
Particle Systems

And Other Notable Render Paths
by Russell Gillette (Skybox Labs)

Systems for Rendering in Game Engines

● Decals
● Gobos
● Billboards/Imposters
● Foliage
● Sprites
● Hair
● Volume Rendering
● Sky

● Point Rendering
● Voxels
● Signed Distance Fields
● Fonts
● Mesh Rendering
● Particle Systems

Why are there so many render paths?

● Generated meshes
● Performance tradeoffs

○ hacks to do something in a faster way, often with visual tradeoffs

● Memory or data transfer efficiency:
○ data packing
○ transmission of draws to the GPU (eg: execute indirect, instancing)

● Data might be represented in a different manner
○ eg: fluid simulations, lines, etc

● Data inputs may be computed differently

Disclaimer

● There are often many ways to do things.
● Each implementation is different based on use case, engine, and author

whims.

Rendering Decals

● Decals are images projected onto a mesh to provide more detail
○ usually implemented as a projected cube
○ A mesh can be generated for the decal if static

■ avoids custom shaders, provides perf improvement
■ generating meshes is slow and done offline

○ for a much more elaborate use of decals:
■ https://advances.realtimerendering.com/s2020/RenderingDoomEternal.pdf

https://samdriver.xyz/article/decal-render-intro

https://samdriver.xyz/article/decal-render-intro

https://devforum.roblox.com/t/forward-rendering-
decalsdecal-projecting/1154955

Doom Eternal Review by Digital Foundry:
https://www.youtube.com/watch?v=UsmqWSZpgJY&t=396s

Rendering Gobos

● Projective Textures attached to a light
● not usually sampled for Global Illumination
● common uses: caustics underwater
● can be animated for more realism

https://download.autodesk.com/global/docs/motionb
uilder2014-tutorial/index.html?url=files/Custom_lights
_Attaching_a_gobo_to_a_light.htm,topicNumber=d3
0e85749

https://docs.arnoldrenderer.com/display/A5AFMUG/Caustic+Effect+Usi
ng+Cell+Noise%3A+Pool+Scene

Rendering Billboards and Imposters

● Flat textures with transparency to imply detail
○ often camera aligned

● Usually done after the lowest LOD in an LOD chain for far objects that need
to remain visible

● Imposters allow for a wider range of angles
 with reasonable plausibility

https://shaderbits.com/blog/octahedral-impostorshttp://phos.ph/2017/11/21/creating-dense-foliage-in-vr-part-2/

Rendering Foliage

● Often rendered as a series of billboards
○ Not always a separate render path

● Also often a simplified mesh
○ Trees have a lot of detail, can still be very costly to render many of them

● See http://www.stephanmantler.com/files/star1021.pdf for more detailed tree rendering

https://sites.cs.ucsb.edu/~holl/pubs/Cand
ussi-2005-EG.pdf

https://gonintendo.com/stories/275514-miyamoto-is-a-big-fan-of-tree-clim
bing-in-the-legend-of-zelda-br https://shaderbits.com/blog/octahedral-impostors

http://www.stephanmantler.com/files/star1021.pdf

● quads with a texture sampled from a texture
● often a large number of draws can be concatenated

into a single triangle strip
● quads are often in screenspace
● many images to be sampled are all in a small

number of sprite atlases

Rendering Sprites

https://www.spriters-resource.
com/fullview/74463/

http://www.hardcoregam
ing101.net/tactics-ogre/

Rendering Hair

● Often rendered using a different material model called a BSDF
○ BSDF models light on a full sphere rather than a hemisphere
○ modified to properly represent a number of internal Transmittance and Reflection events

● Splines used to as “key hairs” to guide generation of additional hairs
● Hair Mesh can be used as a volumetric stand in
● Also for speed may use surface models, though they are hard to make look

nice

http://www.cemyuksel.com/courses/conferences/siggraph2010-hair/

http://www.cemyuksel.com/courses/conferences/siggraph2010-hair/S
2010_HairCourseNotes-Chapter2.pdf

