Particle Systems

And Other Notable Render Paths

by Russell Gillette (Skybox Labs)

Systems for Rendering in Game Engines

Decals

Gobos
Billboards/Imposters
Foliage

Sprites

Hair

Volume Rendering
Sky

Point Rendering
Voxels

Signed Distance Fields
Fonts

Mesh Rendering
Particle Systems

Why are there so many render paths?

e Generated meshes
e Performance tradeoffs
o hacks to do something in a faster way, often with visual tradeoffs

e Memory or data transfer efficiency:

o data packing

o transmission of draws to the GPU (eg: execute indirect, instancing)
e Data might be represented in a different manner

o eg: fluid simulations, lines, etc

e Data inputs may be computed differently

Disclaimer

e There are often many ways to do things.
e FEach implementation is different based on use case, engine, and author
whims.

Rendering Decals

e Decals are images projected onto a mesh to provide more detail

o usually implemented as a projected cube

o A mesh can be generated for the decal if static
m avoids custom shaders, provides perf improvement
m generating meshes is slow and done offline

o for a much more elaborate use of decals:

] https://advances.realtimerendering.com/s2020/RenderingDoomEternal.pdf

https://samdriver.xyz/article/decal-render-intro

Doom Eternal Review by Digital Foundry: https://devforum.roblox.com/t/forward-rendering-
https://www.youtube.com/watch?v=UsmqWSZpgJY&t=396s decalsdecal-projecting/1154955

Rendering Gobos

Projective Textures attached to a light

not usually sampled for Global lllumination
common uses: caustics underwater

can be animated for more realism

https://download.autodesk.com/global/docs/motionb
uilder2014-tutorial/index.html?url=files/Custom_lights
_Attaching_a_gobo_to_a_light.htm,topicNumber=d3
0e85749

https://docs.arnoldrenderer.com/display/ASAFMUG/CaustictEffect+Usi
ng+Cell+Noise%3A+Pool+Scene

Rendering Billboards and Imposters

e F[lat textures with transparency to imply detail
o often camera aligned

e Usually done after the lowest LOD in an LOD chain for far objects that need
to remain visible

e Imposters allow for a wider range of angles
with reasonable plausibility

0,

Sy ‘. § Py ‘.
— - ;‘. — -:"\

LoD 0 LoD 1 LOD 2 L003
5651 tris 5651 tris 632 tris 451 tris 14 tris
cutout most transparency alpha applied alpha applied no alpha billboard

http://phos.ph/2017/11/21/creating-dense-foliage-in-vr-part-2/ https://shaderbits.com/blog/octahedral-impostors

Rendering Foliage

e Often rendered as a series of billboards
o Not always a separate render path

e Also often a simplified mesh
o Trees have a lot of detail, can still be very costly to render many of them

o See http://www.stephanmantler.com/files/star1021.pdf for more detailed tree rendering

https://sites.cs.ucsb.edu/~holl/pubs/Cand
https://shaderbits.com/blog/octahedral-impostors ussi-2005-EG.pdf

https://gonintendo.com/stories/275514-miyamoto-is-a-big-fan-of-tree-clim
bing-in-the-legend-of-zelda-br

http://www.stephanmantler.com/files/star1021.pdf

Rendering Sprites

e quads with a texture sampled from a texture

e often a large number of draws can be concatenated
into a single triangle strip

e quads are often in screenspace

® many images to be sampled are all in a small
number of sprite atlases

http://www.hardcoregam 0 0) X | https://www.spriters-resource.
ing101.net/tactics-ogre/ . : 7 com/fullview/74463/

Rendering Hair

e Often rendered using a different material model called a BSDF

o BSDF models light on a full sphere rather than a hemisphere
o modified to properly represent a number of internal Transmittance and Reflection events

e Splines used to as “key hairs” to guide generation of additional hairs

e Hair Mesh can be used as a volumetric stand in

e Also for speed may use surface models, though they are hard to make look
nice T

Image from the game Heavenly Sword
http://www.cemyuksel.com/courses/conferences/siggraph2010-hair/S
2010_HairCourseNotes-Chapter2.pdf

http://www.cemyuksel.com/courses/conferences/siggraph2010-hair/

Rendering Volumes

e Model the propagation of light through some media
o as opposed to normal material evaluation stopping at the surface

e Can be used for smoke, fire, clouds, water, the sky, and more

e Frames problems in terms of scattering theory on participating media
o mathematically modelling the behaviour of light in the media

e Often involves some form of ray casting or marching

Figure 1.7: Volume rendering by 3D texture slicing (WESTERMANN and ERTL 1998): 3D texture slices
arc generated from the volume, perpendicular to the viewing direction (left); the textures are mapped
onto the screen (middle); blended textures of previous slices (right).

