Two-player games

WWW.Npr.org

© Alla Sheffer, Helge Rhodin

Setup

@Helge: Pressed record?

@Class: Logged into iClicker cloud?

© Alla Sheffer, Helge Rhodin

Overview

First half: Second half:
 Shortest paths cont. Physical simulation basics
 Two-player games « setting and definitions

« Efficient & precise simulation

. . .,
... all about traversing trees today: what can go wrong?

efficiently
... the core of every game?

+ Some debugging tips

End of the day: be able to implement efficient shortest path,
two-player Al, and to simulate flying pebbles (for A3!)

© Alla Sheffer, Helge Rhodin

Breadth-first vs. A*

© Alla Sheffer, Helge Rhodin

A* Search

« A* search takes into account both
* c(p) = cost of path p to current node

* h(p) = heuristic value at node p (estimated “remaining”
path cost)

* Leti(p) = c(p) + h(p).
« f(p) is an estimate of the cost of a path from the start to a

goal via p. actual estimate
start —» n —> goal

c(p) h(p)

A* always chooses the path on the frontier with the lowest
estimated distance from the start to a goal node constrained to
go via that path.

© Alla Sheffer, Helge Rhodin

A* Example

Init:

« Put starting node on open list: Lo = {6}

« Setitscostto0:c[6]=0

« Set closed list to empty list: Lc = {}

Step 1.

 Find node with smallest f on the list, call itq: q=6
 Find q’s “successors”: sucs = {3,4,7}

 For each successor u: for uin sucs ...

c(u) = c(q) + d(q,u) c[3] =c[6]+1 =1
c[4]=c[6]+1.4=14
c[7]=c[6]+1 =1
h(u) = d(g, u) h[3] = 3.6 f[3] = c[3] + h[3] = 4.6
f(u) =c(u) + h(u) h[4] = 2.8 f[4] = c[4] + h[4] = 4.2
h[7] = 3.6 f[7] = c[7] + h[7] = 4.6

 add successors to open list and move ¢ to closed:
Lo ={3,4,7}; Lc = {6}

Frontier (open list)

Heuristic dist. h

© Alla Sheffer, Helge Rhodin

A* Exam P le Frontier (open list)

Step 2. Lo={3,4,7}; Lc = {6}
 Find node with smallest f on Lo, call it q:

f[3] = 4.
fl4] = 4.2 > q=4
fl7] =

 Find q’s “successors”: sucs = {3,6,7,8}

« for uin sucs..

c_ tmp[3]=c[4]+1 =24 > ¢[3] =1, skip Step costc Heuristic dist. h
C tmp[6] =c[4] +1.4=2.8 > c[6] = O skip

c_tmp[7]=c[4]+1 =24 > c[7] =1, skip

c_tmp[8]=c[4]+1.4=24 not in Lo or Lc select c[8] = c_tmpI[8]

» Update heuristic and estimated cost f:
h[8] = 3.2
f[8] = c[8] + h[8] =

e add successors to open list and move q to closed list:
Lo ={3,7,8}; Lc = {6,4}

© Alla Sheffer, Helge Rhodin

A* Example

Frontier (open list)

Step 3: Lo ={3,7,8}; Lc ={6,4}
 Find node with smallest f on Lo, call it q:

f[3] = 4.6 > gq=3
fl7] = 4.6
fl8] = 5.6
- Find q’s “successors”: sucs = {4,6,7}

e foruinsucs...
4, skip Step cost ¢ Heuristic dist. h

e add successors to open list? no successors!

* move g to closed list:
Lo = {7,8};
Lc ={6,4,3}

© Alla Sheffer, Helge Rhodin

A* Example

Step 4. Lo ={7,8}; Lc ={6,4,3}

Find node with smallest f on Lo, call it g:

f[7] = 4.6 > q=7
i8] =

Find q’s “successors”: sucs = {3,4,6,8}
for u in sucs..

c_tmp[3]=c[7/]+1.4=24 > ¢[3] =1, skip
c tmp[4]=c[7]+1 =2 > cl4] =1, skip
c_tmp[6]=c[7]+1 =2 > ¢[6] =0, skip
c_tmp[8]=c[7]+1 =2 > ¢[8] = 2.4, select new c[8] =

add successors to open list? Already there!

move g to closed list:
Lo ={8};
Lc = {6,4,3,7}

Frontier (open list)

Step cost ¢ Heuristic dist. h
2

© Alla Sheffer, Helge Rhodin

Keep track of your parents
 We neglected parent-child relation in previous slides...