Rendering Volumes

● Model the propagation of light through some media
○ as opposed to normal material evaluation stopping at the surface

● Can be used for smoke, fire, clouds, water, the sky, and more
● Frames problems in terms of scattering theory on participating media

○ mathematically modelling the behaviour of light in the media

● Often involves some form of ray casting or marching

https://www.diva-portal.org/smash/get/diva2:1223894/FULLTEXT01.pdf

Older approach to volume rendering as 3d slices
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.682&rep=rep1&type=pdf

Rendering The Sky

● Rendered Volumetrically
○ modelled statistically to avoid heavy computation of ray bounces
○ math heavy computation to account for transmittance, scattering, and phase
○ data often stores as look up tables on altitude and view angle relative to zenith

● Sky can also can be rendered using environment maps

https://www.shadertoy.com/view/slSXRW https://www.shadertoy.com/view/slSXRW

Rendering Point Clouds

● Used for medical imaging often
● Hard to animate
● Can be rendered by:

○ splatting circles to the screen
○ rendering particles
○ constructing a mesh from the points
○ voxelizing the space and rendering that

● lighting can be challenging depending on
what data is available per point

https://www.cg.tuwien.ac.at/research/publications/2019/s
chuetz-2019-CLOD/schuetz-2019-CLOD-screenshot_1.pn
g

Rendering Voxels Pt 1

● Voxel meshes can be used
○ to store lighting information on the world

■ Voxel cone tracing can be used to render area lights
■ cone tracing is also used in come computation of GI

○ for sims using cellular automata
○ in finite element analysis to determine tensile strength

Voxelation of scene and storage in Octree
http://simonstechblog.blogspot.com/2013/01/implementing-voxel-cone-tracing.html

Voxel Cone Tracing
http://simonstechblog.blogspot.com/2013/01/implementing-
voxel-cone-tracing.html

Voxel Cone Tracing in Ogre 3D
https://www.ogre3d.org/2019/08/05/voxel-cone-tracing

Rendering Voxels Pt2

● Can be used for geometries and destructibility
○ minecraft/roblox
○ point cloud data

■ each grid holds a bit specifying in or out of the object
■ perhaps also density or rate of flow

● Rendering of voxelized surfaces can be done by:
○ converting to a polygonal mesh using the marching cubes algorithm

● Ray tracing the voxels directly
○ well suited for GPU implementations

https://en.wikipedia.org/wiki/Marching_cubes

Voxel Terrain Generation in Roblox
https://devforum.roblox.com/t/cellular-automata-for-
voxel-terrain-generation/594922

Rendering Signed Distance Fields

● can be used to represent objects as distances to a function
○ I’ve seen used in production for fonts and font-like symbols

● can be used to generate point cloud sets

https://www.alanzucconi.com/2016/07/01/signed-distance-functions/

Rendering Fonts

● Often rendered similar to sprites
○ Can also use vector fonts for clean fonts at all scales

■ (though often rasterized to the desired scale)
○ More complicated fonts and symbols can be represented using signed distance fields

https://www.digitemb.com/c-font-rast
er-to-vector.php

https://css-tricks.com/techniques-for-rendering-text-with-webgl/
https://css-tricks.com/techniques-for-rendering-text-with-webgl/

Particle Systems

What is a Particle System?

