaders.

3 Required Work

1. Getting started (10%, prereq C++ Dev. Env. tutorial):

(a) Download and unzip the source template. It should match the structure specified
in the Template section of this document. The package can be downloaded from
the course website.

(b) Play the reference video https://youtu.be/f3vpzaYaewA to get a sense of what
a possible assignment solution should look like.

(c) The template is built using CMake, installed as detailed in the preliminary as-
signment. In the following section, we will provide operating system-dependent
instructions to install the additional dependencies of Assignment 1.

On Windows, it should be sufficient to open the repository folder (the one con-
taining the CMakeLists.txt) with Visual Studio and hit Build. If you do not see
the Build menu option, you may have to install ”C++ CMake Tools for Win-
dows”; refer to A0 for a link to the instructions. For a manual CMake setup,
create the same build folder structure and execute the same cmake command as
for the other operating systems.

Page 2 of 6

https://youtu.be/f3vpzaYaewA


CPSC 427 Programming Assignment 1 (Individual)

For Linux users, please install libglfw3-dev, libsdl2-dev and libsdl2-mixer-dev

using your package manager, such as apt-get install <package name>.

Create an empty directory as the build directory, which we assume is named
build, you could place it in template/build. Note that running CMake and
building the project will copy files and data to this folder. Do not edit any
files in the build folder since they can be overwritten during the build process.
Only edit files in the src and shader folders (create new assets in data).

You can configure the project using CMake GUI or the command line. For
the GUI, enter the assignment template folder (which should contain a CMake-
Lists.txt file) as Source and the build folder as the Build. Then, press configure,
and if the configuration if successful, press generate. For the command line, cd
inside the build and run:

cmake [path_of_assignment_template] -DCMAKE_BUILD_TYPE=[Debug|Release]

Now you can build the generated project using make or your favorite IDE. CMake
can be configured to output project folders for Visual Studio, Xcode and others.
You require a compiler that supports C++14.

(d) To verify that the installation was successful, compile and start the program in
your IDE. It should start an OpenGL window with a salmon and turtles appearing.
Make sure that your debugger works, as detailed in the previous assignment.

2. A playable game (50%, prereq ECS lecture): Running the provided game template
should now display a colorful salmon on the left and turtles spawn on the right. Make
the following changes to make it playable. You will find comments throughout the
files to help guide you in the right direction and entry points for this assignment are
marked with TODO A1. Ensure that the game runs smoothly and meaningfully, and
cover corner cases such as concurrent key presses to earn full marks.

(a) Game loop: The salmon is spawned at the game start in WorldSystem::restart game()

and turtles are added periodically in the game loop WorldSystem::step(), with
random position and constant velocity. Inspect these code parts to understand
the game state. It is your task to update the positions of all entities by their
respective velocities in PhysicsSystem::step(). When implemented, the tur-
tles should move to the left while the salmon stays stationary with velocity (0, 0).
Note that the game template computes in pixel units and milliseconds; not meters
and seconds as common in physics.

(b) Salmon movement: pressing the Up/Down directional keys should make the
salmon swim up and down and pressing the Left/Right directional keys should
make it swim left and right; until the respective keys are released. The keyboard
callback function is located in WorldSystem::on key(). Use it to keep track of
the state of the keys. You can then use it to directly modify the salmon position
or to update its velocity. The salmon’s position and velocity is stored in a Motion
data structure that is retrieved with registry.motions.get(player salmon).

Page 3 of 6



CPSC 427 Programming Assignment 1 (Individual)

It is the same motion data that you have modified in task (a). Cover corner cases
such as concurrent key presses and key presses at unexpected times for full marks.

(c) Fish prey: Likewise to the turtles, insert additional fish at random in World

System::step(). A fish is instantiated with createFish() defined in world

init.hpp, give them twice the speed of the turtles. Once this is working, modify
the code to spawn fish and turtle to the right of the screen, outside of the players
eye. The turtles are dangerous for the salmon, while the fish can be eaten by the
salmon in order to obtain points.

(d) Rotation (prereq Rendering lecture): Provide mouse control for rotating the
salmon, so that the salmon will look at the cursor. Change the movement of the
salmon to be consistent with its orientation, so that the mouse position rotates
the salmon and the left/right/up/down keys move the salmon along the direc-
tion it is aligned with. You can obtain the mouse position in the WorldSystem::

on mouse move() in window-coordinates, relative to the top-left of the screen.
You can calculate the rotation angle with respect to its default facing direc-
tion (positive X axis) using the atan2(y,x) function, which can then update
the salmon orientation. Orientation is stored in the Motion structure along-
side position and velocity. In order to render the correctly orientated salmon
you will also need to modify RenderSystem::drawTexturedMesh() and issue the
transform.rotate() command in the correct order.

