
© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Game Play and AI

1

© Alla Sheffer, Helge Rhodin

Overview

Today:

• Making decisions (short term)

• State Machines

• Behaviour Trees

• and their implementation

Next:

• Planning (long term)

2

© Alla Sheffer, Helge Rhodin

M1 submission

don’t forget your progress report!

3

© Alla Sheffer, Helge Rhodin

Recap: Read the zoom chat

• Capture the screen

• https://github.com/smasherprog/screen_capture_lite

• Search for the zoom window

• Check for colored symbol

• red, green, gray, blue?

• only need to read a few pixels

• its fast!

• Recognize numbers?

• only 10 different ones, brute force?

4

https://github.com/smasherprog/screen_capture_lite

© Alla Sheffer, Helge Rhodin

Feature: Mouse gestures

Regression

• least squares fit

• linear, polynomial, and
other parametric functions

Search

• brute force?

• binary search?

Detection

• key events

• pattern matching

5

t

velocity

© Alla Sheffer, Helge Rhodin

Feature: Level Loading with JSON

Libraries:

• https://sourceforge.net/projects/libjson/

• https://github.com/nlohmann/jso

• others?

6

https://sourceforge.net/projects/libjson/
https://github.com/nlohmann/jso

© Alla Sheffer, Helge Rhodin

Loading Entities and Components

7

“entities": [
{
"position": {
"x": -1.7193701,
"y": -0.09165986

},
"velocity": {
"x": 0,
"y": 0

},
"color": {
"x": 0.453125,
"y": 0.453125,
"z": 0.453125

},
"type": “Water Animal"

},

{
"position": {
"x": 2.2221813,
"y": -1.2671415

},
"velocity": {
"x": 0,
"y": 1

},
"radius": 0.9300000000000006,
"color": {
"x": 0.40625,
"y": 0.40625,
"z": 0.40625

},
"type": ”Land Animal”

}
]

• Outer list of entities

• Inner list of components

• Create a factory that

instantiates each

component type

• Equip components with

toJSON(…) and

fromJSON(…) functions

© Alla Sheffer, Helge Rhodin

Factory from JSON

Factory:

8

void ComponentfromJson(Entity e, JsonObject json)
{
if(str1.compare(“Motion") != 0) {

Motion& motion = Motion::fromJson(json);
registry->insert(e, motion);

}
else if(str1.compare(“Salmon") != 0)

Motion& component = Motion::fromJson(json);
registry->insert(e, component);

}
…

}

Issues?

© Alla Sheffer, Helge Rhodin

Component from JSON

Component to/from:

9

class Vector2D
{

float x,y;
public:
JsonObject toJson()
{

JsonObject json = Json.object();
json.add("x", x);
json.add("y", y);
return json;

}

static Vector2D fromJson(JsonObject json)
{

double x = json.getFloat("x", 0.0f);
double y = json.getFloat("y", 0.0f);
return Vector2D(x,y);

}
}

© Alla Sheffer, Helge Rhodin

Feature: Normal maps

A way to fake 3D details

10

© Alla Sheffer, Helge Rhodin

Perfect for illumination in 2D games

11

• What do you observe?

© Alla Sheffer, Helge Rhodin

How to implement?

Either:

1. Include shading into every shader

• Load and sample from RGB texture

• Load and sample from normal map (the new aspect)

• Compute shading

2. Two-pass rendering

• Render color in one pass

• Render the normal in a second pass

• Compute shading in a separate pass, as for the water shader

12

© Alla Sheffer, Helge Rhodin

Shading equation?

• Single light source:

• Dot product of normal and light direction

• Light direction: computed from light source (L) and pixel location (x)

• Normal direction: load from normal map

color = texture(x) * dot(normal(x), normalized(x-L))

• Multiple light sources? Specular highlights?

13

© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

State machines

14

© Alla Sheffer, Helge Rhodin

Gameplay

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

© Alla Sheffer, Helge Rhodin

Finite State Machines: States + Transitions

© Alla Sheffer, Helge Rhodin

FSM Example: Pac-Man Ghosts

© Alla Sheffer, Helge Rhodin

FSM Example: Pac-Man Ghosts

Wander Maze

Chase Pac-Man

Return to Base

Flee Pac-Man

P
a
c

-M
a
n

 L
o

s
t

P
a
c

-M
a
n

 S
e
e
n

G
h

o
s
t A

tta
c

k
e
d

Pac-Man

Eats

Power

Pellet

© Alla Sheffer, Helge Rhodin

Ghost AI in PAC-MAN

Is the AI for Pac-Man basic?

• chase or run.

• binary state machine?

• Toru Iwatani, designer of Pac-Man explained:
“wanted each ghostly enemy to have a specific character and
its own particular movements, so they weren’t all just chasing
after Pac-Man... which would have been tiresome and flat.”

