

CPSC 427 Video Game Programming

Human Computer Interaction and User Experience

Helge Rhodin

Designing for People (DFP)

https://dfp.ubc.ca/

Laura Ballav

Electrical & Computer Engineering

Julia Bullard

Jillianne Code

Karon MacLean Computer Science

111 Jocelyn McKay Joanna McGrenere Computer Science DFP Staff

Eric Meyers

Cristina Conati Computer Science

Engineering

Ian Mitchell Computer Science

Robert Xiao

Antony Hodgson Mechanical Engineering

Liisa Holsti Suzanne Huot Occupational Science &

Rachel Pottinger Computer Science

Architecture

Luanne Sinnamon (prev. Freund)

2

Nursing

Alan Kingstone

Helge Rhodin

Blair Satterfield Architecture & Landscape

Computer Science

Zahra Fatemi DFP Staff

What are HCI & UX?

- Human Computer Interaction (HCI)
 - Research in designing & understanding the way humans and technology interact
- User Experience (UX)
 - **Perception** of a particular product, system or service
- Part of user-centered design

Even Big Companies Get UX Wrong

Easy & expensive to get UX wrong

Google Glass failed in the market because it wasn't clear why people should need it

and the privacy issue...

Connection to Game Design

Impact of design on ease of use & engagement

In Wind Waker, the direction Link looked indicated to the player something of interest was there

Design applications & philosophies are interconnected

How do HCI and UX Connect to Game Design?

 Poor UX design can prevent players from experiencing games as intended

For example, having to follow in-game characters with different walk speeds than your characters

Game Design Philosophy

- User-centered game design = Put players needs first
- Make play easy (& fun)
- Good design is often invisible
 - How to play is subtly implied

Design Concepts

- Design concepts: Basic ideas that help us understand & design what's happening in a user interface
- Norman's Design Concepts:
 - Affordances
 Constraints
 - Mapping Visibility
 - Feedback
 Consistency

Affordances

- Affordance is a physical characteristic that suggests function
 - i.e. inviting interaction/use
- Chairs afford sitting, but so do tables, boxes, and floors

Example of Affordances in Games

Example of Affordances in Games

- What does the slingshot afford here?
- What do the blocks afford?
- What does the (pause) button afford?

Mapping

- Some controls are direct (slingshot), some indirect (button)
- Mapping is the relationship between look/feel of indirect controls & their implied actions

Mapping Example

• Which is better?

Mapping Example

Natural mapping minimizes the need for labeling relationships

Mapping Example in Games

Feedback

- Feedback: response to action
- The color changes to inform us a connection has been made
- The sound of a 'click' tells us if it connected to the port

Feedback in Games

• Feedback in games is continuous

• Visual

- interaction between sprites
- Sound
 - music on defeat
- Touch
 - controller vibrating

Design Principles Example in Games

- Affordances?
- Mappings?
- Feedback?

Design Principles

- Affordances
- Mapping
- Feedback

Users

- Who are the players?
 - Age: Children, adults, university students
 - Culture
- Where will they be playing?
 - Commuting, at home, remotely
- What do they need or want?
 - Fulfilling plot, relaxing play

Examples

Easy 00:13 9 2 8 1 4 7 4 2 5 8 4 5 3 8 9 2 6 1 5 7 8 9 2 6 1 5 7 8 9 2 8 9 6 7 4 5 2 8 1 8 4 1 7 5 5 6 7 4 5 5 7 9 8 4 5 5 6 9 4 8 3 2 5 6 9 4 5 5		÷								12::	
9 2 8 1 4 4 7 4 2 5 8 9 2 6 4 5 3 8 9 2 6 1 5 7 6 6 6 9 6 7 4 5 2 8 1 8 4 1 7 5 7 5 5 5 7 9 8 4 5 7 5 5 6 9 4 8 4 1 8 4 5	Ea	sy									
7 4 2 5 8 4 5 3 8 9 2 6 1 5 7 \cdot \cdot \cdot \cdot \cdot 9 6 7 4 5 2 8 1 8 4 1 \cdot 7 5 5 7 9 8 4 5 \cdot \cdot 8 3 2 5 6 9 4 5 4 1 1 8 2 $undo$ exe exe exe exe exe	-		2	8			1		4		7
4 5 3 8 9 2 6 1 5 7 - - 6 - 9 6 7 4 5 2 8 1 8 4 1 - 7 5 7 9 8 4 5 - 8 3 2 5 6 9 4 5 4 1 1 8 2 2 Undo Erase Notes Hint - -	_				4	2				8	
1 5 7 6 6 9 6 7 4 5 2 8 1 8 4 1 7 5 5 5 5 7 9 8 4 5 5 5 8 3 2 5 6 9 4 5 4 1 8 2 2 Undo Erase Notes Hint	_	-		5	3		8	9			
9 6 7 4 5 2 8 1 8 4 1 7 5 7 9 8 4 5 5 8 3 2 5 6 9 4 5 4 1 8 2 2 undo Erase Notes Hint	1		5	7					-	•	$\ $
8 4 1 7 5 7 9 8 4 5 5 8 3 2 5 6 9 4 5 4 1 8 2 Vindo			9	6	7	4	5	2		1	
7 9 8 4 5 8 3 2 5 6 9 4 5 4 1 8 2 Undo Erase			8	4	1			7			
8 3 2 5 6 9 4 5 4 1 8 2 Undo			7		9	8	4			-	
5 4 1 8 2 Undo Erase OFF	8		3		2	5			9	4	
Undo Erase Notes Hint	5	1	4			1					1
	U	nde		Er	ase		Notes		Hint	9	

- Who is this game designed for?
- (A) children
- (B) adults
- (C) elderly
- (D) all ages

Why does it matter?

