CPSC 427
Video Game Programming

Game Play and Al

READY’F

Helge Rhodin

© Alla Sheffer, Helge Rhodin

Overview

Today:
 Making decisions (short term)
« State Machines

 Behaviour Trees
« and their implementation

Next:
* Planning (long term)

© Alla Sheffer, Helge Rhodin

M1 submission
don’t forget your progress report!

© Alla Sheffer, Helge Rhodin

Recap: Read the zoom chat

« Capture the screen
« https://github.com/smasherprog/screen capture lite

e Search for the zoom window

Participants (2)

* Check for colored symbol ol .
* red, green, , blue?
* only need to read a few pixels
 its fast! °© 000 0 ¢
« Recognize numbers? e

« only 10 different ones, brute force? |

Invite

Chat

© Alla Sheffer, Helge Rhodin

https://github.com/smasherprog/screen_capture_lite

Feature: Mouse gestures

Regression
- least squares fit Hn

* linear, polynomial, and
other parametric functions

Search
 Dbrute force?
* binary search?

Detection
* key events
e pattern matching t

rvelocity

© Alla Sheffer, Helge Rhodin

Feature: Level Loading with JSON

Libraries:
 https://[sourceforge.net/projects/libjson/

 https://github.com/nlohmann/|so
e others?

© Alla Sheffer, Helge Rhodin

https://sourceforge.net/projects/libjson/
https://github.com/nlohmann/jso

Loading Entities and Components

Outer list of entities
Inner list of components

Create a factory that
Instantiates each
component type

Equip components with
toJSON(...) and
fromJSON(...) functions

“entities": [
{

"position": {
"x": -1.7193701,
"y": -0.09165986

}s

"velocity": {
llxll : e)

"y": ©

}s

"color": {
"X": 0.453125,
"y": ©.453125,
"z": 0.453125

}s
"type": “Water Animal"

}s

}

"position": {
"x": 2.2221813,
"y": -1.2671415

}s
"velocity": {
"x": 0,
"y'o 1
}s
"radius”: 0.9300000000000006,
"color": {
"X": 0.40625,
"y": 0.40625,
"z": 0.40625
}s

"type": ”Land Animal”

© Alla Sheffer, Helge Rhodin

Factory from JSON

Factory:

void ComponentfromJson(Entity e, JsonObject json)

{
if(strl.compare(“Motion") != @) {
Motion& motion = Motion::fromJson(json);
registry->insert(e, motion);

}

else if(strl.compare(“Salmon") != Q)
Motion& component = Motion::fromJson(json);
registry->insert(e, component);

Issues?

© Alla Sheffer, Helge Rhodin

Component from JSON

Component to/from:

class Vector2D

{
float x,y;
public:
JsonObject toJson()
{
JsonObject json = Json.object();
json.add("x", x);
json.add("y", y);
return json;
}
static Vector2D fromJson(JsonObject json)
{
double x = json.getFloat("x", 0.0f);
double y = json.getFloat("y", 0.0f);
return Vector2D(x,y);
}
}

© Alla Sheffer, Helge Rhodin

10

Feature: Normal maps
A way to fake 3D detalils

© Alla Sheffer, Helge Rhodin

Perfect for illumination in 2D games

« What do you observe?

© Alla Sheffer, Helge Rhodin

How to implement?

Either:

1. Include shading into every shader

* Load and sample from RGB texture

« Load and sample from normal map (the new aspect)
« Compute shading

2. Two-pass rendering

 Render color in one pass

* Render the normal in a second pass

« Compute shading in a separate pass, as for the water shader

© Alla Sheffer, Helge Rhodin

13

Shading equation?

cos(B8)=N.L

« Single light source:

* Dot product of normal and light direction
« Light direction: computed from light source (L) and pixel location (x)

 Normal direction: load from normal map dL dA

color = texture(x) * dot(normal(x), normalized(x-L))

« Multiple light sources? Specular highlights?

