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CPSC 427

Video Game Programming

Helge Rhodin

Physical Simulation
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Setup

@Helge: Pressed record?

@Class: Logged into iClicker cloud?
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Logistics: Exam slot?

• Final cross-play session

• Industry jury

• Awards

• Attendance mandatory

• Sheduled: Dec 18th, noon

• Better on Dec 17th 4-6 pm? -> vote on piazza, particularly 
if you can’t make it
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Logistics: M2 submission and A2 grading

• On Friday

• 30 students selected for face2face grading (on zoom)

• Please check if you are selected and register for a slot

• First come first served

• https://docs.google.com/spreadsheets/d/1hWECo-
Y2Xaz9oHybqjr4xZGnLMqCRW7JrZYzarcSerg/edit?usp=sharing
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https://docs.google.com/spreadsheets/d/1hWECo-Y2Xaz9oHybqjr4xZGnLMqCRW7JrZYzarcSerg/edit?usp=sharing
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Logistics: Guest lecture

By Ralf Karrenberg

• Nvidia

• Raytracing (RTX technology) and upscaling (DLSS)

• How light simulation and AI/ML play together
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Overview

1. Equation of Motion

• Examples

• Ordinary Differentiable Equations (ODE)

• Solving ODEs

2. Collision and Reaction Forces

6
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Physics

Learning goals:

• Connect your theoretical math 
knowledge to applications

• Properly simulate object 
motion and their interaction in 
your game

7
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Recap: Basic Particle Simulation (first try)

How to compute the change in velocity?

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊
𝒗𝒊+𝟏 = 𝒗𝒊 + 𝛥𝒗

𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗𝒊𝒅𝒕
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Recap: Particle-Plane Collision

• In direction of normal

𝒗− 𝒗+

ෝ𝒏
𝛥𝒗 = 𝟐 𝒗−◦ ෝ𝒏 ෝ𝒏

𝒗+ = 𝒗− + 𝛥𝒗

𝛥𝒗 = 𝟏 + 𝝐 𝒗−◦ ෝ𝒏 ෝ𝒏

Frictionless

Loss of energy

Velocity along normal

(v projected on normal

by the dot product)
Apply change

along normal

(magnitude

times direction)
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Particle-Particle Collisions (spherical objects)

𝒗𝟏
+ = 𝒗𝟏

− −
𝟐𝒎𝟐

𝒎𝟏 +𝒎𝟐

𝒗𝟏
− − 𝒗𝟐

− ∙ 𝒑𝟏 − 𝒑𝟐
𝒑𝟏 − 𝒑𝟐

𝟐
𝒑𝟏 − 𝒑𝟐

𝒗𝟐
+ = 𝒗𝟐

− −
𝟐𝒎𝟏

𝒎𝟏 +𝒎𝟐

𝒗𝟐
− − 𝒗𝟏

− ∙ 𝒑𝟐 − 𝒑𝟏
𝒑𝟐 − 𝒑𝟏

𝟐
𝒑𝟐 − 𝒑𝟏

• This is in terms of velocity 

• Today (and next lecture): 

derivation via impulse and forces

𝒎𝟏

𝒎𝟐

𝒎𝟏

𝒎𝟐

𝒗𝟏
−

𝒗𝟐
− 𝒗𝟏

+

𝒗𝟐
+

Before collision After

Response:
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From Velocities (𝛥𝒗) to Forces (F) and back 

Force relates to mass and acceleration

A change in velocity related to acceleration over time

In terms of forces
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Recap: Basic Particle Simulation (first try)

How to compute the change in velocity?

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊
𝒗𝒊+𝟏 = 𝒗𝒊 + 𝛥𝒗

𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗𝒊𝒅𝒕
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Forces are omnipresent

• Gravity

𝐹 =
0

−𝑚𝑔

• Viscous damping

𝐹 = −𝑏𝑣

• Spring & dampers

𝐹 = −𝑘𝑥 − 𝑏𝑣
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Gravity direction?

