C++ Tutorial

TIM STRAUBINGER = CPSC 427 — FALL v

Talk Outline

BRIEF TOUR TEMPLATES UNDEFINED
OF C++ BEHAVIOUR

Additional Resources

isocpp.org/get-started
o Recommended book list

° high-level explanations, tutorials, and design guidance

cppreference.com/w/
°Language and standard library documentation

coliru.stacked-crooked.com
°Free online compiler (great for small exercises)

https://isocpp.org/get-started
https://cppreference.com/w/
https://coliru.stacked-crooked.com/

A Brief Tour
of

C++

C++ began being
invented in 1979 by
Danish computer
scientist

Bjarne Stroustrup
(pictured right)

C++ is Not Done Being Invented

Stone Cwith
Age Classes C++ C++98 C++03 C++11 C++14 C++20 277?

1980 1990 2000 2010 2020

v

2000

1500

1000

500

Length of Language Specification (Number of Pages)

Python
Racket

Rust

Java

C++

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Why do C++ programmers like C++7

H b

* Easy and efficient resource management

- * Compile-time programming (for advanced users)

*Runtime performance
* Zero-cost abstractions

* Compiler optimizations

*Type Safety
* Many bugs are eliminated at compile time *

*Expressiveness
* Many diverse tools are provided by the C++ language

* Many styles of programming are possible and can be mixed

* Generic, object-oriented, functional, imperative, procedural, * but not a ”
compile-time, template meta-programming, etc

Why don’t C++ programmers like C++7?

*Undefined Behaviour
* C++ gives you the freedom to hurt yourself
* You are responsible for preventing bugs

* The language does not protect you from yourself

*Complexity
* The C++ language is huge

¢ C++ programmers readily over-engineer G

* Reasoning about C++ easily causes headaches ‘ > ¢)
*Compilation speed

* Begin a C++ compiler is not easy (\/
-~
9

% X

C++ is a very
diverse landscape

Image credit:
http://fearlesscoder.blogs

pot.com/2017/02/the-

cl7-lands.html

http://fearlesscoder.blogspot.com/2017/02/the-c17-lands.html

C++ is a very
diverse landscape

Different communities
use different subsets of
the language in different
ways for different goals

Image credit:

http://fearlesscoder.blogs
pot.com/2017/02/the-

cl7-lands.html

http://fearlesscoder.blogspot.com/2017/02/the-c17-lands.html

C++ is a very
diverse landscape

Different communities
use different subsets of
the language in different
ways for different goals

Video game programming
is just one of countless
ways of using C++

Image credit:

http://fearlesscoder.blogs

pot.com/2017/02/the-
cl7-lands.html

http://fearlesscoder.blogspot.com/2017/02/the-c17-lands.html

C++ is a very
diverse landscape

Different communities
use different subsets of
the language in different
ways for different goals

Video game programming
is just one of countless
ways of using C++

Image credit:

http://fearlesscoder.blogs

pot.com/2017/02/the-
cl7-lands.html

You will only use about this
much of the whole picture
during your time in the course.

That’s okay.
Simplicity is valuable and safe.

SHEESST e

http://fearlesscoder.blogspot.com/2017/02/the-c17-lands.html

this has been

A Brief Tour
of

C++

thank you for watching

C++ Templates

o »
A »
;
5 ’ /
LY
iy !

2727 int add_int(int x, int y) {

2728 int result = x + y;

2729 return result;

2730 }

2731

2732 double add double(double x, double y) {
2733 double result = x + y;

2734 return result;

2735 }

2736

VY std: :string add_string(std::string x, std::s
2738 std::string result = x + y;

2739 return result;

2740 }

2741

2742 float add float(float x, float y) {
2743 float result = x + y;

2744 return result;

2745 }

2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
LY
2743
2744
2745
2746

template<typename T>
T add(T x, T y) {
T result = x + y;
return result;

C++ templates
versus other
languages

foo(x):
print(x.bar)

__init_ (self):

member access self.bar =

in Python

Nearly everything is
checked at runtime!

