
C++ Tutorial
TIM STRAUBINGER – CPSC 427 – FALL 2021

Talk Outline

BRIEF TOUR
OF C++

TEMPLATES UNDEFINED
BEHAVIOUR

Additional Resources
isocpp.org/get-started
◦ Recommended book list

◦ high-level explanations, tutorials, and design guidance

cppreference.com/w/
◦ Language and standard library documentation

coliru.stacked-crooked.com
◦Free online compiler (great for small exercises)

https://isocpp.org/get-started
https://cppreference.com/w/
https://coliru.stacked-crooked.com/

C++ began being
invented in 1979 by
Danish computer
scientist
Bjarne Stroustrup
(pictured right)

Why do C++ programmers like C++?
•Runtime performance
• Zero-cost abstractions

• Compiler optimizations

• Easy and efficient resource management

• Compile-time programming (for advanced users)

•Type Safety
• Many bugs are eliminated at compile time

•Expressiveness
• Many diverse tools are provided by the C++ language

• Many styles of programming are possible and can be mixed
• Generic, object-oriented, functional, imperative, procedural,

compile-time, template meta-programming, etc

*

* but not all

Why don’t C++ programmers like C++?
•Undefined Behaviour
• C++ gives you the freedom to hurt yourself

• You are responsible for preventing bugs

• The language does not protect you from yourself

•Complexity
• The C++ language is huge

• C++ programmers readily over-engineer

• Reasoning about C++ easily causes headaches

•Compilation speed
• Begin a C++ compiler is not easy

C++ is a very
diverse landscape

Image credit:
http://fearlesscoder.blogs
pot.com/2017/02/the-
c17-lands.html

http://fearlesscoder.blogspot.com/2017/02/the-c17-lands.html

C++ is a very
diverse landscape

Different communities
use different subsets of
the language in different
ways for different goals

Image credit:
http://fearlesscoder.blogs
pot.com/2017/02/the-
c17-lands.html

http://fearlesscoder.blogspot.com/2017/02/the-c17-lands.html

C++ is a very
diverse landscape

Different communities
use different subsets of
the language in different
ways for different goals

Video game programming
is just one of countless
ways of using C++

Image credit:
http://fearlesscoder.blogs
pot.com/2017/02/the-
c17-lands.html

http://fearlesscoder.blogspot.com/2017/02/the-c17-lands.html

C++ is a very
diverse landscape

Different communities
use different subsets of
the language in different
ways for different goals

Video game programming
is just one of countless
ways of using C++

Image credit:
http://fearlesscoder.blogs
pot.com/2017/02/the-
c17-lands.html

You will only use about this
much of the whole picture
during your time in the course.

That’s okay.

Simplicity is valuable and safe.

http://fearlesscoder.blogspot.com/2017/02/the-c17-lands.html

C++ Templates

Avoiding Manual
Code
Duplication
Does this code style look familiar to
you?

Templates to the
rescue!
Automated code duplication!

C++ templates
versus other
languages

member access
in Python
Nearly everything is
checked at runtime!

Lots of testing required
😢

member access
in C++ templates
Templates are checked
at compile time!

😏

Generic factory
functions in Java
Only one function is
generated!

Types are erased 😔

Simple things are
impossible 😭

Template factory
functions in C++
Types can be provided
explicitly for great good

Our ECS system uses
this extensively
Take a look 😉

Templates in C++
C++ is statically typed, and all types must be known at compile time

So how do templates work in C++?

• Automated code duplication! (technically called monomorphization)

Each time you provide a template function/class with a different type, a different
function/class is generated by the compiler!

In other words, a template is not a class or function until you specify a type
(technically called instantiation)

Benefits of Templates in C++
•Type checking

• The compiler can inspect types and perform all the normal safety and correctness checks

•Optimization

• The compiler can generate faster code that is specific to each type

•Expressivity

• Templates are extremely powerful at doing many different things

Downsides of Templates in C++
•Slow compile times

• Templates add extra work for the compiler

•Code bloat

• “automatic code duplication” is exactly that – the size of compiled programs
increases for every new template instantiation

•Complexity

• Template code compiles differently from normal code – understanding and fixing errors can
be difficult

The Dark Side of C++

C++ is not safe
•C++ lets you break the rules of the language

•When you break the rules, anything can happen

•A good C++ programmer knows how not to break the rules

Undefined Behaviour
means:

Your code
may do
nothing

Undefined Behaviour
means:

Your code
may do what
you believe it
should

Undefined Behaviour
means:

Your code
may do what
you believe it
should

…until you change your
compiler settings

Undefined Behaviour
means:

Your code
may do what
you believe it
should

…until you change your
compiler settings
…or try a different
compiler

Undefined Behaviour means:
YO U R C O D E M AY C R A S H W I T H A H E L P F U L E R R O R M E S S A G E

Undefined Behaviour means:
YO U R C O D E M AY C R A S H F O R N O E X P L A I N A B L E R E A S O N

Undefined Behaviour means:
YO U R C O D E M AY C R A S H F O R N O E X P L A I N A B L E R E A S O N

Undefined Behaviour
means:

Your code may
run and do
something
completely
unexplainable

Undefined
Behaviour
means:
YO U R C O D E M I G H T R U N F I N E , B U T
H A C K E R S C A N S T E A L YO U R
PA S S W O R D S

This is a pointer to an array This should be the length
of that array. It is not.

Undefined
Behaviour
means:
YO U R C O D E M I G H T R U N F I N E , B U T
H A C K E R S C A N S T E A L YO U R
PA S S W O R D S

This is a pointer to an array This should be the length
of that array. It is not.

Undefined
Behaviour
means:
YO U R C O D E M I G H T R U N F I N E , B U T
H A C K E R S C A N S T E A L YO U R
PA S S W O R D S

Definitions of Undefined Behaviour
•“Renders the entire program meaningless if certain rules of the language are violated.” [1]

•“There are no restrictions on the behaviour of the program” [1]

•“Compilers are not required to diagnose undefined behaviour […], and the compiled program is
not required to do anything meaningful.” [1]

•“Because correct C++ programs are free of undefined behaviour,
compilers may produce unexpected results when a program that actually has UB is compiled
with optimization enabled” [1]

•If a program encounters UB when given a set of inputs, there are no requirements on its
behaviour, “not even with regard to operations preceding the first undefined operation” [2]

[1] https://en.cppreference.com/w/cpp/language/ub [2] C++20 Working Draft, Section 4.1.1.5

https://en.cppreference.com/w/cpp/language/ub

Undefined Behaviour in simpler terms
If you do something wrong in C++, literally anything can happen your code runs.

This includes:

• Your code runs and does nothing

• Your code runs as you expect it to

• Your code crashes with a helpful error message

• Your code crashes for no explainable reason

• Your code runs and does something weird

• Your code runs as you expect it to, but fails later at the worst possible moment

• Your code passes all tests, but hackers can steal your passwords

• Demons will coming flying out of your nose

Common
causes of
Undefined
Behaviour

• Reading from an uninitialized variable

• Reading an array out of bounds

• Dereferencing a null pointer

• Dereferencing an invalid pointer that doesn’t point to any object

• Dereferencing a pointer to an object with an incompatible type

• Forgetting to return a value from a non-void function

• delete-ing dynamically allocated memory twice

Many infamous software bugs and vulnerabilities are due to

Undefined Behaviour!

Why does C++ have Undefined Behaviour?
This sounds terrible!
•Undefined Behaviour simplifies compilation (and language design)
• Compilers can (and do!) assume that Undefined Behaviour never happens

• Compilers don’t need to do extra work to ensure safety

• The concept of Undefined Behaviour was inherited from C

• Detecting all types of Undefined Behaviour in C++ is impossible.

What Undefined Behaviour means for you

•The C++ language cannot be learned by trial-and-error.

•Read good C++ books and reliable documentation to best learn to avoid Undefined Behaviour

• See https://isocpp.org/get-started for introductions, examples, tutorials, guidance, and books

• See https://en.cppreference.com/w/ for language and standard library documentation

•If you write safe code to begin with, you will waste less time debugging

•Read compiler warnings and increase your compiler’s warning level

• We’ve already turned on extra warnings in the starter code for you

•When in doubt, write your own safety checks

https://isocpp.org/get-started
https://en.cppreference.com/w/

Avoiding
Undefined
Behaviour with
safety checks

Use assert(condition) to test your assumptions

•In debug mode, halts the program immediately with a helpful
error message if condition is false
• Use your debugger! It will take you right to the problem!

•In release mode, does nothing.
• Useful for optimization (fast code)

• Not useful for input validation!

•Use assert to test your assumptions about your own code
and to find unrecoverable errors

•For problems that can be fixed, such as a user pressing the
wrong button, use a different error reporting mechanism
(e.g. returning error codes)

Using the
assert() macro

Documentation:
https://en.cppreference.com
/w/cpp/error/assert

https://en.cppreference.com/w/cpp/error/assert

In conclusion:
- C++ is not safe
- is weird
- must be avoided
- Learn before you code
- Safety checks make life better