● Loosely two parts:
● Generator/Emitter:

○ anchor point for system in the world
○ object that tracks

■ which particles are alive
■ how long they’ve been alive
■ when new particles spawn

● Particles:
○ objects with some spawn state (velocity, position, random see for animation, etc)
○ simulation behavior
○ conditions for death
○ can be rendered in any way depending on desired results (though sprites are most common)

https://cesium.com/learn/cesiumjs-learn/cesiumjs-particle-syste
ms/

CPU particles or GPU Particles

● Cpu particles support more features
○ some features are limited to cpu particles (eg: much harder to emit light from gpu particles)

● Gpu particles allow for many more particles on screen at a time
○ GPU allows sim in parallel, usually done in compute shader

https://docs.unrealengine.com/4.27/en-US/Resources/ContentExamples/EffectsGallery/1_A/

Particle Pipeline Per Emitter

● Stage 1: Update the Emitter
○ emitter may need to follow an object, etc

● Stage 2: Terminate old particles
○ if any particle has reached the criteria for death, remove them from the list

● Stage 3: Spawn new particles
○ generate new particles for the system based on artist derived spawn criteria
○ spawning may be limited by perf concerns

● Stage 4: Simulate particles
○ Update particle positions, animation state, etc

● Stage 5: Render individual particles
○ render the particles using whichever pipeline is desired for the particles
○ when done on GPU, should still be separated into compute (update) and graphics (draw) passes

■ the update can be used to derive lighting data against other scene objects, etc

Update the Emitter

● Move the emitter to follow a target
● Split the emitter into multiple emitters
● Trigger the emitter for termination

○ stop spawning particles
○ maybe phase out particles before disappearing

https://developer.amazon.com/blogs/appstore/post/0289
09c9-86f6-446c-8ab4-5b6e67c02f30/drawing-particle-e
ffect-sprites

Terminate Old Particles

● Usually based on lifetime
● Other Ideas:

○ distance from emitter
○ number of active particles
○ randomly
○ after some particle animation plays it course

https://pikbest.com/video/qianku-golden-particle-line-disappearing-animation-free-pendant_2447004.html

Spawning Particles

● Usually relative to emitter location though not necessarily
○ following the emitter allows you to pin an emitter to an object for effects
○ spawning particles on other particles allows effects like fireworks

● Spawning location and details plays a large part in effect

https://borisfx.com/products/particle-illusion/

Updating Particles

● Collision: Easy on the GPU by testing against the depth buffer
● Light: Easy on the CPU by populating point lights on particles after sim
● Movement:

○ can be directed by splines, signed distance fields, physics (spawned velocity), steps towards a
target, random walk

○ External forces to control movement: gravity, wind, vector field, etc

https://borisfx.com/products/particle-illusion/

Rendering Particles

● Most Commonly Sprites or Points
○ can be grouped into a single tri-strip or drawn through executeIndirect to avoid draw call

overhead

● Not limited to any shape or geometry
○ eg: mesh streamers are common

https://docs.unrealengine.com/4.27/en-US/Resources/ContentExamples/Eff
ectsGallery/1_E/

https://docs.unrealengine.com/4.27/en-US/Resources/ContentEx
amples/EffectsGallery/1_D/

Light generated by emitter,

not particles*

Rendering Particles Cont.

● May need multiple render passes
○ Almost certainly will need to be rendered in the Transparent pass
○ May need to be in the Opaque pass as well
○ Depending on how you define your passes, you may also need a separate pass for points

■ (You don’t want to be swapping render topology a lot)

https://www.unrealengine.com/marketplace/en-US/product/fireworks-particle-effects

Advanced Usage of Particle Systems

● Not just for effects
● Also used to model complex systems such as fluid sims

○ particles hold all sorts of data for the model such as velocity,
 rotational velocity, etc at that point in the fluid

http://www.sci.utah.edu/~tolga/pubs/ParticleFluidsHiRes.pdf

Particle Effect Examples

Procedurally Generated Volumes
https://www.appliedhoudini.com/

Particle Generator with Petals
https://www.appliedhoudini.com/

Magic Effects for Games
https://assetstore.unity.com/packages/vfx/particles/epic-magic-particle-effect
s-pack-124834

Starburst with tails and glow effect
https://comptutorials.com/game-design/create-particle-effects-in-g
amemaker-studio-2/

The End

Mandatory Plug: Skybox Is Hiring!!