Lots of testing required

template<typename T>
void foo(T t){
std::cout << t.bar << std::endl;

member access }

" struct A {

In C++ templates std::string bar = "Blab";

Templates are checked b5

at compile time! int main(){
auto a = A{};

auto b = 99;
foo(a);
// foo(b); ERROR: request for member 'bar' in 't’,
// which is of non-class type 'int’
return 0;

Generic factory
functions in Java

Only one function is
generated!

Types are erased

Simple things are
impossible @

T> T create() {
T();

new T();
required: class
found: type parameter T

where T 1s a type-variable:
T extends Object declared in method <T>create()

template<typename T>
T create(){
auto t = T{};

return t;
Template factory } ’
functions in C++
Types can be provided
explicitly for great good int main(){
auto 1 = create<int>();
Our ECS system uses auto d = create<double>();
this extensively auto s = create<std::string>();
Take a look
return 0;

Templates in C++

C++ is statically typed, and all types must be known at compile time

So how do templates work in C++?
* Automated code duplication! (technically called monomorphization)

Each time you provide a template function/class with a different type, a different
function/class is generated by the compiler!

In other words, a template is not a class or function until you specify a type
(technically called instantiation)

Benefits of Templates in C++

*Type checking
* The compiler can inspect types and perform all the normal safety and correctness checks

*Optimization
* The compiler can generate faster code that is specific to each type

*Expressivity
* Templates are extremely powerful at doing many different things

Downsides of Templates in C++

*Slow compile times
* Templates add extra work for the compiler

*Code bloat

* “automatic code duplication” is exactly that — the size of compiled programs
increases for every new template instantiation

*Complexity

* Template code compiles differently from normal code — understanding and fixing errors can
be difficult

- ’ .
. - 2
- .
‘\ 5\ .
- »
» » .
'
.
~ : 4 Ll »
o »
‘ r
/’
- ’
” p '
a p
’

C++ is not safe

*C++ lets you break the rules of the language

*When you break the rules, anything can happen@

*A good C++ programmer knows how not to break the rules

1
2

#include <iostream>

3~ int main() {

std::cout << "Start ---" << std::endl;
char ch; // Oops! Forgot to initialize
std::cout << ch << std::endl;

std::cout << "Finish ---" << std::endl;
return 0;

i-)

Undefined Behaviour
means:

Your code
may do
nothing

1 #include <iostream>

2

3+ int main(){ Undefined Behaviour
4 int i; means:

5 double d;

; bool. b: Your code

7 uint8 t u;

8 std::cout << 1 << "\n'; may do What
9 std::cout << d << "\n'; you :)e”eve |t
10 std::cout << b << "\n';

11 std::cout << u << "\n'; ShOL‘d

12}

#include <iostream>

* int main(){
int 1i;

bool b;
uint8 t u;

std:
std:
10 std:

11 std:
12}

1
2
5
4
5 double d;
6
7
8
9

rcout <<
scout <«
scout <<
scout <<

1 <X
d <<
b <«
u <<

‘\n"*
‘\n"*
‘\n"*
‘\n"®

e er er e

Undefined Behaviour

means:

Your
may
vou

code
do what
nelieve it

shoL

d

..until you change your
compiler settings

i <«
d <«
b <<

1 #include <iostream>
2

3~ int main(){

4 int 1;

5 double d;

6 bool b;

7 uint8 t u;

8 std::cout <«
9 std: :cout <<
10 std::cout <«
11 std: :cout <«

u <<

- ad - -
e wr e e

Undefined Behaviour
means:

Your code
may do what

you believe it
should

..until you change your
compiler settings

..or try a different
compiler

// Entry point

int main() {
int* ptr = nullptr;
std::cout << *ptr; (X)

Exception Thrown B X

Exception thrown: read access violation.
ptr was nullptr.