Assuming a flat earth:

Assuming a spherical earth:

14

𝐹 =
0

−𝑚𝑔

𝐹 = −𝑚𝑔
𝑎
𝑏

How to compute the vector (a,b) and g ?

Newton's law of universal gravitation
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Multiple forces?

Forces add up (and cancel):

• This holds for all types of
forces!

• Notation you might see:

15

𝐹 = −𝑚𝑔1
𝑎1
𝑏1

−𝑚𝑔2
𝑎2
𝑏2
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Your game idea does not need forces?

Are you sure?

• Particle effects

• Fake forces

• Proxy forces

• Simulate crowd behaviour

Take it as a chance to connect dry math with a practical 
application!

16
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Proxy Forces (= fake forces)

• Behavior forces: [“Boids”, Craig Reynolds, 

SIGGRAPH 1987]

• flocking birds, schooling fish, etc. 

• Attract to goal location (like gravity)

• E.g., waypoint determined by shortest path search

• Repulsion if close

• Align orientation to neighbors

• Center to neighbors

• Forces add up!
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Simulation Basics

Simulation loop…

1. Equations of Motion

• sum forces & torques

• solve for accelerations: 𝑭 = 𝒎𝒂

2. Numerical integration

• update positions, velocities

3. Collision detection

4. Collision resolution
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What we did so far: Forward Euler

Forces only  𝑭 = 𝒎𝒂

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗𝒊 + (𝑭(𝒕𝒊)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗𝒊+𝟏𝒅𝒕

acceleration = 
𝜕𝑣

𝜕𝑡

get values at time 𝒕𝒊+𝟏from values at time 𝒕𝒊 Issues? Alternatives?

How can we discretize this?
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Issue: extrapolation

21
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Which forces depend on t?

22

• Gravity

𝐹 =
0

−𝑚𝑔

• Viscous damping

𝐹 = −𝑏𝑣

• Spring & dampers

𝐹 = −𝑘𝑥 − 𝑏𝑣

𝐹 = −𝑚𝑔
𝑎
𝑏
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Basic Particle Simulation:  Small Problem…

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗𝒊 + (𝑭(𝒕???)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗𝒊+𝟏𝒅𝒕

Equations of motion describe state (equilibrium)

• Involves quantities and their derivatives

• -> we need to solve differential equations
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Lets start from scratch

Given:

Desired: the position x at time t

24

റ𝐹 = 𝑚
𝜕2𝑥

𝜕𝑡2

𝑥

Wait!

There is no position x in this equation?! 

Only contains acceleration a!

How to solve such differential equation?
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Newtonian Physics as First-Order Diff. Eq. (DE)

Second-order DE

റ𝐹 = 𝑚
𝜕2𝑥

𝜕𝑡2

First-order DE

𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣
റ𝐹/𝑚

acceleration

= 
𝜕𝑣

𝜕𝑡

Higher-order DEs can be turned into a first-order DE with additional variables and equations!

velocity

= 
𝜕𝑥

𝜕𝑡

Now we have an x!
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Newtonian Physics as First-Order DE

• Motion of one particle

Second-order DE

റ𝐹 = 𝑚
𝜕2𝑥

𝜕𝑡2

First-order DE
𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣

𝛴 റ𝐹/𝑚

• Motion of many particles

𝜕

𝜕𝑡

𝑥1
𝑣1
𝑥2
𝑣2
⋮
𝑥𝑛
𝑣𝑛

=

𝑣1

𝐹1/𝑚1

𝑣2

𝐹2/𝑚2

⋮
𝑣𝑛

𝐹𝑛/𝑚𝑛
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Overview

Different DE solvers

• Forward Euler
(take current accel. to update vel., current vel. to update pos.)