(e) Collisions: While the basic collision code is already implemented in PhysicsSystem

::step(), you need to properly handle the interactions between entities in World

System::handle collisions(). Upon collision with a turtle, modify the salmon’s
motion to be straight down and make the salmon sink downwards. The salmon
should also be flipped upside down. For full marks handle cases that could inter-
fere with this behavior.

3. OpenGL and Shaders (40%, prereq Rendering lecture): It is most efficient to load all
required resources (mesh, shader, and textures) at once, in the beginning of the game
and to keep these separate from the dynamic game logic. Inspect how the lower part of
components.hpp declares all the available resources. You will have to return here for
adding new assets. The actual resources, such as the mesh and texture file names, are
described in the render system.hpp loaded in the initializeGlGeometryBuffers()

function in render system init.cpp. Locate and inspect the mesh and texture load-
ing functions. Note also that the mesh is constructed / loaded differently: The salmon
has a more complex geometry and each vertex has its own color, while the turtle and
fish are ’faked’ using a texture, which is applied on a quad (two triangles).

Inspect the createFish() and createTurtle() functions, they are alike. Compare
these to the createSalmon() function. Analyze how their renderRequests tie back
to the different textures and shaders.

Rendering is initiated by RenderSystem::draw(), which in turn calls drawTextured

Mesh() on all the entities in the game with a RenderRequest component. Based on
the resources specified in RenderRequest, different shaders are called and different

Page 4 of 6



CPSC 427 Programming Assignment 1 (Individual)

arguments are passed to the shaders. Otherwise, the OpenGL draw commands are the
same for all entities.

(a) Collision animations: Trigger the following animations upon salmon collisions:

i. Turtle: If a collision with a turtle occurs the salmon’s alive state is changed.
See drawTexturedMesh() to understand how the color variable is just an-
other component and how it is passed to the vertex shader variable fcolor.
Open salmon.fs.glsl to see how it’s being used to modify the final salmon
color. Then modify the color variable to make the salmon red after a collision
and switch back to the original color upon reset.

ii. Fish: Whenever a Salmon eats a fish, the score is updated in the window
title and the salmon should temporarily light up with a yellow-ish color. The
salmon is drawn lit up in the shader/salmon.fs.glsl shader based on its
state which is passed as uniform from drawTexturedMesh(). Proceed in two
steps:

� Create a new struct called LightUp in components.hpp and add an in-
stance to the salmon entity upon salmon-fish collision. Equip LightUp

with a timer. You can follow a similar implementation to the salmon
death with the DeathTimer struct. Remember to add the new class to
the ECS registry as well well as to count down all new timers.

� Pass the correct state to the shader in drawTexturedMesh() based on
whether it has a LightUp component and change the light color from
white to yellow inside the shader.

(b) The underwater effect demonstrated in the example video is achieved using a
second-pass shader. The two-pass rendering code is provided in RenderSystem::

drawToScreen(). Your job of this part is to modify the water fragment shader,
shaders/water.fs.glsl, for the underwater distortion and color shift. Note that
you do not need to match the solution video exactly.

Hints for the distortion part (distort): think about the translation, what if
the offset value is not uniform at all pixel locations but is varying like a wave
function? What if this wave function is varying based on time? Another helpful
piece of information is that the input and output values of distort are in [0, 1],
you should set the offset values to the right scale.

Hints for potential seam artifacts: your distort function may output values outside
of [0, 1], leading to wrapping artifacts at the screen border. Reduce the deforma-
tion effect towards the boundary or down-scale your deformation output to ensure
it stays in range.

Hint for the color shift (color shift): check the function fade color in the same
file. You may want to shift the underwater world slightly to blue.

Two-pass rendering is done by first rendering the screen to an off-screen texture
(see RenderSystem::draw()). Then, in the second pass a fragment shader is used
to apply additional effects to each pixel of the texture obtained from the first pass

Page 5 of 6



CPSC 427 Programming Assignment 1 (Individual)

(RenderSystem::drawToScreen()). This is achieved by rendering a full-screen
geometry in a similar fashion to how the turtles and fish are rendered.

4 Hand-in Instructions

1. Zip all code and CMake files as present in the template source code but exclude any
executables and compiled files. Upload the zip file via MTA. Double check that you
excluded all generated files, such as /build, .vs, /out! These would consume a lot of
space on our server.

2. In addition, create a README.md file (Markdown language as used on github) that
includes your name, student number, and any information you would like to pass on
to the marker.

Recall, do not publish your solution on github or any other place. Neither during the
course nor after; both is considered cheating.

Page 6 of 6


	Introduction
	Template
	Transformations and Rendering

	Required Work
	Hand-in Instructions