Copy Details

4 Exception Settings
v| Break when this exception type is thrown
Except when thrown from:

Undefined Behaviour means:

435
49
50
51
52
53

// Entry point
—int main() {
I return 0;

Undefined Behaviour means:

% salmon ~ #gstd::_Hash<_Traits> - @, Find_hint<_Keyty>(const _Nodeptr _Hint, const _Keyty & Ke
1650 protected:
1651 template <class _Keyty>
1652 Bl _NODISCARD | Hash_find last_result<_Nodeptr> _Find_last(const _Keyty& _Keyval, const size_t _Hashval) const {
1653 // find the insertion point for _Keyval and whether an element identical to _Keyval is already in the container
1654 const size_type _Bucket = _Hashval & _Mask;
® 1655 _Nodeptr _Where = Vec._ Mypair._ Myval2. Myfirst[(_Bucket << 1) + 1]._Ptr; O
1656 const _Nodeptr _End = _List. Mypair._Myval2. Myhead;
1657 =) if (_Where == _End) { Exception Thrown 1 X
1658 return {_End, _Nodeptr{}};
1659 L } Exception thrown: read access violation.
1660 this->_Vec. Mypair._Myval2. Myfirst was Ox11101110111011A.
1661 const _Nodeptr _Bucket_lo = _Vec. Mypair. Myval2. Myfirst[_Bucket << 1]._Ptr;)
1662 B for (;3) § Copy Details
1663 | // Search backwards to maintain sorted [_Bucket_lo, _Bucket_hi] when !_Standar 4 Exception Settings
1664 Ell if (!_Traitsobj(_Keyval, _Traits::_Kfn(_Where->_Myval))) { Breal:whent!isemepﬁontypeisﬁwown
1665 E if _CONSTEXPR_IF (! Traits::_Standard) { Except when thrown from:
1666 B if (_Traitsobj(_Traits::_Kfn(_Where->_Myval), _Keyval)) { [] salmon.exe
1(367 Fetmen’ y Wvere=) Next, _Modeptri}); Open Exception Settings | Edit Conditions s
1668 | } o
1669 f }
1670
1671 return {_Where->_Next, _Where};
1672 | }
1673

1674 B if (_Where == _Bucket_lo) {

Undefined Behaviour means:

Undefined Behaviour
means:

i' EOOIIjnéc)npg! Forgot to return :-) Your COde may
: run and do

7~ int main() {

g' 1;;1:;;;,;,“;9(;;);) E< "Start ---" << std::endl; SOmethlﬂg

#include <iostream>

10 std::cout << "fn() returned true\n";

11~ 1 | I

12 b e ::df:cout << "fn() returned false\n"; Comp Ete y

13 } :

14 std::cout << "Finish ---" << std::endl; unexplalnable
15 return 6;

16 }

#ifndef OPENSSL_NO HEARTBEATS
int
tlsl process _heartbeat(SSL *s)
{
unsigned char *p = &s->s3->rrec.data[0], *pl;
unsigned short hbtype;
unsigned int payload;

unsigned int padding = 16; /* Use minimum padding */

/* Read type and payload length first */

hbtype = *p++;

n2s(p, payload);
pl = p;

if (s->msg _callback)
s->msg_callback(@, s->version, TLS1 RT_ HEARTBEAT,
&s->s3->rrec.data[@], s->s3->rrec.length,

s, s->msg_callback arg);

This should be the length
of that array. It is not.

This is a pointer to an array

#ifndef OPENSSL_NO HEARTBEATS
int
tlsl process _heartbeat(SSL *s)
{
unsigned char *p = &s->s3->rrec.data[0], *pl;
unsigned short hbtype;
unsigned int payload;

unsigned int padding = 16; /* Use minimum padding */

/* Read type and payload length first */

hbtype = *p++;

n2s(p, payload);
pl = p;

if (s->msg _callback)
s->msg_callback(@, s->version, TLS1 RT_ HEARTBEAT,
&s->s3->rrec.data[@], s->s3->rrec.length,

s, s->msg_callback arg);

This is a pointer to an array This should be the length
of that array. It is not.

The Heartbleed Bug

Undefined
Behaviour
means:

YOUR CODE MIGHT RUN FINE, BUT
HACKERS CAN STEAL YOUR
PASSWORDS

The Heartbleed Bug is a serious vulnerability in the popular OpenSSL cryptographic software library. This
weakness allows stealing the information protected, under normal conditions, by the SSL/TLS encryption used
to secure the Internet. SSL/TLS provides communication security and privacy over the Internet for applications
such as web, email, instant messaging (IM) and some virtual private networks (VPNs).