• Midpoint Method & Trapezoid Method
(mix current and approximations of future vel. & acc. Estimates)

• Backwards Euler
(solve for future pos., vel., and accel. jointly)

• May require an iterative solver

29
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Recap: Forward Euler

Forces only  𝑭 = 𝒎𝒂

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗𝒊 + (𝑭(𝒕𝒊)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗𝒊+𝟏𝒅𝒕

acceleration = 
𝜕𝑣

𝜕𝑡

get values at time 𝒕𝒊+𝟏from values at time 𝒕𝒊 Issues? Alternatives?
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Idea: Backwards Euler

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗𝒊 + (𝑭(𝒕𝒊+𝟏)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗𝒊+𝟏𝒅𝒕

get values at time 𝒕𝒊+𝟏from states at time 𝒕𝒊 and forces at 𝒕𝒊+𝟏 Issues? 
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Differential Equations

𝜕

𝜕𝑡
റ𝑋(𝑡) = 𝑓( റ𝑋 𝑡 , 𝑡)

Given that റ𝑋0 = റ𝑋 𝑡0

Compute റ𝑋 𝑡 for t > 𝑡0

∆ റ𝑋(𝑡) = 𝑓( റ𝑋 𝑡 , 𝑡)∆𝑡

• Simulation: 

• path through state-space

• driven by vector field
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Gravitational field

33 https://www.euclideanspace.com/maths/geometry/space/fields/index.htm
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Water Vortex (assignment?)

34
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DE Numerical Integration: 

Explicit (Forward) Euler

𝜕

𝜕𝑡
റ𝑋(𝑡) = 𝑓( റ𝑋 𝑡 , 𝑡)

Given that റ𝑋0 = റ𝑋 𝑡0

Compute റ𝑋 𝑡 for t > t0

∆𝑡 = t𝑖 − t𝑖−1

∆ റ𝑋 t𝑖−1 = ∆𝑡 𝑓( റ𝑋 t𝑖−1 , t𝑖−1)

റ𝑋𝑖 = റ𝑋𝑖−1 + ∆𝑡 𝑓( റ𝑋𝑖−1, t𝑖−1)

𝒇(𝑿 𝒕 , 𝒕)

∆𝒕 𝒇(𝑿 𝒕 , 𝒕)

𝑿 𝒕

𝑿 𝒕 + ∆𝒕
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Explicit Euler Problems

• Solution spirals out

• Even with small time steps

• Although smaller time steps 

are still better

Definition: Explicit

• Closed-form/analytic solution

• no iterative solve required
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Explicit Euler Problems

• Can lead to instabilities



© Alla Sheffer, Helge Rhodin

Midpoint Method

1. ½ Euler step

2. evaluate fm at 𝑿𝒎

3. full step using fm

𝒇𝒎

𝑿 𝒕

𝑿 𝒕 + ∆𝒕 𝒇𝒎

½ (∆𝒕 𝒇 𝑿 𝒕 , 𝒕 )

𝑿𝒎 = 𝑿 𝒕 +½ ∆𝑿(𝒕)

𝒇(𝑿 𝒕 , 𝒕)



© Alla Sheffer, Helge Rhodin

Trapezoid Method

𝒇𝒕

𝑿 𝒕

𝑿𝒂 = 𝑿 + ∆𝑿(𝒕)

∆𝒕 𝒇(𝑿 𝒕 , 𝒕)

𝑿𝒃 = 𝑿 𝒕 + ∆𝒕 𝒇𝒕

½𝑿𝒂 + ½𝑿𝒃

1. full Euler step get 𝑿𝒂

2. evaluate ft at 𝑿𝒂

3. full step using ft get 𝑿𝒃

4. average 𝑿𝒂 and 𝑿𝒃

𝒇(𝑿 𝒕 , 𝒕)
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Midpoint & Trapezoid Method

