
© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

ECS is used in Minecraft and many other commercial games

Entity Component System (ECS)

1

© Alla Sheffer, Helge Rhodin

What are Entities?

• Entities: things that exist in your game world

BGM

2

© Alla Sheffer, Helge Rhodin

Entities in Traditional Game Programming

• Object-Oriented Programming

• Entities as objects

• Contains data, behaviors, etc.

• Entity Hierarchy: Entities extend other Entities

3

© Alla Sheffer, Helge Rhodin

Entity Hierarchy (object oriented design)

4

© Alla Sheffer, Helge Rhodin

Issues with Object-Oriented Approach

What if we want Mario to

be able to be squished?

5

© Alla Sheffer, Helge Rhodin

Issues with Object-Oriented Approach

• Difficult to add new

behaviors

• Choice between

replicating code or

• MONSTER SIZE parent

classes

Both options aren’t

ideal for big

games!

6

© Alla Sheffer, Helge Rhodin

Example ECS Diagram

Goomba is now

separated from its data

& methods

7

© Alla Sheffer, Helge Rhodin

Example ECS Diagram

Now what if we want

Mario to be able to be

squished?

8

© Alla Sheffer, Helge Rhodin

Example ECS Diagram

We can give Mario a

Physics Component to

make him squishable.

9

© Alla Sheffer, Helge Rhodin

Example ECS Diagram

What would happen to

Mario here?

10

© Alla Sheffer, Helge Rhodin

What is ECS?

• Alternative to object-oriented programming

• Data is self-contained & modular

• Similar concept to building blocks

• Entities no longer “own” data

• Entities pick & choose

11

© Alla Sheffer, Helge Rhodin

What is ECS?

• Entities actions determined only by their data

• Update loop doesn’t need references to Entities

• Systems search for Entities with right parts (data) & update

• For Mario to move he needs a position & velocity

12

© Alla Sheffer, Helge Rhodin

What is ECS?

• Composition over hierarchy

• Entities are collections of Components

• Components contain game data

• Position, velocity, input, etc.

• Systems are collections of actions

• Render system, motion system, etc.

13

© Alla Sheffer, Helge Rhodin

Component

• Contains only game data

• Describes one aspect of an Entity

– ex. a trumpet Entity will likely have an audio Component

14

© Alla Sheffer, Helge Rhodin

Component

• Typically implemented with structs.

15

© Alla Sheffer, Helge Rhodin

What Components to Make?

• What Components would we give to the following Entities?

16

© Alla Sheffer, Helge Rhodin

Components

• Easy to add new Entity characteristics

– Just create the desired Component & give to Entity

How do we change our

playable hero from

Mario to Luigi?

17

© Alla Sheffer, Helge Rhodin

Components

• Empty Components can be used to tag Entities

18

Empty components are useful, a flag indicating an ability!

© Alla Sheffer, Helge Rhodin

Components

• Empty Components can be used to tag Entities

Now Luigi can be

identified as the active

player

19

© Alla Sheffer, Helge Rhodin

Systems

• Groups of Components describe behavior/action

– ex. bounding box, position & velocity describe collisions

• Systems code behaviors/actions

• Operate on Entities with related groups of components

– Related: describe same (type of) behavior/action

– ex. render all Entities with sprite & position

• Entity behavior can be dynamic

– Add/remove components on the fly

20

© Alla Sheffer, Helge Rhodin

System Example

• What systems might these related groups of components

describe?

21

© Alla Sheffer, Helge Rhodin

System Example

• What systems might these related groups of components

describe?

Enemy Motion System Player Motion System

22

© Alla Sheffer, Helge Rhodin

System Examples

23

for(int entity : velocity_entities)

if (position_entities.has(entity))

position_components.get(entity)+= velocity_components.get(entity);

for(Velocity& velocity : velocity_components)

velocity += 9.81 * dt

Physics System

Motion System

… iterates over all components of type velocity

… iterates over all entities that have velocity and position

The physics system does not

care about entities at all!

Need to know all entities that have component X

Need to retrieve a component X from an entity

Game loop
Entity player;

if(! alive_entities.has(player)) exit();
Single boolean check

© Alla Sheffer, Helge Rhodin

ECS implementations

24

© Alla Sheffer, Helge Rhodin

Memory & ECS

Where do we store our Components?

• RAM, harddrive, or chache?

• Inside Systems?

• Better, but could be improved

• Different Systems may need the same Component types

• How do we decide who owns what?

• Messaging can get overly complex between systems

25

© Alla Sheffer, Helge Rhodin

Problem: associating entities and components

26

Mario

Luigi

Goomba1

Goomba2

P
o
s
it
io

n

V
e
lo

c
it
y

J
u
m

p
s

P
la

y
e
r

S
q
u
is

h
a
b
le

Object-oriented-programming (OOP)?

ECS = containers of components?

© Alla Sheffer, Helge Rhodin

Memory & ECS

Where do we store our Components?

• Inside Entities?

position

collision

sprite

velocity

Update loop has to

access non-contiguous

memory repeatedly!

