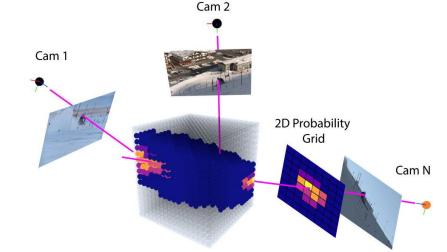
CPSC 427 Video Game Programming

Instructor: Helge Rhodin

Previous readings & WT2 section: Alla Sheffer

Helge Rhodin


https://www.cs.ubc.ca/~rhodin/

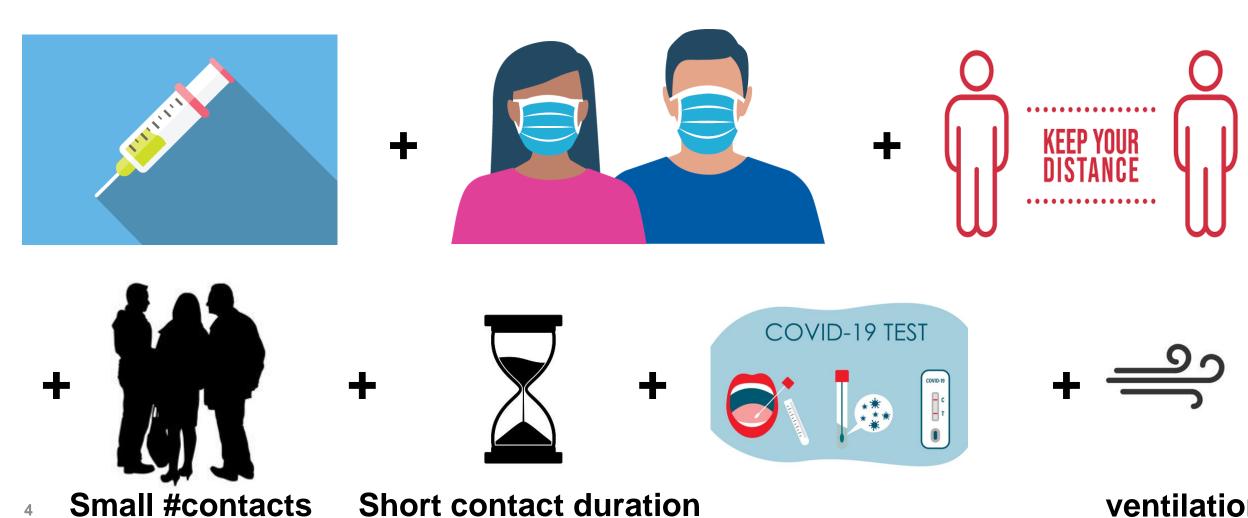
- BSc and MSc at Saarland Univ., Germany
- PhD at the Max Planck Institute for Informatics
- Lecturer and postdoc at EPFL, Switzerland
- At UBC since Sep'19

Computer Graphics

Computer Vision

Course Staff

Instructor:


- Helge Rhodin
 - Office hours: Wed, 9:30-10:30 AM, ICSS X653 (or zoom room)
 - Email: rhodin@cs.ubc.ca (use Piazza for technical topics)

TAs:

- Tim Straubinger, Andrew Evans, and Camilo Talero
 - Contact via Slack
 - Office hours TBD (please vote on Piazza poll)

Protect each other!

Short contact duration

ventilation

What is This Course About?

- Basic Elements of Game Programming
 - Content
 - Graphics: Modeling, Rendering, Animation
 - Gameplay: Situational response, User experience
 - •
 - Implementation
 - Game software design
 - Writing and debugging efficient & robust (runtime/memory) code
- Project management/Teamwork
 - Support software/Best practices

What is This Course About?

! Writing your own game start to finish!

- Learning through experience
 - Programming
 - Teamwork
 - User experience (UX)

Topics NOT Covered:

Interesting but no time:

- Game design
 - Storytelling
 - Game style/look
- Deep dive into graphics, AI, UI, game engines ...
- Asset creation tools

Prerequisites

CS:

CPSC 221

MATH:

- one of MATH 200, MATH 217, MATH 226, MATH 253
- one of MATH 152, MATH 221, MATH 223

Strong math & programming background is encouraged

No prior graphics knowledge assumed

Web Resources

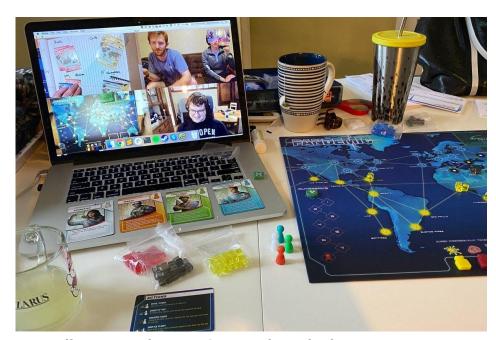
- Course Page: https://www.cs.ubc.ca/~rhodin/2021_2022_CPSC_427/
 - Read & know all the course info + policies
- Piazza discussion forum (link from Canvas and mail)
 - Please use for all technical questions; no private issues
 - Use private mode for questions to course staff that require posting code
- Slack for group formation etc.; no technical questions
- handin & handback: assignment submission and grading (see https://my.cs.ubc.ca/docs/handin-instructions)
- Canvas: course-internal links and team formation

