CPSC 427
Video Game Programming

Entity Component System (ECS)

ECS is used in Minecraft and many other commercial games

© Alla Sheffer, Helge Rhodin

What are Entities?

« Entities: things that exist in your game world

L

i ek BEGM

&L
"

© Alla Sheffer, Helge Rhodin

Entities in Traditional Game Programming

* Object-Oriented Programming e

¢ Entltles aS ObJECtS double vel_x

° Conta”']S data, behaVIOI'S, etC float health

GlLuint texture

* Entity Hierarchy: Entities extend other Entities = o=

void destroy()

void move()

T

Enemy Player

bool squishable wviaid jumpl }

n T bool collide()
Goomba T
H void squish() Mario

I I void power_up()

© Alla Sheffer, Helge Rhodin

Entity Hierarchy (object oriented design)

class class : public Entity {
public:
void create();
void destroy();

void move();

public:
void jump();
bool collide();

private:
double X;
double y;
double vel_X;
double vel_y;
vec2 bbox;
float health;

class : public Entity {

private:
bool squishable;
}

GLuint texture;

class :+ public Player {
public:
void power_up();

}

: public Goomba {

P

© Alla Sheffer, Helge Rhodin

class

public:
void squish();
}

Issues with Object-Oriented Approach

What if we want Mario to
be able to be squished?

Entity
ouble x

d
double y
double vel_x
double vel_y
vec? bbox
float health

GLuint texture

Entity* create(}
void destray()

void move()

/\

Enemy

bool squishable

T

Goomba

void squishi)

Player

void jump()

bool collide(}

|

Mario

void power_up()

© Alla Sheffer, Helge Rhodin

Issues with Object-Oriented Approach

« Difficult to add new jouz:ey zau::e:
behaviors

L x

Choice between o

float health

GlLuint texturg|

Both options aren’t |
ideal for big ,

replicating code or

Entity” create(

games!

[Kture

void destroy()

vaid move()

MONSTER SIZE parent
classes

Enemy

bool squishable

Goomba

vaid squishi }

T

Ehable
Entity” create(}
void destrayi)
void movel()
void squishi)
Player
bool squishable /\
void jump() Enemy Player
bool callidel } void jump()
T T bool collide(}
Goomba T
Mario
void power_upi) Mario
void squishi)

void power_up()
© Alla Sheffer, Helge Rhodin

Example ECS Diagram

Goombais now Goomba

int index

separated from its data
& methods /
A-/"’/ b J

Sprite Component Position Component Velocity Component Physics Component Collision Component

© Alla Sheffer, Helge Rhodin

Example ECS Diagram

Now what If we want ol
int index
Mario to be able to be
Sprite Cnmpnnent Position Component Velocity Component Physics Component Collision Component
GlLuint texture double x double vel x bool squishable vec? bbox
double y double vel v \ /
Render Evstem Motion System Physics System
vaid draw() void move() void squishi }

© Alla Sheffer, Helge Rhodin

Example ECS Diagram

We can give Mario a ___Here

Physics Component to

make him squishable. /

Sprite Cnmpnnent Position Component Velocity E:mpnnent Physics Component Collision Component
GlLuint texture double x double vel_x bool squishable vec? bbox
double y double vel v \ /
Render Evstem Motion System Physics System
vaid draw() void move() void squishi }

© Alla Sheffer, Helge Rhodin

Example ECS Diagram

What would happen to
Mario here?

Sprite Component Position Component

GLuint texture

double x

\ double v

Mario

imt index

¥
Velocity Component

double vel_x

double vel_y

Physics Component Collision Component

bool squishable vecs bbox

Render System

vaid draw()

I

Motion System

void move()

Physics System

void squishi }

© Alla Sheffer, Helge Rhodin

What is ECS?

* Alternative to object-oriented programming
 Datais self-contained & modular

« Similar concept to building blocks

» Entities no longer “own” data

* Entities pick & choose

© Alla Sheffer, Helge Rhodin

What is ECS?

* Entities actions determined only by their data
 Update loop doesn’t need references to Entities
« Systems search for Entities with right parts (data) & update
* For Mario to move he needs a position & velocity

© Alla Sheffer, Helge Rhodin

13

What is ECS?

Composition over hierarchy

Entities are collections of Components

Components contain game data
* Position, velocity, input, etc.

Systems are collections of actions
* Render system, motion system, etc.