.... Design choices...

Examples

 Who is this game designed for?

Examples

Who is this game designed for?
(A) children
(B) adults
(C) elderly
(D) all ages

Why does it matter?

UBC

Examples

What do the players of this game want?
(A) fast-paced action
(B) relaxing play
(C) rich environments
(D) other

other

What Motivates Users?

- Work has been done to identify player types
- Users can be classified by preference for interacting/acting with/on others/the world
- The four classifications tell us what motivates each player type

Think:

• Who is your game designed for (demographics/type)?

• What do the players of your game want?

• (How is your game going to stand out?)

The Design Process

Low Fidelity Prototyping

- Used for early stages of design
 - Quick & cheap to deploy
 - Easy to test
- Iterate on story and core gameplay mechanics

 Sketches are a great way to start designing

Testing Low Fidelity Prototypes

- Don't commit to one approach, design a few prototypes & compare
- Invite someone to try them out
- Try to drill down on feedback
 If they just say it's "fun", ask why?

Fail Early, Fail Often, and Iterate on Feedback

- Designing something that people will use is both an art & a science
 - Iteration is how you make it better
- Early feedback ensures design meets users' needs
- Throwing around ideas is quick
 - Fixing a bad design is expensive
- No idea is perfect the first time around

Medium Fidelity Prototyping

- Use medium fidelity prototyping for the early to middle stages of design
 - Identify questions before coding
 - Be selective with what gets built
 - Get it right in black and white first
- Iterate on tone & feel of game
 - Supplementary game mechanics
 - Rough visuals & audio
 - Feedback

Greyboxing

Greyboxing blocks out all elements as shapes to test gameplay

High Fidelity Prototyping

- High fidelity prototyping happens during the late stages of design
 - Alpha & beta releases
 - Polish artwork
 - Perform playtesting
 - Fix bugs
 - Release
- Fine tuning before release

Technical Designs

The Light Gun

Classic: NES Zapper

The Light Gun (first glance)

Principle I: Black&white target

Normal frame

Flash

https://mag.mo5.com/actu/101495/une-solutionpour-utiliser-les-light-guns-sur-les-tv-modernes/

The Light Gun

- the sensor (single-pixel-camera) is in the gun,
- receive light from the on-screen targets,
- flash the screen, and ???

Principle II: Timing on Cathode Ray Tube (CRT) displays

39

Read the zoom chat?

https://github.com/tesseract-ocr/tesseract

- does optical character recognition
- works with c++
- works on windows and linux (not sure about mac)
- might be too slow?!

How to apply tesseract on a screen capture (zoom)?

 https://stackoverflow.com/questions/22924209/how-tomake-tesseract-ocr-read-from-coordinates-on-a-screen

Can we exploit the Zoom window?

• Multi player?

~		Partic	ipants (2)		
H	Helge (Host	, me)			<i>%</i> ₁ ⊄1
С	Client (Gues	t)		0	3 🖉 📈
♥ yes	no Invite		y go faster Mute All Chat	more 	clear all
huhu Left Right 1 2					
_	veryone ~ nessage here	2		C) F	ile

Read the zoom chat (hacks)

- Capture the screen
 - <u>https://github.com/smasherprog/screen_capture_lite</u>
- Search for the zoom window
- Check for colored symbol
- red, green, gray, blue?
 - only need to read a few pixels
 - its fast!
- Recognize numbers?
 - only 10 different ones, brute force?

 Participants (2) 		 Participants (2) 			
H Helge (Host, me)	<i>%</i>	H Helge (Host, me)	<i>%</i> _₹ ⊄1		
C Client (Guest)	oo 🖉 🖓	C Client (Guest)	🕰 🎍 🖸		
yes no go slower go faster Invite Mute All V Chat From Client to Everyone: huhu Left Right 1 2	ere elear all	yes no go slower go faster Invite Mute All V Chat From Client to Everyone: huhu Left Right 1 2	ere clear all		

Mouse gestures

Regression

- least squares fit
- linear, polynomial, and other parametric functions

Search

- brute force?
- binary search?

Detection

- key events
- pattern matching

velocity

Mouse gesture detection

- 1. Determine start and end time, i.e. store all mouse curser positions in a vector.
- 2. Resample your vector to have a fixed number of elements (e.g., N=20). This is done to gain invariance to different drawing/sampling speeds.
- 3. Subtract the start point (or the mean of the curve) as reference point. Yields translation invariance, it should not matter where on the screen you draw.
- 4. If you want scale invariance (detect small and big circles), divide all points by the maximum or mean position of all points (you need to try what is better)
- 5. Compare this normalized curve to a reference curve (you drawing the pattern once for reference and saving the points) that was processed with 1-4. The comparison metric could simply be the distance between the N points in the reference and new curve (after all the normalizations).

Debugging: Plot the curve after every processing step, e.g., save as .csv and plot in excel (to save you from coding a graph plotter)

http://depts.washington.edu/acelab/proj/ dollar/index.html