Memory Blocks27

Slow memory access!

© Alla Sheffer, Helge Rhodin

The Map Approach

(entity ID to component address)

28

Mario

Luigi

Goomba1

Goomba2

P
o
s
it
io

n

J
u
m

p
s

S
q
u
is

h
a
b
le

Mario

Luigi

1

2

ID

1

3

ID

Concept: A (hierarchical) acceleration structure to lookup components

Implementation: std:map<Entity,Position>

© Alla Sheffer, Helge Rhodin

Memory & ECS

Where do we store our Components?

• In a map?

position

collision

sprite

velocity

Update loop has to

access non-contiguous

memory repeatedly!

Memory Blocks

Slow memory access!

29

© Alla Sheffer, Helge Rhodin

The (giant) Sparse Array

30

Mario

Luigi

Goomba1

Goomba2

P
o
s
it
io

n

V
e

lo
c
it
y

J
u
m

p
s

P
la

y
e
r

S
q
u
is

h
a
b
le

Issues?

1

2

ID

Concept: A huge data matrix of size Nr. Entities x Nr. components

Implementation: std:vector<Position>; std:vector<Velocity>

© Alla Sheffer, Helge Rhodin

Memory & ECS

Where do we store our Components?

• Array with holes?

position

collision

sprite

velocity

Better cache utilization!

Memory Blocks

Not memory efficient!

31

© Alla Sheffer, Helge Rhodin

Bitset / Bitmap

32

Mario

Luigi

Goomba1

Goomba2
P

o
s
it
io

n

V
e
lo

c
it
y

J
u
m

p
s

P
la

y
e
r

S
q
u
is

h
a
b
le

Issues?

1

2

3

4

ID B
it
s
e
t/
b
it
m

a
p

11110

11001

Concept: Each entity has a bitset that is true for its ‘owned’ components

Implementation: long bitset; // how many components can we support?

If(bitset & query == query) // has the entity all query components?

© Alla Sheffer, Helge Rhodin

Key & Lock Metaphor

p
o

s
itio

n

Unique Entity IDEntity

v
e
lo

c
ity

s
p

rite

h
e
a
lth

p
o

s
itio

n

v
e
lo

c
ity

delta time
calculations

Motion System
Systems will only operate

on Entities with the required

Components
33

© Alla Sheffer, Helge Rhodin

Further Improvements

34

© Alla Sheffer, Helge Rhodin

Dense Component Vectors

(an attempt, needs more)

35

Mario

Luigi

Goomba1

Goomba2

P
o
s
it
io

n

V
e

lo
c
it
y

J
u
m

p
s

P
la

y
e
r

S
q
u
is

h
a
b
le

Issues?

1

2

ID

Concept: One array/vector per component, but how to associate?

Implementation: std:vector<Position>; std:vector<Velocity> + X?

How to find the position of

Goomba’s squishable component?

© Alla Sheffer, Helge Rhodin

Map + Dense Component Vectors

(entity ID to component address index)

36

Mario

Luigi

Goomba1

Goomba2

P
o
s
it
io

n
 i
n
d
e
x

J
u
m

p
s
 i
n
d
e
x

S
q
u
is

h
a
b
le

 i
n
d
.

Mario

Luigi

1

2

ID

1

3

ID

1

2

1

2

1

3

Goomba1

Goomba2

Issues?

Concept: Combine dense vectors with a map

Implementation: std::vector<Component>; std::map<Entity,unsigned int>

© Alla Sheffer, Helge Rhodin

Map + Dense Vector (different visualization)

37

Mario

Luigi

Goomba1

Goomba2

P
o
s
it
io

n

V
e

lo
c
it
y

J
u
m

p
s

P
la

y
e
r

S
q
u
is

h
a
b
le

1

2

ID

2

3

© Alla Sheffer, Helge Rhodin

Cache is Key

• Each Component type has a statically allocated array

• Minimizes costly cache misses

– Keeps components we access around the same time close

to each other

position

collision

sprite

velocity

Memory Blocks
38

© Alla Sheffer, Helge Rhodin

Map + Component Vector + Entity Vector

39

1 135

0.5

map

keys (entity ID)

value array (components) 0.3 0.3

10 12

0 -0.1

for(int entity : velocity_entities) // using the key array

if (position_entity_map.has(entity)) // using the map

position_entity_map.get(entity)+= velocity_entity_map.get(entity); // using component array

Easy to iterate over all velocity components that belong to an entity with a position

Registry for

one component

Concept: Add a dense vector of entities to facilitate quick iteration over entities

Implementation: std::vector<Entities>; std::vector<Component>; std::map<Entity,unsigned int>

© Alla Sheffer, Helge Rhodin

Faster iteration via entity and component array

40

for(int entity : velocity_entities) // efficient

if (position_entity_map.has(entity)) // inefficient lookup

position_entity_map.get(entity)+= velocity_entity_map.get(entity); // 2x inefficient lookup

for(int vel_i = 0; vel_i < velocity_entities.size(); vel_i++) // efficient

Entity entity : velocity_entities[vel_i]; // efficient

int pos_i = position_entity_map.getIndex(entity); // inefficient lookup

if (pos_i)

position_components[pos_i]+= reg_velocity_components[vel_i]; // efficient

Accessing the velocity map (reg_velocity.map) is an unnecessary indirection

We can access the velocity components in linear fashion

© Alla Sheffer, Helge Rhodin

Map + Component Vectors + Entity Vector

Cache is Key

position

collision

sprite

velocity

Memory Blocks

Update loop

accesses contiguous

memory IDEAL!