© Alla Sheffer, Helge Rhodin

14

Component

Contains only game data

Describes one aspect of an Entity

ex. a trumpet Entity will likely have an audio Component

Sprite Component

GLuint texture

Input Component

bool left
bool right
bool jump

bool attack

Position Component

double x

double v

Velocity Component Physics Component Collision Component

double vel_x bool squishable vec2 bounding_box

double vel vy

Al Component

bool do_left
bool do_right
bool do_jump

bool do_shoot

Health Component Audio Component

float health mp3 sound

© Alla Sheffer, Helge Rhodin

Component

- Typically implemented with structs.

struct struct
double x; double vel_x;
struct { double y; double vel_y;
GLuint texture; } }
}
struct { struct {
bool squishable; vec2 bbox;
} }

15 © Alla Sheffer, Helge Rhodin

16

What Components to Make?

- What Components would we give to the following Entities?

© Alla Sheffer, Helge Rhodin

17

Components

- Easy to add new Entity characteristics
— Just create the desired Component & give to Entity

, TL

How do we change our
playable hero from
Mario to Luigi?

© Alla Sheffer, Helge Rhodin

Components

- Empty Components can be used to tag Entities

l/ Player Component

Input Component Input Component
bool left bool left
bool right Position Component bool right Position Component
) double x) double x
bool jump bool jump
double y double y
bool attack bool attack
Velocity Component Velocity Component
Sprite Component double vel ¥ Sprite Component double vel x
GlLuint texture double vel y GlLuint texture double vel y

Empty components are useful, a flag indicating an ability!

18 © Alla Sheffer, Helge Rhodin

Components

- Empty Components can be used to tag Entities

Input Component Player Component

bool left
bool right Position Component
_ double x
bool jump
double y
bool attack
Velocity Component
Sprite Component double vel_x
GlLuint texture double vel_y

19

Now Luigi can be
Identified as the active
player

nent

bool attack

Position Component

double x

double y

Sprite Component

GlLuint texturs

Velocity Component
double vel_x

double vel vy

r....

© Alla Sheffer, Helge Rhodin

20

Systems

Groups of Components describe behavior/action
ex. bounding box, position & velocity describe collisions
Systems code behaviors/actions
Operate on Entities with related groups of components
Related: describe same (type of) behavior/action
ex. render all Entities with sprite & position
Entity behavior can be dynamic
Add/remove components on the fly

© Alla Sheffer, Helge Rhodin

21

System Example

c
&=
]

]
]

o |

S

What systems might these related groups of components

describe?

Position Component

double x
Al Component
double y
bool do_left
Velocity Component bool do_right
double vel x bool do_jump
double vel y bool do_shoot

Player Component

Input Component

bool left
bool right
bool jump

bool attack

Position Component

double x

double y

Velocity Component

double vel x

double vel vy

© Alla Sheffer, Helge Rhodin

System Example

- What systems might these related groups of components

describe?

Position Component

double x
Al Component
double y
bool do_left
Velocity Component bool do_right
double vel x bool do_jump
double vel y bool do_shoot

Enemy Motion System

22

Player Component

Input Component

bool left
bool right
bool jump

bool attack

Position Component

double x

double y

Velocity Component

double vel x

double vel vy

Player Motion System

© Alla Sheffer, Helge Rhodin

System Examples

Physics System ... iterates over all components of type velocity

for (Velocity& velocity : velocity_components) The physics system does not
: _ * care about entities at all!
velocity += 9.81 * dt

Game loop
Entity player; Single boolean check
if (! alive_entities.has (player)) exit();
Motion System ... iterates over all entities that have velocity and position
for(int entity : velocity_entities) Need to know all entities that have component X

if (position_entities.has (entity)) Need to retrieve a component X from an entity

position_components.get (entity) += velocity_components.get (entity);

23 © Alla Sheffer, Helge Rhodin

24

ECS implementations

© Alla Sheffer, Helge Rhodin

25

Memory & ECS

Where do we store our Components?
« RAM, harddrive, or chache?

* Inside Systems?
« Better, but could be improved

« Different Systems may need the same Component types
 How do we decide who owns what?

 Messaging can get overly complex between systems

© Alla Sheffer, Helge Rhodin

Problem: associating entities and components

@
@)
c > cs
@) = 7)) — L
= Q o 0 v
2 3 E & 2
a > s o o
Mario
Goombal
Luigi
Goomba?2

26

Object-oriented-programming (OOP)?

ECS = containers of components?

© Alla Sheffer, Helge Rhodin

27

Memory & ECS

Where do we store our Components?

 Inside Entities?

Memory Blocks

- position

Update loop has to
access non-contiguous
memory repeatedly!

Slow memory access!

© Alla Sheffer, Helge Rhodin

28

The Map Approach
(entity ID to component address)

1D

Position

Mario 1 —

Goombal 2 |

Luigi

Goomba?2

Squishable

ID
Mario 1 —
Luigi 3 —

Concept: A (hierarchical) acceleration structure to lookup components

Implementation: std:map<Entity,Position>

© Alla Sheffer, Helge Rhodin

29

Memory & ECS

Where do we store our Components?
* |Inamap?