Lc = {6,4,3} Lo = {8};

Path to 3 Path to 4 Path to 6 Path to 7 Path to 8

* Note, closed paths have no ‘free’ neighbors
* Impassable or already visited from a shorter path

© Alla Sheffer, Helge Rhodin

A* search

h(p.q) =|(p.x=qg.x)| + [(p.y = q.y)|
- Manhattan distance
h(p,q) =sqart((p.x = gq.x)"2 + (p.y — q.y)*2) N

- Euclidean distance \

Key idea: H is a heuristic, and not the real distance: %

Conditions:

 a heuristic function i1s admissible if it never overestimates the
cost of reaching the goal

* a heuristic function is said to be consistent, or monotone, if its
estimate is always less than or equal to the estimated distance
from any neighbouring vertex to the goal, plus the cost of
reaching that neighbour

© Alla Sheffer, Helge Rhodin

https://en.wikipedia.org/wiki/Heuristic_function
https://en.wikipedia.org/wiki/Heuristic_function

12

Variants

 Randomness

 Make the Al dump/non-perfect

How?

« Different terrain types?

© Alla Sheffer, Helge Rhodin

13

Two-player games

WWW.Npr.org

© Alla Sheffer, Helge Rhodin

Min-Max Trees

* Adversarial planning in a turn-taking environment
* Algorithm seeks to maximize our success F
* Adversary seeks to minimize F

* aye = max min F(ay,, Qipey)
we they

« Key idea: at each step the algorithm selects the move that minimizes the
highest (estimated) value of F the adversary can reach

 Assume the opponent does what is best

© Alla Sheffer, Helge Rhodin

Example

(from uliana.lecturer.pens.ac.id/Kecerdasan%20Buatan/ppt/Game%20Playing/gametrees.ppt)

O
X O

We are playing X, and it is now our turn.

X

© Alla Sheffer, Helge Rhodin

Our options:

HE
=
1 2 3 -+ D

Number = position after each legal move

© Alla Sheffer, Helge Rhodin

Opponent options

==
| IFE OFE I
R ———

O WINS

Here we are looking at all of the opponent responses
to the first possible move we could make.

© Alla Sheffer, Helge Rhodin

Opponent options

u=: B
EE.

(| # & &
yd
45 \#J\F;%

OWINS

Opponent options after our second
possibility. Not good again...

© Alla Sheffer, Helge Rhodin

Opponent options

=a
o #F

2=

© Alla Sheffer, Helge Rhodin

Opponent options => Our options

w # o [F]
v

Now they don’t have a way to win on their next move. So
now we have to consider our responses to

thei r respon Ses. © Alla Sheffer, Helge Rhodin

HI

Our options :ﬁz

X WINS

We have a win for any move they make.
Original position in purple is an X win.

© Alla Sheffer, Helge Rhodin

Other options

T B & B &
. #'#”’}é”
OWwINS

They win again if we take our fifth move.

© Alla Sheffer, Helge Rhodin

Summary of the Analysis

=i
= HF O fFE FE FE

0 0 0 %X O

So which move should we make? ;-)

© Alla Sheffer, Helge Rhodin

MinMax algorithm

« Traverse “game tree”:
« Enumerate all possible moves at each node.

* The children of each node are the positions that result from making each
move. A leaf is a position that is a draw or a win for some side.

« Assume that we pick the best move for us, and the opponent picks the best
move for them (causes most damage to us)

 Pick the move that maximizes the minimum amount of success for our side.

© Alla Sheffer, Helge Rhodin

MinMax Algorithm

 Tic-Tac-Toe: three forms of success: Win, Tie, Lose.
* If you have a move that leads to a Win make |It.
* If you have no such move, then make the move that gives the tie.
* If not even this exists, then it doesn’t matter what you do.

© Alla Sheffer, Helge Rhodin

Extensions

« Challenges: In practice
* Trees too deepl/large to explore
* Opponent not always makes the ‘best’ choice
 Randomness

e Solution - Heuristics
 Rate nodes based on local information.

« For example, in Chess “rate” a position by examining difference in number of
pieces

© Alla Sheffer, Helge Rhodin

Heuristics in MinMax

« Strategy that will let us cut off the game tree at fixed depth (layer)
« Apply heuristic scoring to bottom layer

* Instead of just Win, Loss, Tie, we have a score.

* For “our” level of the tree we want the move that yields the node
(position) with highest score. For a “them” level “they” want the child
with the lowest score.

© Alla Sheffer, Helge Rhodin

Self stuy: Pseudocode

int Minimax (Board b, boolean myTurn, int depth) {
if (depth==0)

return b.Evaluate(); // Heuristic
for (each possible move 1i)
value[i] = Minimax(b.move (i), 'myTurn,

depth-1) ;
if (myTurn)
return array max(value);
else
return array min(value) ;

Note: we don’t use an explicit tree structure.
However, the pattern of recursive calls forms a tree on the call stack.

© Alla Sheffer, Helge Rhodin

Real Minimax Example

MaXx

Min

MaXx

Min .

Evaluation function applied to the leaves!