© Alla Sheffer, Helge Rhodin

CPSC 427
Video Game Programming

State machines

READY’F

Helge Rhodin

© Alla Sheffer, Helge Rhodin

Gameplay

('walking && wantToWalk)

PlayAnim(StartAnim) ;
walking =

(IsPlaying(StartAnim) && IsAtEndOfAnim()

PlayAnim(WalkLoopAnim) ;

(walking && !wantToWalk)

PlayAnim(StopAnim) ;
walking = ‘

From http://twvideoOl.ubm-us.net/ol/vault/gdc2016/Presentations/Clavet_Simon_MotionMatchingug@heffer, Helge Rhodin

Finite State Machines: States + Transitions

o . P:rmmwe |
&Leaseo }55 _
(B ?zésS@ I
PUCLK NG el ' \}UN'%
Kess@

IVIN 6 \‘/

© Alla Sheffer, Helge Rhodin

FSM Example: Pac-Man Ghosts

READY’F

© Alla Sheffer, Helge Rhodin

FSM Example: Pac-Man Ghosts

Wander Maze

.
>

1S07 UeN-2ed
uU29S UBN-2ed

Chase Pac-Man

Return to Base

poyoeNY 1S0UD

Pac-Man
Eats
Power

Flee Pac-Man

Pellet

READYF

© Alla Sheffer, Helge Rhodin

Ghost Al in PAC-MAN

Is the Al for Pac-Man basic?
 chase or run.
* Dbinary state machine?

* Toru lwatani, designer of Pac-Man explained:
“wanted each ghostly enemy to have a specific character and
its own particular movements, so they weren't all just chasing
after Pac-Man... which would have been tiresome and flat.”

» the four ghosts have four different behaviors
« different target points in relation to Pac-Man or the maze
« attack phases increase with player progress
« More detalils: http://tinyurl.com/238|7km

© Alla Sheffer, Helge Rhodin

Finite State Machines (FSMs)

Each frame:

Something (the player, an enemy) does something in its state
It checks If it needs to transition to a new state

* |f so, it does so for the next iteration

» If not, It stays in the same state

* Applications

Managing input
Managing player state
Simple Al for entities / objects / monsters etc.

© Alla Sheffer, Helge Rhodin

FSMs: States + Transitions

3
.
i
b
L
.
s
*
-

From http://twvideoOl.ubm-us.net/ol/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf © Alla Sheffer, Helge Rhodin

FSMs: Faillure to Scale

No way to do long-term planning

No way to ask “How do | get here
from there?”

No way fto reason about long-term
goals

\?g{)\}/ |
LN
‘ FSMs can get farge and hard to

ST rollow
S S Can’t generalize for larger games

B RPN

From http://twvideoOl.ubm-us.net/o1l/vault/gdc2016/Presentations/Clavet Simon MotionMatchi@d!p gfeffer, Helge Rhodin

Behaviour Trees:

How To Simulate Your Dragon

P

Start!

Guard Treasure

Get More Treasure

Post Selfies To Facebook

» |s there a thief?

Make thief flee!

: Condition Node

Instruction Node

Fly to Castle!

Steal treasure!

s

.

» Treasure light enough to get home?

~\

J

1 Take treasure home!

© Alla Sheffer, Helge Rhodin

Start!

Is there a thief? Fly to castle! Can | take it home2

Steal treasure!

(runs until complete)

© Alla Sheffer, Helge Rhodin

Behaviour Trees

How To Simulate Your Dragon

Start!

Guard Treasure

Get More Treasure

Post Selfies To Facebook

|

» |s there a thief?

Make thief flee!

: Condition Node

Instruction Node

/ > ly to Castle!

Sieal treasure!

s

.

» Treasure light enough to get home?

~\

J

1 Take treasure home!

© Alla Sheffer, Helge Rhodin

Behaviour Trees

» flow of decision making of an Al agent

tree structured
EaCh -ﬁame: Walk to Door

Visit nodes from root to leaves

Seqguence

— <

\

Selector

allc through Doaor

Close Door

depth-first order
check currently running node

succeeds or falls:

Open Door \|“Smash Door

return to parent node and evaluate its Success/Failure
the parent may call new branches in sequence or return Success/Failure
continues running: recursively return Running till root (usually)

© Alla Sheffer, Helge Rhodin

27

Behaviour Tree Elements

leaves, are the actual commands that control the AI entity

« upon tick, return: Success, Failure, or Running

branches are utility nodes that control the AI’'s walk down the tree
* loop through leaves: first to last or random

 inverter: turn Failure -> Success

« toreach the sequences of commands best suited to the situation

trees can be extremely deep
* nodes calling sub-trees of reusable functions
 libraries of behaviours chained together