Course Project: Video Game

- 2D Game
- Basic template provided (very basic)
- Mandatory spec requirements (details in milestone documentation)
 - Shaders, 2D transformations, basic animation & gameplay, user experience validation (testing), efficient time/memory management
- Combined with advanced features selected from multiple options (details in milestone documentation)
- Written in teams of 6
 (in exceptional cases 5 or 7, e.g., uneven number admitted from waitlist)
- Bi-weekly milestones, dates specified on calendar Completed games demoed to peers/expert jury

Theme (for the hybrid situation)

Social games, played remotely via zoom


- Cooperative,
- Turn-based,
- Puzzles, or
- Real-time, but...

Technical implications

Handle delay and low frame rates

Why?

Lets have fun together

https://slate.com/human-interest/2020/03/board-games-video-chat-codenames.html

No other way of doing cross-play in these uncertain circumstances

(Virtual) Cross Play Sessions

- Test / play the games of other teams
- Via zoom or other screen sharing apps with remote control
 - With zoom, the remote user only receives control of the shared window, not your computer!
- Your game must be designed to be playable remotely
- Let us know if your machine / network connection does not permit screen sharing
 - Test this remote play setup on your machine ASAP (with a game of your choice)

Course Format

Course Hours:

- Lecture: Mo. 3 5 pm; Wed. 3 4 pm
 - Additional lecture slot (Wed 4-5 pm first three weeks)
 - Some asynchronous content
- Tutorial:
 - Wed. 4-5 (first three weeks replaced by lecture)
 - Fr. 3-4 (unless there is a joint Wednesday event)

Course Format – Lectures & Tutorials

Format:

- Lectures:
 - Regular lectures by instructor
 - Guest lectures by industry speakers
 - Team progress report meetings (one per milestone)
 - Cross-play sessions (starting from milestone 2)
- Tutorials:
 - Team meetings with TAs
 - Face-to-Face milestone marking (Overflow during Office Hours)
 - All team members must be present for marking

Course Format – Interactive sessions

Progress report meetings

- One per milestone (the week after submission)
- Reports from each team (2min) on
 - Progress, achievements & challenges
- Quick feedback round

Cross-play sessions for milestones 2, 3, 4

- One per milestone (week after each milestone)
- Collect playability feedback
- Feedback impacts bonus component of grade

Course Format

Tutorials

- Each team expected to meet with a TA once a week
 - Schedule TBD
 - Optional during marking weeks
- Face-to-face marking
 - Schedule TBD
 - During tutorials/office-hours
- Mapping of teams to tutorials TBD

Contact TAs for any changes in your schedule, 3 days in advance!

Grading System: Team Project (78%)

- Game Pitch (1%) and Game Proposal (1%)
- Milestones: M1 19%, M2 19%, M3 19%, M4 19%
 - Marked in face-to-face sessions with TAs
 - Includes both demo and Q&A
 - Includes cross-play feedback for M2-M4
 - Up to 10% bonus based on feedback
- Final exam replaced by juried cross-play session for M4
 - Mandatory attendance
 - Demo to peers/industry jury (feedback used for grading)
 - Extra bonus marks provided for award-winning projects
 - based on jury/peer feedback

Grading: Team Project to Individual Grade

We expect all team members to participate in coding for ALL milestones

Individual Project Grade

- Grade computed by multiplying team grade by contribution quotient Q
 - Average contribution: Q=1
 - Below average Q < 1
 - Above average Q > 1
- Quotient determined based on self reporting, TA interaction, code reporting, and peer feedback

Grading System: 3 Individual Assignments

1%: Assignment 0: online at lecture start (now?!)

- Entity Component System (ECS) and C++
- small but important, due next Week, or five days after admission

5%: Assignment 1: online at lecture start

- Basic rendering/event driven programming
 - Good for self-assessment before drop deadline

5%: Assignment 2:

Collision processing + Game Al

5%: Assignment 3:

2D animation

Grading System: Individual

4%: Individual Progress Reports

- Each student must submit a progress report for EACH milestone
 - Summary of work completed
 - achievements & challenges
 - Feedback on exceptional team-member performance

20

Grading System

2%: Classroom Participation

- Q&A
- Zoom chat
- Polls / Clickers

Grading System: Individual/Team

1%: Game Pitches (listed as team credit, some slides ago)

- Written pitches due in the third week
- Individual or mini-team (up to 6 members)
- 100% Bonus for fully formed teams (exactly 6 members)

22

TODOs: Individual

- Assignment 0 (individual)
- Read through course pages
- Register to Slack and Piazza
 - Vote on office hours
- Develop game ideas (not just one)
 - Write game pitch (just one)
- !!!! Team organizing !!!!
 - Use slack to find teammates
 - Once settled, self-register your team on Canvas -> People -> Groups
 - Chose a group name and add your own group by hitting "+Group"

