
© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Debugging

1

© Alla Sheffer, Helge Rhodin

Setup

@Helge: Pressed record?

@Class: Logged into iClicker cloud?

2

© Alla Sheffer, Helge Rhodin

Racap: Simulation

3

© Alla Sheffer, Helge Rhodin

Force, impulse, velocity…

Our goal: position and velocity

Think of:

• Force as an invisible string that pulls the object

• changing in magnitude and direction over time and space

• without a force, the object moves in a straight line

• Impulse as a change in velocity
(dependent on the object mass)

• Force applied over one timestep
(can be continuous or instantaneous at some point during the step)

4

© Alla Sheffer, Helge Rhodin

DE Numerical Integration:

Explicit (Forward) Euler

𝜕

𝜕𝑡
റ𝑋(𝑡) = 𝑓(റ𝑋 𝑡 , 𝑡)

Given that റ𝑋0 = റ𝑋 𝑡0

Compute റ𝑋 𝑡 for t > t0

∆𝑡 = t𝑖 − t𝑖−1

∆ റ𝑋 t𝑖−1 = ∆𝑡 𝑓(റ𝑋 t𝑖−1 , t𝑖−1)

റ𝑋𝑖 = റ𝑋𝑖−1 + ∆𝑡 𝑓(റ𝑋𝑖−1, t𝑖−1)

𝒇(𝑿 𝒕 , 𝒕)

∆𝒕 𝒇(𝑿 𝒕 , 𝒕)

𝑿 𝒕

𝑿 𝒕 + ∆𝒕

© Alla Sheffer, Helge Rhodin

• Types of forces:

• Gravity

𝐹 =
0

−𝑚𝑔

• Viscous damping

𝐹 = −𝑏𝑣

• Spring & dampers

𝐹 = −𝑘𝑥 − 𝑏𝑣

• Use forces at destination

Implicit (Backward) Euler:

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
𝑭𝒏+𝟏
𝒎

Solve system of equations
𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣

𝛴 റ𝐹/𝑚

© Alla Sheffer, Helge Rhodin

• Use forces at destination +

velocity at the destination

Implicit (Backward) Euler:

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
𝑭𝒏+𝟏
𝒎

Solve system of equations
𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣

𝛴 റ𝐹/𝑚

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏+𝟏

𝒎

Example: Spring Force

𝐹 = −𝑘𝑥

Analytic or iterative solve?

© Alla Sheffer, Helge Rhodin

Forward vs Backward

Backward Euler

Forward Euler

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏
𝒎

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏+𝟏

𝒎

Could one apply the Trapezoid Method?

© Alla Sheffer, Helge Rhodin

Questions

Which solver to use? For a space simulator
(with accurate orbits, e.g., satellites)

1: Forward Euler

2: Backwards Euler

3: Midpoint

4: Trapezoid

5: Seq. Impulses

9

© Alla Sheffer, Helge Rhodin

Questions

Which solver to use? For a jump & run

1: Forward Euler

2: Backwards Euler

3: Midpoint

4: Trapezoid

5: Seq. Impulses

10

© Alla Sheffer, Helge Rhodin

Questions

Which solver to use? For a billiard game
(with many balls that can stack)

1: Forward Euler

2: Backwards Euler

3: Midpoint

4: Trapezoid

5: Seq. Impulses

11

© Alla Sheffer, Helge Rhodin

Self-study: Constrained physics

12

By Nilson Souto

https://www.toptal.com/game/video-

game-physics-part-iii-constrained-rigid-

body-simulation

© Alla Sheffer, Helge Rhodin

Logistics: Exam slot?

• Final cross-play session

• Industry jury

• Awards

• Attendance mandatory

• Sheduled: Dec 18th, noon

• What else comes next?

13

© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Debugging

14

© Alla Sheffer, Helge Rhodin

Debugging

• There will be bugs…

• Strategies for Fixing?

Learning goals:

• Knowing about different debugging techniques

• When to look for what type of bug

• Strategies for avoiding bugs!

© Alla Sheffer, Helge Rhodin

Debugging

• There will be bugs…

• Strategies for Fixing?

• Anticipate

• Reproduce

• Things get terribly difficult if randomness is involved!

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Task: Recall bugs that you faced

• Those that you encountered early

• Those you had to track down

17

© Alla Sheffer, Helge Rhodin

Catastrophic Software Bugs…

18

Ariane 5 Flight 501, 4 June 1996 PacMan at level 256

© Alla Sheffer, Helge Rhodin

Debugging: Strategies for Fixing?

• Anticipate I

• Unit tests

• Logging

• Explicit tests for “what can go wrong” (assert)

• Anything that can go wrong will go wrong… at the worst possible time

• State/play saving and loading speeds up debugging

• Visual testing (early)

• Avoid randomness (use seed for rnd)

• Reproduce

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging: Strategies for Fixing?

• Anticipate II: your compiler (with –Wall enabled) is your friend

• “This enables all the warnings about constructions that some
users consider questionable, and that are easy to avoid”

• Reproduce

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

• Strategies for Fixing?

• Anticipate

• Reproduce

• When does it happen?

• Logging + unit tests

• Record/load gameplay

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

• Strategies for Fixing?

• Anticipate

• Reproduce

• Localize

• In time: version control

• In place: logging

• Divide and Conquer

• Minimal trigger input

• Don’t guess; measure

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

• Strategies for Fixing?

• Anticipate

• Reproduce

• Localize

• Use proper debugging tools

• Run with debug settings on

• Run within a debugger

• Set breakpoints

• Examine internal state

• Learn debugger options

© Alla Sheffer, Helge Rhodin

Exchange Experiences

• Catastrophic failures?

• Debugging strategies that work for you

• Which ones don’t?

• Can others make them work?

• Elect a chair, report your groups most interesting bug
and its fix

24

Breakout rooms of 4

© Alla Sheffer, Helge Rhodin

Debugging

(From Waterloo ECE 155, Zarnett & Lam)

• Strategies for Fixing?

• Scientific method.

1. Observe a failure.

2. Invent a hypothesis.

3. Make predictions.

4. Test the predictions using experiments and observations.

• Correct? Refine the hypothesis.

• Wrong? Try again with a new hypothesis.

• Repeat

© Alla Sheffer, Helge Rhodin

Debugging (From Waterloo ECE 155)

More (Human Factor) Strategies

• Take a Break/Sleep on it

• Code Review

• Look through code

• Walk someone through the code

• Exchange ideas on piazza

© Alla Sheffer, Helge Rhodin

Debugging

More (Human Factor) Strategies

• Question assumptions

• Minimize randomness

• Use same seed

• Check boundary conditions

• Disrupt parallel computations

© Alla Sheffer, Helge Rhodin

Debugging (From Waterloo ECE 155)

More Strategies

• Know your enemy: Types of bugs

• Standard bug (reproducible)

• Sporadic (need to chase – right input combo)

• Heisenbug

• Memory (not initialized or stepped on)

• Parallel execution

• Optimization

© Alla Sheffer, Helge Rhodin

Hard Bugs (cheat sheet)

• Bug occurs in Release but not Debug

• Uninitialized data or optimization issue

• Bug disappears when changing something innocuous

• Timing or memory overwrite problem

• Intermittent problems

• Record as much info when it does happen

• Unexplainable behavior

• Retry, Rebuild, Reboot, Reinstall

• Internal compiler errors (not likely)

• Full rebuild, divide and conquer, try other machines

• Suspect it’s not your code (not likely)

• Check for patches, updates, or reported bugs