Memory Blocks

Update loop has to
access non-contiguous
memory repeatedly!

Slow memory access!

© Alla Sheffer, Helge Rhodin

The (giant) Sparse Array

@
@)
c > csd
S T 8 T Issues?
2 3 E & 2
ID a > S, o o0
Mario 1
Goombal 2
Luigi
Goomba?2

Concept: A huge data matrix of size Nr. Entities X Nr. components
Implementation: std:vector<Position>; std:vector<Velocity>

© Alla Sheffer, Helge Rhodin

31

Memory & ECS

Where do we store our Components?
* Array with holes?

Memory Blocks

Better cache utilization!

Not memory efficient!

© Alla Sheffer, Helge Rhodin

Bitset / Bitmap

o
E 5
5 c > T
= S G 4 & & Issues?
g 2358z
ID 0 i > 5 o o
Mario 1 11110
Goombal 2 11001
Luigi 3
Goomba2 4

Concept: Each entity has a bitset that is true for its ‘owned’ components
Implementation: long bitset; // how many components can we support?
If(bitset & query == query) // has the entity all query components?

32 © Alla Sheffer, Helge Rhodin

33

Key & Lock Metaphor

Entity Unique Entity ID
ks <
ol 12| 8| B
= O = =
1 =1 e

Systems will only operate
on Entities with the required
Components

AN20)8A

uonsod

calculations

: delta time

Motion System

© Alla Sheffer, Helge Rhodin

34

Further Improvements

© Alla Sheffer, Helge Rhodin

Dense Component Vectors
(an attempt, needs more)

Q
@)
c > csd
2 o & © @ Issues?
23 E T3
D a > s a »n
Mario 1 |

Goombal~ 2 T s
Luigi \ /%ow to find the position of

Goombaz Goomba’s squishable component?

Concept: One array/vector per component, but how to associate?
Implementation: std:vector<Position>; std:vector<Velocity> + X?

35

© Alla Sheffer, Helge Rhodin

36

Map + Dense Component Vectors

(entity ID to component address index)

X
(D) X
O (D)
C ©
T -
C - —
o (7p]
= g
(7))
ID 8 ID =
Mario 1—11 Mario 1—+1
Goombal 2—{2 Luigi 3—2
Luigi
Goomba?2

Concept: Combine dense vectors with a map

Goombal
Goomba?2

Issues?

3

Squishable ind.

Implementation: std::vector<Component>; std::map<Entity,unsigned int>

© Alla Sheffer, Helge Rhodin

Map + Dense Vector (different visualization)

a|geysinbs
1ake|d
sdwnpe
Ad019

OISO

|||||||

e

B o e e e e e e e e e e

Goombal

Luigi

Goomba?2

© Alla Sheffer, Helge Rhodin

37

38

Cache is Key

- Each Component type has a statically allocated array
« Minimizes costly cache misses

— Keeps components we access around the same time close

to each other

S Emmmmm

Memory Blocks

© Alla Sheffer, Helge Rhodin

Map + Component Vector + Entity Vector

o

keys (entity ID) 1 5 (10 | 12 | 13
Registry for map
one component
value array (components) 05,03 0 | 03]-01

—

Concept: Add a dense vector of entities to facilitate quick iteration over entities
Implementation: std::vector<Entities>; std::vector<Component>; std::map<Entity,unsigned int>

Easy to iterate over all velocity components that belong to an entity with a position
for(int entity : velocity_entities) // using the key array
if (position_entity_map.has(entity)) // using the map
39 position_entity_map.get (entity) += velocity_entity_map.get(entity); // using component array ¢ i snefter. elge Rhodin

Faster iteration via entity and component array

Accessing the velocity map (reg_velocity.map) is an unnecessary indirection

for(int entity : velocity_entities) // efficient
if (position_entity_map.has(entity)) // inefficient lookup
position_entity_map.get (entity) += velocity_entity_map.get(entity); // 2x inefficient lookup

We can access the velocity components in linear fashion

for(int vel_i = O; vel_i < velocity_entities.size(); vel_i++) // efficient
Entity entity : velocity_entities[vel_i]; // efficient
pos_i = position_entity_map.getindex(entity); // inefficient lookup
if (pos_i)
position_components|pos_i]+= reg_velocity_components[vel_i]; // efficient

40 © Alla Sheffer, Helge Rhodin

A1

Map + Component Vectors + Entity Vector

Cache is Key

DUMIMIDY

DUOMIMIN

Memory Blocks

Map access
slow

N\

Update loop

adaCCeSSeS contiguous

memory [DEAL!

position entities

velocity entities
collision entities

sprite entities

© Alla Sheffer, Helge Rhodin

42

Advanced ECS: Archetypes / prototypes / pools

D
IS
c >
S T G
3 3 >
a > o
Goombal
Goomba?2

« Concept: store all types with the
same components in dense arrays

« Used by the Unity ECS system

* Difficult to implement

Luigi

Mario

5 2 g
£ 8 9
2 o E

-
n > A
5 2 o
= 9 4
2 3 5

)
n >

Player

© Alla Sheffer, Helge Rhodin

How Does a System Find its Entities?