Older approach to volume rendering as 3d slices
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.11.4.682&rep=rep1&type=pdf https://www.diva-portal.org/smash/get/diva2:1223894/FULLTEXTO1.pdf

Rendering The Sky

e Rendered Volumetrically

o modelled statistically to avoid heavy computation of ray bounces
o math heavy computation to account for transmittance, scattering, and phase
o data often stores as look up tables on altitude and view angle relative to zenith

e Sky can also can be rendered using environment maps

https://www.shadertoy.com/view/sISXRW https://www.shadertoy.com/view/sISXRW

Rendering Point Clouds

e Used for medical imaging often
e Hard to animate

e Can be rendered by:
o splatting circles to the screen
o rendering particles
o constructing a mesh from the points
o voxelizing the space and rendering that

® I |g htl n g can be C h a I | en g I n g d e pe n d I n g on https://www.cg.tuwien.ac.at/research/publications/2019/s

chuetz-2019-CLOD/schuetz-2019-CLOD-screenshot_1.pn

what data is available per point 9

Rendering Voxels Pt 1

Cone trace direction

e \oxel meshes can be used
o to store lighting information on the world
m Voxel cone tracing can be used to render area lights
m cone tracing is also used in come computation of Gl
o for sims using cellular automata

“——__ Reflected radiance from
filtered voxel

Voxel Cone Tracing
http://simonstechblog.blogspot.com/2013/01/implementing-
voxel-cone-tracing.html

=)

Voxel Cone Tracing in Ogre 3D Voxelation of scene and storage in Octree
https://www.ogre3d.org/2019/08/05/voxel-cone-tracing http://simonstechblog.blogspot.com/2013/01/implementing-voxel-cone-tracing.htmi

Rendering Voxels Pt2

e Can be used for geometries and destructibility
o minecraft/roblox

o point cloud data |
m each grid holds a bit specifying in or out of the object Voxel Terrain Generation in Roblox

https://devforum.roblox.com/t/cellular-automata-for-
u perhaps also densrty or rate of flow voxel-terrain-generation/594922

e Rendering of voxelized surfaces can be done by:
o converting to a polygonal mesh using the marching cubes algorithm

e Ray tracing the voxels directly
o well suited for GPU implementations 1

= i
=

https://en.wikipedia.org/wiki/Marching_cubes

\/

Rendering Signed Distance Fields

® can be used to represent objects as distances to a function
o I've seen used in production for fonts and font-like symbols

e can be used to generate point cloud sets

https://www.alanzucconi.com/2016/07/01/signed-distance-functions/

Rendering Fonts

e Often rendered similar to sprites
o Can also use vector fonts for clean fonts at all scales
m (though often rasterized to the desired scale)
o More complicated fonts and symbols can be represented using signed distance fields

BITMAP FONT SAMPLING

BITMAP TEXTURE

il
g

RENDERED TEXT
Each quad, one per letter (5 total), uses the UVs given
by the Bitmap Descriptor to sample from the texture

BITMAP FONT DESCRIPTOR

TN

JSON

FILE

Love with made? by Daniel Velasquez

https://css-tricks.com/techniques-for-rendering-text-with-webgl/

SINGLE-CHANNEL
SIGNED

DISTANCE FIELD
SDF

a A

RAW
50x50px FONT ZOOM 0.5X ORIGINAL 1X ZOOM 2X ZOOM 5X

‘_ A A Sharp Corners
MSDF

MULTI-CHANNEL

SIGNED

DISTANCE FIELD

Unavoidable
Rounded Corners

Vector Raster

https://www.digitemb.com/c-font-rast
er-to-vector.php

Love with made? by Daniel Velasquez

https://css-tricks.com/techniques-for-rendering-text-with-webgl/

Particle Systems

What is a Particle System?