The Heartbleed bug allows anyone on the Internet to read the memory of the systems protected by the
vulnerable versions of the OpenSSL software. This compromises the secret keys used to identify the service
providers and to encrypt the traffic, the names and passwords of the users and the actual content. This allows
attackers to eavesdrop on communications, steal data directly from the services and users and to impersonate
services and users.

Definitions of Undefined Behaviour

*“Renders the entire program meaningless if certain rules of the language are violated.” [1]

*“There are no restrictions on the behaviour of the program” [1]

*“Compilers are not required to diagnose undefined behaviour [...], and the compiled program is
not required to do anything meaningful.” [1]

-“Because correct C++ programs are free of undefined behaviour,

compilers may produce unexpected results when a program that actually has UB is compiled
with optimization enabled” [1]

°If a program encounters UB when given a set of inputs, there are no requirements on its
behaviour, “not even with regard to operations preceding the first undefined operation” [2]@

[1] https://en.cppreference.com/w/cpp/language/ub [2] C++20 Working Draft, Section 4.1.1.5

https://en.cppreference.com/w/cpp/language/ub

Undefined Behaviour in simpler terms

If you do something wrong in C++, literally anything can happen your code runs.

This includes: |
* Your code runs and does nothing A':
* Your code runs as you expect it to @
* Your code crashes with a helpful error message @
* Your code crashes for no explainable reason @
* Your code runs and does something weird @ N
* Your code runs as you expect it to, but fails later at the worst possible moment _;E”

* Your code passes all tests, but hackers can steal your passwords @

* Demons will coming flying out of your nose

Reading from an uninitialized variable
Reading an array out of bounds
Dereferencing a null pointer

Common

CaUSES Of Dereferencing a pointer to an object with an incompatible type

U ndeﬂ nEd Forgetting to return a value from a non-void function
BehaVIOu r delete-ing dynamically allocated memory twice

Dereferencing an invalid pointer that doesn’t point to any object

Many infamous software bugs and vulnerabilities are due to

Undefined Behaviour!

Why does C++ have Undefined Behaviour?
This sounds terrible!

*Undefined Behaviour simplifies compilation (and language design)
* Compilers can (and do!) assume that Undefined Behaviour never happens
* Compilers don’t need to do extra work to ensure safety
* The concept of Undefined Behaviour was inherited from C

* Detecting all types of Undefined Behaviour in C++ is impossible.

What Undefined Behaviour means for you

*The C++ language cannot be learned by trial-and-error.

*Read good C++ books and reliable documentation to best learn to avoid Undefined Behaviour
* See https://isocpp.org/get-started for introductions, examples, tutorials, guidance, and books

* See https://en.cppreference.com/w/ for language and standard library documentation

S) QN

°If you write safe code to begin with, you will waste less time debugging ‘ t) 238

*Read compiler warnings and increase your compiler’s warning level
* We've already turned on extra warnings in the starter code for you

*When in doubt, write your own safety checks

https://isocpp.org/get-started
https://en.cppreference.com/w/

Avoiding
Undefined
Behaviour with
safety checks

Using the
assert () macro

Documentation:

Use assert (condition) to test your assumptions

°In debug mode, halts the program immediately with a helpful
error message if conditionis false
* Use your debugger! It will take you right to the problem!

°In release mode, does nothing.
 Useful for optimization (fast code)

* Not useful for input validation!