Extension: Entity Manager
Each system has a list of entity IDs it is interested iIn
Systems register their bitsets/bitmaps with the Entity Manager
Whenever an Entity is added...
Evaluate which systems are interested & update their ID lists

43 © Alla Sheffer, Helge Rhodin

© Alla Sheffer, Helge Rhodin

s|gqeysinbs ;| || |
Itﬂll
1ake|d /
sdwn ;[M\ |
Awooap | K1Y ,/
uonsod \ /

Goombal

Luigi

Self-study: A special map approach
Goomba?2

44

Self-study: The ‘Sparse Set’

— L
o 9 0 <@
w _ £ @® 35 fe
(@) Q = —_ O - > ©
S22 % 2 25 858 &
X X x X X %5 S £ > 5
8888 S e 58 3
Mario 1 1(l1
Goombal 2 1
Luigi 3 2 Issues?
Goomba2 4 2

Concept: Sparse array + dense array
Implementation: std:vector<Entity> entities; std:vector<unsigned int> indices;
std:vector<Components> components;

45 © Alla Sheffer, Helge Rhodin

Self-study: Faster Lookup with Sparse Sets

Lookup:
2 0 1 | <----- sparse array
r\/
2 T 0 - dense array
Insert:
2 0 3 1 | < sparse array
‘%
2 7 0 6 | < dense array
46 [https://skypjack.github.io/2020-08-02-ecs-baf-part-9/]

The map lookup (map.get(entity)) is costly
« Ahashmap is O(1), but that 1 is big

Sparse set:
« An array as large as the number

of entities in the game

* Crazy waste of memory?!

« 32 bit integer -> ???

« a sparsely filled array
 Asmall dense array of all entities

In sequence (as before)
* Extremely fast lookup, insert, & clear

© Alla Sheffer, Helge Rhodin

48

Entity Summary

- Each Entity is typically just a unique identifier to its
components

- Store Entities in a big static array in the Entity Manager

os)

— Monitor removed entities

(14

Entities

'

© Alla Sheffer, Helge Rhodin

49

Memory & ECS

Where do we store our Components?
* Inside aregistry!
« Systems don’t own components
 One big array for each Component type
« Takes advantage of modular architecture of ECS

YES!

© Alla Sheffer, Helge Rhodin

Cache is Key

When we “delete” an entity we must delete corresponding
components to.

Different approaches to this,
Fill deleted components in arrays with the last entities data
Extra care must be taken when managing indices
Mark spots in arrays as rewritable
Big systems will suffer from poor memory management

50 © Alla Sheffer, Helge Rhodin

51

Entity Component Systems: Benefits

Complexity
Game code tends to grow exponentially
Complexity of ECS architecture does not grow with it
Easy to maintain

Customization
Games have a lot of dynamic operations
Add/remove components to change Entity behavior
ECS is highly modular

Can be very memory efficient!

© Alla Sheffer, Helge Rhodin

52

The game loop

Can you imagine a game without?

© Alla Sheffer, Helge Rhodin

A game Is a simulator

1. Aland user Input & Also simulation forms!

2. Environment reaction
3. Equations of Motion

—

* sum forces & torques, solve for accelerations: F = ma

4. Numerical integration We will have a separate
lecture on physics

* update positions, velocities simulation!

5. Collision detection
6. Collision resolution

© Alla Sheffer, Helge Rhodin

54

Our game loop (A1, main.cpp)

// Set all states to default
world.restart();

auto t = Clock::now();

// Variable timestep loop
while (!world.is_over())

{

// Processes system messages, if this wasn't present the window would become unresponsive
glfwPollEvents();

// Calculating elapsed times in milliseconds from the previous iteration
auto now = Clock::now();

float elapsed_ms = static_cast<float>((std::chrono::duration_cast<std: :chrono::microseconds>(now - t)).count()) / 1000.f;

t = now;

DebugSystem: : clearDebugComponents();
ai.step(elapsed_ms, window_size_in_game_units);
world.step(elapsed_ms, window_size_in_game_units);
physics.step(elapsed_ms, window_size_in_game_units);
world.handle_collisions();

renderer.draw(window_size_in_game_units);

}

return EXIT_SUCCESS;

© Alla Sheffer, Helge Rhodin

95

Backup

© Alla Sheffer, Helge Rhodin