e Loosely two parts:

e Generator/Emitter:

o anchor point for system in the world
o object that tracks

m which particles are alive
m how long they’ve been alive

https://cesium.com/learn/cesiumjs-learn/cesiumjs-particle-syste
ms/

m when new particles spawn

e Particles:
o objects with some spawn state (velocity, position, random see for animation, etc)
simulation behavior
conditions for death
can be rendered in any way depending on desired results (though sprites are most common)

o O O

CPU particles or GPU Particles

e Cpu particles support more features
o some features are limited to cpu particles (eg: much harder to emit light from gpu particles)

e Gpu particles allow for many more particles on screen at a time
o GPU allows sim in parallel, usually done in compute shader

1.1 - CPU and GPU particles

https://docs.unrealengine.com/4.27/en-US/Resources/ContentExamples/EffectsGallery/1_A/

Particle Pipeline Per Emitter

e Stage 1. Update the Emitter
o emitter may need to follow an object, etc
e Stage 2: Terminate old particles
o if any particle has reached the criteria for death, remove them from the list
e Stage 3: Spawn new particles
O generate new particles for the system based on artist derived spawn criteria
o spawning may be limited by perf concerns
e Stage 4. Simulate particles
o Update particle positions, animation state, etc
e Stage 5: Render individual particles
o render the particles using whichever pipeline is desired for the particles

o when done on GPU, should still be separated into compute (update) and graphics (draw) passes
m the update can be used to derive lighting data against other scene objects, etc

Update the Emitter

e Move the emitter to follow a target
e Split the emitter into multiple emitters

e Trigger the emitter for termination

o stop spawning particles
o maybe phase out particles before disappearing

https://developer.amazon.com/blogs/appstore/post/0289
09c9-86f6-446¢-8ab4-5b6e67c02f30/drawing-particle-e
ffect-sprites

Terminate Old Particles

e Usually based on lifetime
e Other ldeas:

o distance from emitter

© number of active particles

o randomly

o after some particle animation plays it course

https://pikbest.com/video/gianku-golden-particle-line-disappearing-animation-free-pendant_2447004.html

Spawning Particles

e Usually relative to emitter location though not necessarily

o following the emitter allows you to pin an emitter to an object for effects
o spawning particles on other particles allows effects like fireworks

e Spawning location and details plays a large part in effect

https://borisfx.com/products/particle-illusion/

Updating Particles

e Collision: Easy on the GPU by testing against the depth buffer
e Light: Easy on the CPU by populating point lights on particles after sim

e Movement:
o can be directed by splines, signed distance fields, physics (spawned velocity), steps towards a
target, random walk
o External forces to control movement: gravity, wind, vector field, etc

https://borisfx.com/products/particle-illusion/

Rendering Particles

e Most Commonly Sprites or Points

o can be grouped into a single tri-strip or drawn through executelndirect to avoid draw call
overhead

e Not limited to any shape or geometry
O eg. mesh streamers are common

ittet

1.5 - GPU particles with collision 1.4 - GPU particles with Point Gravity

https://docs.unrealengine.com/4.27/en-US/Resources/ContentExamples/Eff https://docs.unrealengine.com/4.27/en-US/Resources/ContentEx
ectsGallery/1_E/ amples/EffectsGallery/1_D/

Rendering Particles Cont.

e May need multiple render passes
o Almost certainly will need to be rendered in the Transparent pass
o May need to be in the Opaque pass as well
o Depending on how you define your passes, you may also need a separate pass for points
m (You don’t want to be swapping render topology a lot)

https://www.unrealengine.com/marketplace/en-US/product/fireworks-particle-effects

Advanced Usage of Particle Systems

e Not just for effects
Also used to model complex systems such as fluid sims
particles hold all sorts of data for the model such as velocity,

rotational velocity, etc at that point in the fluid

(@)

http://www.sci.utah.edu/™tolga/pubs/ParticleFluidsHiRes.pdf

Figure 3: 4 source with three nozzles filling a box. The fluid
motion is simulated by 150,000 fluid particles. The fluid is
being emitted from three nozzles that hit an obstacle surface

set near the top of the box.

Particle Effect Examples

Particle Generator with Petals Procedurally Generated Volumes
https://www.appliedhoudini.com/ https://www.appliedhoudini.com/

Magic Effects for Games
https://assetstore.unity.com/packages/vfx/particles/epic-magic-particle-effect
s-pack-124834

Starburst with tails and glow effect
https://comptutorials.com/game-design/create-particle-effects-in-g
amemaker-studio-2/

The End

Mandatory Plug: Skybox Is Hiring!!