TODO: TEAM

- Team organizing (use piazza or slack to connect), seek common game ideas, diversity of experience, similar working hours
 - Initial teams: end of second week
 - Finalize by the third week
 - We can help...
- Game Pitch (storyline + basic technical elements) individual/mini-team
 - Informal pitches on Slack, project-pitch channel: ASAP
 - Oral pitches: Wed Sep 15
 - Plan on ~1 minute: game idea + team
 - Register on Canvas -> People -> Groups
 - Written pitches: due Sep 17

Decorum: respect your classmates

Please come on time

- We will start timely
- Hint: we will have questions near start/end that count to class participation
 - if you have to attend lectures asynchronously, we will offer other means of participation. Let us know!

Respect others and their mentalities in groupwork

- Allow equal talking time
- Utilize strengths, compensate weaknesses, and plan ahead

Please no open screens

- Very disruptive for folks sitting around you
- stay focussed for your own benefit!

Your expectation?

4 min get-together break / breakout rooms

- Say Hi
- Discuss any questions you may have about the course logistics
- Why do you take this course?
- What game do you want to build?
- Designate someone to take notes and report to class

Grounding your expectation

A course like any other with theory, concepts, assignments, deadlines...

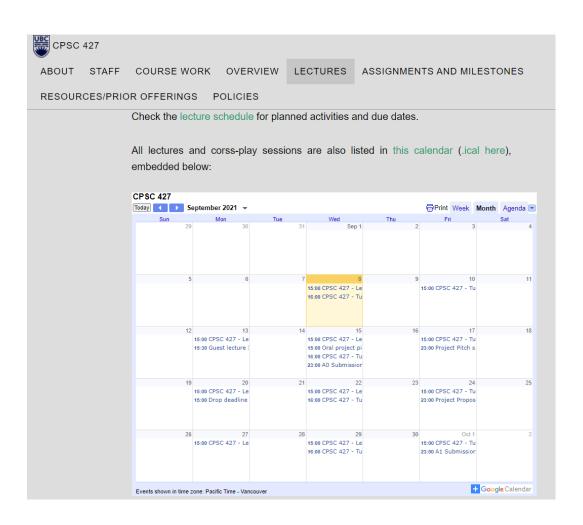
not a piece of cake

90 % uphill

10 % downhill

Decide in the first week! The course is in high demand. No late drop forms

27



Special requirements?

Let us know about ways we can support you in a private message or office hour.

Schedule and deadlines

Lecture Schedule (Preliminary)

Lectures: Mondays 3-5 pm and Wednesdays 3-5 pm (incl. tutorial) Tutorials: Wednesday 4-5 pm and Friday 3-4 pm

Date	Content	Deadlines	Instructor
Sep 8	Lecture 1: Intro and Logistics Game basics and entity component systems (ECS) (all students expected in this Wednesday tutorial)		Helge Rhodin Tim Staubinger
Sep 10	Tutorial: Setting up your development environment and git version control (optional)		Andrew Evans
Sep 13	Lecture 2: Game basics continued Guest Lecture 1: ECS in practice		Helge Rhodin Iggy King (Blackbird Inter.)
Sep 15	Lecture 3: HCI and User Experience Tutorial: C++ for Games (all students expected in this Wednesday tutorial)	Assignment 0 & Oral Proj. Pitch	Helge Rhodin Tim Straubinger
Sep 17	Tutorial: Assignment 1 walkthrough (optional)	Written Proj. Pitch	TA TBD
Sep 20	Lecture 4: Transformations and Rendering		Helge Rhodin
Sep 22	Lecture 5: Rendering Pipeline and OpenGL OpenGL profiling (all students expected in this Wednesday tutorial)		Helge Rhodin Camilo Talero
Sep 24	Tutorial: OpenGL reloaded (asynchronous video)	Proj. Proposal	n/a

Syllabus (I)

Graphics: Rendering

- Basic Rendering: Rendering pipeline elements
- OpenGL / Event Driven Programming / Keyboard & Mouse input

Graphics: Geometry

- 2D Transformations
- Curves (in time & space)
- Meshes / Polygons

Graphics: Collision detection

Syllabus (II)

Game UI/UX

- Basics of User Interface Design
- Game interfaces/Game experience
- Testing
- Game balancing

Syllabus (III)

Game Software Design

- Entity Component Systems
- Observer Pattern

Syllabus (IV)

Gameplay Logic/Al

- State Representation
- Decision Trees

- Pathfinding (goal optimization)
- Heuristic Pathfinding/A*/MinMax

Syllabus (V)

Basic Physics

- Time stepping
- Euler integration
- Velocity & acceleration
- Particles & springs

Syllabus (VI)

Efficiency/Tools

- Debugging strategies and tools
- Profiling
- (In)efficient coding 101
- Compiler optimization
- Memory allocation
- Version control