• the four ghosts have four different behaviors

• different target points in relation to Pac-Man or the maze

• attack phases increase with player progress

• More details: http://tinyurl.com/238l7km
19

© Alla Sheffer, Helge Rhodin

Finite State Machines (FSMs)

• Each frame:

• Something (the player, an enemy) does something in its state

• It checks if it needs to transition to a new state

• If so, it does so for the next iteration

• If not, it stays in the same state

• Applications

• Managing input

• Managing player state

• Simple AI for entities / objects / monsters etc.

© Alla Sheffer, Helge Rhodin

FSMs: States + Transitions

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

© Alla Sheffer, Helge Rhodin

FSMs: Failure to Scale

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

No way to do long-term planning

No way to ask “How do I get here
from there?”

No way to reason about long-term
goals

FSMs can get large and hard to
follow

Can’t generalize for larger games

© Alla Sheffer, Helge Rhodin

Behaviour Trees:

How To Simulate Your Dragon

Start!

Guard Treasure Get More Treasure Post Selfies To Facebook

Make thief flee!

Fly to Castle!
Is there a thief?

Treasure light enough to get home?

Steal treasure!

Take treasure home!

Condition Node

Instruction Node

© Alla Sheffer, Helge Rhodin

Start!

Is there a thief?

No! 40 miles later

Fly to castle! Can I take it home?
Steal treasure!

Success

(runs until complete)

© Alla Sheffer, Helge Rhodin

Behaviour Trees:

How To Simulate Your Dragon

Start!

Guard Treasure Get More Treasure Post Selfies To Facebook

Make thief flee!

Fly to Castle!
Is there a thief?

Treasure light enough to get home?

Steal treasure!

Take treasure home!

Condition Node

Instruction Node

© Alla Sheffer, Helge Rhodin

Behaviour Trees

• flow of decision making of an AI agent

• tree structured

• Each frame:

• Visit nodes from root to leaves

• depth-first order

• check currently running node

• succeeds or fails:

• return to parent node and evaluate its Success/Failure

• the parent may call new branches in sequence or return Success/Failure

• continues running: recursively return Running till root (usually)

© Alla Sheffer, Helge Rhodin

Behaviour Tree Elements

• leaves, are the actual commands that control the AI entity

• upon tick, return: Success, Failure, or Running

• branches are utility nodes that control the AI’s walk down the tree

• loop through leaves: first to last or random

• inverter: turn Failure -> Success

• to reach the sequences of commands best suited to the situation

• trees can be extremely deep

• nodes calling sub-trees of reusable functions

• libraries of behaviours chained together
27

© Alla Sheffer, Helge Rhodin

Schematic examples

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2

21339/Behavior_trees_for_AI_How_they_work.php

© Alla Sheffer, Helge Rhodin

Types

Decorator

Composite

Composite

Composite

Leaf

© Alla Sheffer, Helge Rhodin

Behaviour Tree Elements

Leaf node

• A custom function, does the actual work

• Returns Running/Success/Failure

Decorator node

• has a single child

• Passes on Running/Success/Failure from child

• may invert Success/Failure

Composite node

• has one or more children

• returns ‘Running’ until children stopped running
30

© Alla Sheffer, Helge Rhodin

Useful Composites

Sequence

• execute all children in order

• Success if all children succeed (= AND)

Selector

• execute all children in order

• return Success if any child succeeded (= OR)

Random Selectors / Sequences

• Randomized order of above composites

31

© Alla Sheffer, Helge Rhodin

Useful Decorators

Inverter

• Negates success/failure

Succeeder

• always returns success

Repeater

• Repeat child N times

Repeat Until Fail

• Repeat until child fails

32

return “Success”;

?

N

© Alla Sheffer, Helge Rhodin

Leaf Nodes

Functionality

• init(…)

• Called by parent to initialize

• Sets state to Running

• Not called gain before returning
Success/Failure

• process()

• Called every frame/tick the node is
running

• Does internal processing, interacts with
the world

• Returns Running/Success/Failure

Example: Walk to goal location

• Sets goal position for
path finding

• Computes shortest path

• Sets character velocity

• Returns
- success: Reached destination
- failure: No path found
- running: En route34

© Alla Sheffer, Helge Rhodin

Early exit?

• All parents of the currently
running leaf node are
running too

• A node early in the tree can
return Success/Failure

• Terminates children implicitly

• Trying again?

• Re-initialize children with new
parameters to init(…)

Example

• upon alarm

• abort sleeping

• init running node

• try to sleep if alarm is off

• init sleeping node

35

Running

Running

Running

© Alla Sheffer, Helge Rhodin

Implementation example

Basics: An if condition (inflexible)

36

© Alla Sheffer, Helge Rhodin

Implementation example II

A leaf node

37

© Alla Sheffer, Helge Rhodin

Behaviour Trees are Modular!

• Can re-use behaviours for different purposes

• Can implement a behaviour as a smaller FSM

• Can be data-driven (loaded from a file, not hard coded)

• JSON?!

• Can easily be constructed by non-programmers

• Can be used for goal based programming