𝑻𝒓𝒂𝒑𝒆𝒛𝒐𝒊𝒅𝒎𝒆𝒕𝒉𝒐𝒅

• Not exactly the same

– But same order of accuracy

𝑴𝒊𝒅𝒑𝒐𝒊𝒏𝒕 𝒎𝒆𝒕𝒉𝒐𝒅

𝑿 𝒕
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Explicit Euler: Code
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Midpoint Method: Code

𝒇𝒎

𝑿 𝒕

𝑿 𝒕 + ∆𝒕 𝒇𝒎

½ (∆𝒕 𝒇 𝑿 𝒕 , 𝒕 )

𝑿𝒎 = 𝑿 𝒕 +½ ∆𝑿(𝒕)
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• Types of forces:

• Gravity

𝐹 =
0

−𝑚𝑔

• Viscous damping

𝐹 = −𝑏𝑣

• Spring & dampers

𝐹 = −𝑘𝑥 − 𝑏𝑣

• Use forces at destination

Implicit (Backward) Euler: 

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
𝑭𝒏+𝟏
𝒎

Solve system of equations
𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣

𝛴 റ𝐹/𝑚
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• Use forces at destination + 

derivative at the destination

Implicit (Backward) Euler: 

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
𝑭𝒏+𝟏
𝒎

Solve system of equations
𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣

𝛴 റ𝐹/𝑚

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏+𝟏

𝒎

Example: Spring Force

𝐹 = −𝑘𝑥

Analytic or iterative solve?
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Forward vs Backward

Backward Euler

Forward Euler

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏
𝒎

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏+𝟏

𝒎

Could one apply the Trapezoid Method?
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Particles: 

Newtonian Physics as First-Order DE

• Motion of many particles?

𝜕

𝜕𝑡

𝑥1
𝑣1
𝑥2
𝑣2
⋮
𝑥𝑛
𝑣𝑛

=

𝑣1

𝐹1/𝑚1

𝑣2

𝐹2/𝑚2

⋮
𝑣𝑛

𝐹𝑛/𝑚𝑛

• Interaction of particles?
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Multiple-particle collision

• naïve implementation is likely unstable

• Objects pushing inside each other

• Further reading:

• https://box2d.org/publications/

• In particular 
https://box2d.org/files/ErinCatto_ModelingAndSolvingConstraints_GD
C2009.pdf

47

https://box2d.org/publications/
https://box2d.org/files/ErinCatto_ModelingAndSolvingConstraints_GDC2009.pdf
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Simulation Basics

Simulation loop…

1. Equations of Motion

2. Numerical integration

3. Collision detection

4. Collision resolution
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Collisions

• Collision detection

• Broad phase: AABBs,  bounding spheres

• Narrow phase: detailed checks

• Collision response

• Collision impulses

• Constraint forces: resting, sliding, hinges, ….
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Basic Particle Simulation (first try)

Forces only  𝑭 = 𝒎𝒂

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗 𝒕𝒊 + (𝑭(𝒕𝒊)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗(𝒕𝒊+𝟏)𝒅𝒕
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Particle-Plane Collisions

• Apply an ‘impulse’ of magnitude j

• Inversely proportional to mass of particle

• In direction of normal

𝒗− 𝒗+

ෝ𝒏 𝒋 = 𝟏 + 𝝐 𝒗−◦ ෝ𝒏 𝒎

റ𝒋 = 𝒋 ෝ𝒏

𝒗+ =
റ𝒋

𝒎
+ 𝒗−

Impulse in physics: Integral of F over time

In games: an instantaneous step change

(not physically possible), i.e., the force 

applied over one time step of the simulation

What is the

effect of 𝝐 ?
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Recap: Particle-Plane Collisions (in terms of vel.)

• Change in direction of normal

𝛥𝒗 = 𝟐 𝒗−◦ ෝ𝒏 ෝ𝒏

𝒗+ = 𝒗− + 𝛥𝒗

𝛥𝒗 = 𝟏 + 𝝐 𝒗−◦ ෝ𝒏 ෝ𝒏

Frictionless

Loss of energy

Velocity along normal

(v projected on normal

by the dot product)
Apply change

along normal

(magnitude

times direction)

𝒗− 𝒗+

ෝ𝒏
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Why use ‘Impulse’?