*Use assert to test your assumptions about your own code
and to find unrecoverable errors

*For problems that can be fixed, such as a user pressing the
wrong button, use a different error reporting mechanism
(e.g. returning error codes)

https://en.cppreference.com/w/cpp/error/assert

1 #include <iostream>

2

3

4~ int main() {

5 int x = 88;

6 l%gptr = nullptr;l

7~ or (int 1 =0; 1 < 100 && !ptr; ++i) {
8~ for (int j = @; j < 100 && !ptr; ++j) {
9~ if (i*1 + §%7 == x) {

10 |ptr = &x; |

11

12 }

13 }

14 std::cout << << std::endl;

15 return 0;

1 #include <iostream>
2 I#include <cassert>|
3

4~ int main() {

5 int x = 88;

6 int* ptr = nullptr;

7~ for (int 1 = @; i < 100 && !ptr; ++i) {

8~ for (int j = @; j < 100 && !ptr; ++j) {
9w if (i*i + j*j == x) {

10 ptr = &x;

11 }

12 }

13

14 éssert(ptr = nullptr);

15 std::cout << << std::endl;

16 return 0, —

[
HFO®OWOVWONGOUTE WNER

12
13
14
15
16
17
18
19
20
21

#include <iostream>
#include <vector>

v class A {
public:
Af) : o itons{t. 2. 3. 5. 7. 11, 13, 1Y,
v int getItem(int index){
return m_items[index];
}
private:

std::vector<int> m_items;

}s

* int main() {
auto a = A{};

std::cout << |a.getItem(9)
std::cout << |a.getItem(13

return 0;

< std::endl;
<< std::endl;

19} {}

1 #include <iostream>

2 #include <vector>

3 #include <cassert>

4

5+ class A {

6 public:

7 A() : m_items{1, 2, 3, 5, 7, 11, 13, 17, 19} {}
8~ int getItem(int index){

9 I'gsser‘t(index >= @ && index < m_items.size());
10 return m_items[index];

11 } N i i

12 private:

13 std::vector<int> m_items;

14 };

15

16 * int main() {

17 auto a = A{};

18 std::cout << a.getItem(@) << std::endl;

19 std::cout << a.getItem(13) << std::endl;

20 return 0;

1 #include <iostream>

2 #include <cmath>

3 #include <exception>

4

5~ int main() {

6 auto x = 0.0;

7 std::cin >> Xx:

8 std::cout << "x is " << x << std::endl;
9
10
11
12 std::cout << "sqgrt(x) is " << std::sqgrt(x) << std::endl;

13 return 0;

@weoNOOTUVMEAEWNE

R R RR R R
A wN R

v

|

#include <iostream>
#include <cmath>
#include <exception>

int main() {
auto x = 0.0;
std::cin >> X3
std::cout << "x is

m

<< X << std::endl;

if (x < 0.0) {

throw std::runtime_error("Oops! Please enter a non-negative number, thanks! :-)");
}
std::cout << "sqrt(x) 1s " << std::sqrt(x) << std::endl;
return 0;

-

24 ~ int main() {

25 showLoginPrompt();

26 ~ if (getUserCommand() == DatabaseAction::Drop){

27 auto uc = getUserCredentials();

28 std::cout << "LOG: " << uc << " wants to delete the database” << std::endl;
29 |assert(uc == User::Admin);

30 deleteTheEntireDatabase();

31 }

32 return 0;

33 }

24 ~ int main() {

25 showLoginPrompt();

26 ~ if (getUserCommand() == DatabaseAction::Drop){

27 auto uc = getUserCredentials();

28 std::cout << "LOG: " << uc << " wants to delete the database" << std::endl;
29 assert(uc == User::Admin);

30 deleteTheEntireDatabase();

31 }

32 return 0;

33}

24 ~ int main() {

25~
26
27 ~
28
29
30~
31
32
33
34
35~
36
37
38
39

}

try {
showLoginPrompt();

if (getUserCommand() == DatabaseAction::Drop){
auto uc = getUserCredentials();
std::cout << "LOG: " << uc << " wants to delete the database" << std::endl;
if (uc != User::Admin) {
throw AuthenticationError{};

} catch (const std::exception& e){
std::cout << "ERROR: " << e.what() << std::endl;
}

return 9,

In conclusion: &

® - C++isnotsafe ¢
- Ynaefi neq 56’/701//'01«/;'§‘“9‘i'r (‘L a
- [/ndeﬁnedge/mw-au(muwmcjvoided

~ ™= Learn before you code
- Safety checks make life better

';z f ! -

i i ’-1 . ol -
: ot -

£ . 2 b - / - — ‘ h

"