41

position entities

collision entities

sprite entities

velocity entities

Map access

slow

© Alla Sheffer, Helge Rhodin

Advanced ECS: Archetypes / prototypes / pools

42

• Concept: store all types with the

same components in dense arrays

• Used by the Unity ECS system

• Difficult to implement

Mario

Luigi
Goomba1

Goomba2

P
o
s
it
io

n

V
e
lo

c
it
y

J
u

m
p

s

P
la

y
e
r

S
q
u
is

h
a
b
le

P
o
s
it
io

n

V
e
lo

c
it
y

J
u
m

p
s

P
o
s
it
io

n

V
e

lo
c
it
y

© Alla Sheffer, Helge Rhodin

How Does a System Find its Entities?

Extension: Entity Manager

• Each system has a list of entity IDs it is interested in

• Systems register their bitsets/bitmaps with the Entity Manager

• Whenever an Entity is added…

– Evaluate which systems are interested & update their ID lists

43

© Alla Sheffer, Helge Rhodin

Self-study: A special map approach

44

Mario

Luigi

Goomba1

Goomba2

P
o
s
it
io

n

V
e

lo
c
it
y

J
u
m

p
s

P
la

y
e
r

S
q
u
is

h
a
b
le

1

2

ID

2

3

© Alla Sheffer, Helge Rhodin

Self-study: The ‘Sparse Set’

45

Mario

Luigi

Goomba1

Goomba2

In
d
e
x
 P

o
s

In
d
e
x
 V

e
l

In
d
e
x
 J

u
m

p

In
d
e
x
 P

la
y
e
r

1

In
d
e
x
 S

q
u
is

h

Issues?

1

2

ID

2

2

1

1

Concept: Sparse array + dense array

Implementation: std:vector<Entity> entities; std:vector<unsigned int> indices;

std:vector<Components> components;

P
o
s
it
io

n

V
e
lo

c
it
y

J
u
m

p
s

P
la

y
e
r

S
q
u
is

h
a
b
le

3

4

© Alla Sheffer, Helge Rhodin

Self-study: Faster Lookup with Sparse Sets

46

Insert:

Lookup:

1 2 3 4 5 6 70

[https://skypjack.github.io/2020-08-02-ecs-baf-part-9/]

The map lookup (map.get(entity)) is costly

• A hashmap is O(1), but that 1 is big

Sparse set:

• An array as large as the number

of entities in the game

• Crazy waste of memory?!

• 32 bit integer -> ???

• a sparsely filled array

• A small dense array of all entities

in sequence (as before)

• Extremely fast lookup, insert, & clear

© Alla Sheffer, Helge Rhodin

Entity Summary

• Each Entity is typically just a unique identifier to its

components

• Store Entities in a big static array in the Entity Manager

– Monitor removed entities

ID 2

Entities

ID 9

48

© Alla Sheffer, Helge Rhodin

Memory & ECS

Where do we store our Components?

• Inside a registry!

• Systems don’t own components

• One big array for each Component type

• Takes advantage of modular architecture of ECS

YES!
49

© Alla Sheffer, Helge Rhodin

Cache is Key

• When we “delete” an entity we must delete corresponding

components to.

• Different approaches to this,

– Fill deleted components in arrays with the last entities data

 Extra care must be taken when managing indices

– Mark spots in arrays as rewritable

 Big systems will suffer from poor memory management

50

© Alla Sheffer, Helge Rhodin

Entity Component Systems: Benefits

• Complexity

– Game code tends to grow exponentially

– Complexity of ECS architecture does not grow with it

– Easy to maintain

• Customization

– Games have a lot of dynamic operations

– Add/remove components to change Entity behavior

– ECS is highly modular

• Can be very memory efficient!
51

© Alla Sheffer, Helge Rhodin

The game loop

52

Can you imagine a game without?

© Alla Sheffer, Helge Rhodin

A game is a simulator

53

1. AI and user input

2. Environment reaction

3. Equations of Motion

• sum forces & torques, solve for accelerations: 𝑭 = 𝒎𝒂

4. Numerical integration

• update positions, velocities

5. Collision detection

6. Collision resolution

We will have a separate

lecture on physics

simulation!

 Also simulation forms!

© Alla Sheffer, Helge Rhodin

Our game loop (A1, main.cpp)

54

© Alla Sheffer, Helge Rhodin

Backup

55