• Integrates with the physics solver

• How to integrate damping?

53
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Particle-Particle Collisions (radius=0)

• Particle-particle frictionless elastic impulse response

• Momentum is preserved

𝒎𝟏𝒗𝟏
− +𝒎𝟐𝒗𝟐

− = 𝒎𝟏𝒗𝟏
+ +𝒎𝟐𝒗𝟐

+

• Kinetic energy is preserved

½𝒎𝟏𝒗𝟏
−𝟐 +½𝒎𝟐𝒗𝟐

−𝟐 = ½𝒎𝟏𝒗𝟏
+𝟐 +½𝒎𝟐𝒗𝟐

+𝟐

𝒎𝟏

𝒎𝟐

𝒎𝟏

𝒎𝟐

𝒗𝟏
−

𝒗𝟐
− 𝒗𝟏

+

𝒗𝟐
+

Before After

• Velocity is preserved 

in tangential direction

𝒕◦𝒗𝟏
− = 𝒕◦𝒗𝟏

+ , 𝒕 ◦𝒗𝟐
−= 𝐭◦𝒗𝟐

+
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Particle-Particle Collisions (radius >0)

𝒗𝟏
−

𝒑𝟐: 𝒙𝟐, 𝒚𝟐

𝒑𝟏: 𝒙𝟏, 𝒚𝟏

𝒗𝟐
−

𝒎𝟐

𝒎𝟏

• What we know…

• Particle centers

• Initial velocities

• Particle Masses

• What we can calculate…

• Contact normal

• Contact tangent
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• Impulse direction

reflected across 

tangent

• Impulse magnitude 

proportional to 

mass of other 

particle

Particle-Particle Collisions (radius >0)

𝒗𝟏
−

𝒗𝟐
−

𝒗𝟏
+

𝒗𝟐
+

𝒎𝟐

𝒎𝟏
𝒎𝟐 < 𝒎1

𝒑𝟐: 𝒙𝟐, 𝒚𝟐

𝒑𝟏: 𝒙𝟏, 𝒚𝟏
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Particle-Particle Collisions (radius >0)

𝒗𝟏
+ = 𝒗𝟏

− −
𝟐𝒎𝟐

𝒎𝟏 +𝒎𝟐

𝒗𝟏
− − 𝒗𝟐

− ∙ 𝒑𝟏 − 𝒑𝟐
𝒑𝟏 − 𝒑𝟐

𝟐
𝒑𝟏 − 𝒑𝟐

𝒗𝟐
+ = 𝒗𝟐

− −
𝟐𝒎𝟏

𝒎𝟏 +𝒎𝟐

𝒗𝟐
− − 𝒗𝟏

− ∙ 𝒑𝟐 − 𝒑𝟏
𝒑𝟐 − 𝒑𝟏

𝟐
𝒑𝟐 − 𝒑𝟏

• More formally…

• This is in terms of velocity, what would the 

corresponding impulse be?
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Rigid Body Dynamics 

(rotational motion of objects?)

• From particles to rigid bodies…

Rigid body

𝒔𝒕𝒂𝒕𝒆 =

𝒙 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

𝒗 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚
𝑹 𝒓𝒐𝒕𝒂𝒕𝒊𝒐𝒏𝒎𝒂𝒕𝒓𝒊𝒙 𝟑𝒙𝟑
𝒘 𝒂𝒏𝒈𝒖𝒍𝒂𝒓 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

ℝ𝟏𝟐 in 3D

Particle

𝒔𝒕𝒂𝒕𝒆 = ൝
𝒙 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

𝒗 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

ℝ𝟒 in 2D

ℝ𝟔 in 3D