© Alla Sheffer, Helge Rhodin

Schematic examples

—

Sequence

Y N

Wallc to Doar Selector Wallc through Doar Close Door
Cpen Door Sequence smash Doar
LInlock Doar Cpen Door

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2
21339/Behavior_trees_for_ Al How they work.php

© Alla Sheffer, Helge Rhodin

Types

Composite

Leaf

Y

Decorator

Leaf

Y

Leaf

Sequence COmpOSIte
/ Y
GetDoorStackFromBuilding LIntil Fail Inverter
Y Y
Sequence lsMull (usedDoar)

RN

PopFromStack (door)

Inverter

Composite

mpasite N,

Wallk (door)

Qpen (door)

Y

Sequence

Decorator

Selector

Walk thru (door)

Succeeder

Setvariable (door,usedDoor)

Y

Lnlock (doaor)

Smash (door)

Y

Close (door)

L eaf

© Alla Sheffer, Helge Rhodin

Behaviour Tree Elements

Leaf node

A custom function, does the actual work
* Returns Running/Success/Failure
Decorator node .

* has a single child Untl Eai

* Passes on Running/Success/Failure from child i
* may invert Success/Failure

Composite node Sequence

* has one or more children v T

_* returns ‘Running’ until children stopped running

- ¥

Open (door) Linlock (door)

© Alla Sheffer, Helge Rhodin

Useful Composites

Seguence
« execute all children in order
 Success if all children succeed (= AND)

Selector
« execute all children in order

* return Success If any child succeeded (= OR)

Random Selectors / Sequences

Sequence

— N

Walk to Door

\

Open Door

 Randomized order of above composites

Wall through Door Close Door

Selector

Y

Y
Open (door) lJ

nlock (doo

r) Smash (door)

© Alla Sheffer, Helge Rhodin

Useful Decorators

Inverter

* Negates success/failure
Succeeder

» always returns success
Repeater

* Repeat child N times
Repeat Until Fall

* Repeat until child fails

© Alla Sheffer, Helge Rhodin

Leaf Nodes

Functionality

* Init(...)
« Called by parent to initialize

e Sets state to Running

« Not called gain before returning
Success/Failure

 process()

 Called every framef/tick the node is
running

 Does internal processing, interacts with
the world

 Returns Running/Success/Failure

34

Example: Walk to goal location

« Sets goal position for
path finding

« Computes shortest path
« Sets character velocity

e Returns
- success: Reached destination
- failure: No path found
- runnlng En rOUte © Alla Sheffer, Helge Rhodin

35

Early exit?

All parents of the currently
running leaf node are
running too

A node early in the tree can
return Success/Failure

« Terminates children implicitly

Trying again?

e Re-initialize children with new
parameters to init(...)

Example oooooo TRUNNINg

ooooooooo

RuraAig
Y

ROm1iNg

 upon alarm
« abort sleeping
* Init running node

« try to sleep if alarm is off
* Init sleeping node

© Alla Sheffer, Helge Rhodin

Implementation example

Basics: An if condition (inflexible)

// A general decorator with lambda condition

{// The return type of behaviour tree processing class BTIfCondition : public BTNode
enum class BTState { i
Running, public:
Success, BTIfCondition(BTNode* child)
Failure : m_child(child) {
¥ ¥
virtual void init(Entity e) override {
/f The base class representing any node in our behaviour tree m_child->init(e);
Jclass BTNode { h
public:
virtual veoid init(Entity e) {}; virtual BTState process(Entity e) override {
if (registry.motions.has(e)) // hardocded
virtual BTState process(Entity e) = @; return m_child->process(e);
¥; else
return BTState::S5uccess;
¥
private:

BTNode* m_child;
¥s

© Alla Sheffer, Helge Rhodin

37

Implementation example I

A leaf node

class TurnAround : public BTNode {
private:
void init(Entity e) override {

¥

BTState process(Entity e) override {
// modify world
autof vel = registry.motions.get(e).velocity;
vel = -vel;

[/ return progress
return BTState::Success;

¥;

© Alla Sheffer, Helge Rhodin

Behaviour Trees are Modular!

Can re-use behaviours for different purposes

Can implement a behaviour as a smaller FSM

Can be data-driven (loaded from a file, not hard coded)
JSON?!

Can easily be constructed by non-programmers

Can be used for goal based programming

© Alla Sheffer, Helge Rhodin