© Alla Sheffer, Helge Rhodin

Pruning Example

Max
Min
Max

Min

© Alla Sheffer, Helge Rhodin

Self stuy: Alpha Beta Pruning

Idea: Track “window” of expectations.
Use two variables

* 0O — Best score so far at a max node (‘our choice’): increases
« Ata child min node:
« Parent wants max. To affect the parent’s current a, our 3 cannot drop below a.
« If Bever gets less:

« Stop searching further subtrees of that child. They do not matter!

* B - Best score so far at a min node (‘their choice’): decreases
« At a child max node.
« Parent wants min. To affect the parent’s current B, our o cannot get above the parent’s f.
« If o gets bigger than £
« Stop searching further subtrees of that child. They do not matter!
Start with an infinite window (a = -o, S = o)

© Alla Sheffer, Helge Rhodin

Self stuy: Alpha Beta Example Il

Max o=10
Min

Max

Min

© Alla Sheffer, Helge Rhodin

Self stuy: Pseudo Code)

int AlphaBeta (Board b, boolean myTurn, int depth, int alpha, int beta) {
if (depth==0)
return b.Evaluate(); // Heuristic
if (myTurn)
for (each possible move i && alpha < beta)

alpha = max(alpha,AlphaBeta(b.move (i), 'myTurn,depth-1,alpha,beta));
return alpha;

}

else {
for (each possible move 1 && alpha < beta)

beta = min(beta,AlphaBeta(b.move (i), !'myTurn, depth-1,alpha,beta))
return beta;

© Alla Sheffer, Helge Rhodin

35

Variants

 More than two players?
* More than two choices?

« Opponent does not select
best move?

© Alla Sheffer, Helge Rhodin

Debugging

36

© Alla Sheffer, Helge Rhodin

37

Easy bugs

 Program crashes @&?

e
75
76
77
78
79
8e
81
82
83
84
85
86
87
88

on

This is likely an easy one ©!

* You know where the bug came from!

Check your call stack!

I

// A wrapper to return the component of an entity
= Component& get(Entity e) {
assert(has(e) && "Entity not contained in ECS registry"); &3
return components[map_entity_componentID[e]];

} Exception Thrown

// Check if entity has a component of type 'Component’ salmon.exe has triggered a brea\point.

- bool has(Entity entity) {
return map entity componentID.count(entity) > @;

Copy Details | Start Live Share sessi

LD 4

¥

// Remove an component and pack the container to re-use the empty space
- void remove(Entity e)

.
© Mo issues found

Microsoft Visual C++ Runtime Library

Debug Error!

Program:

ChCode\cpsc-427-dev2itemplatetout\build \xe4-Debughsalmo
n.exe

abortl) has been called

[Press Retry to debug the application)

Abort I Retry lgnaore

rch (Ctrl+E)
aime

@ this
@ e

P~ Search Depth: 3~ ‘?T

Value

salmon.exel(x00007f6b0%85eel {map_entity_componentlD={ size=1 } registered=false compon...
{id=3}

Type

ComponentContainer< Motio...

Entity

MName

ucrtbased.dll!00007Ff926d67c75()

crtbased.d

ucrtbased.dm
salmon.exe!CompeonentContainer<Maotion> iget(Entity €) Line 78
salmon.exelPhysicsSystem::step(float elapsed_ms) Line 39
salmen.exelmain() Line 33

[External Code]

260 30
26)
26d83c65()
26
ff926d81868()

926d841F()

© Alla Sheffer, Helge Rhodin

Debugging
 There will be bugs...

» Strategies for Fixing?

© Alla Sheffer, Helge Rhodin

Debugging
 There will be bugs...

Strategies for Fixing?
« Anticipate
 Reproduce
« Localize
« Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging:Strategies for Fixing?

* Anticipate |
e Unit tests
* Logging

« Explicit tests for “what can go wrong” (assert)
Anything that can go wrong will go wrong... at the worst possible time

« State/play saving and loading speeds up debugging
* Visual testing (early)
« Avoid randomness (use seed for rnd)

 Reproduce
« Localize
« Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging: Strategies for Fixing?

* Anticipate Il: your compiler (with —Wall enabled) is your friend

« “This enables all the warnings about constructions that some
users consider questionable, and that are easy to avoid”

 Reproduce
 Localize
« Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

« Strategies for Fixing?

« Anticipate

 Reproduce
 When does it happen?
* Logging + unit tests
 Record/load gameplay

« Localize

« Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

« Strategies for Fixing?

« Anticipate
 Reproduce
« Localize

* Intime: version control
* In place: logging
« Divide and Conqguer
* Minimal trigger input
 Don’t guess, measure
« Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

« Strategies for Fixing?
« Anticipate
 Reproduce
« Localize
« Use proper debugging tools
* Run with debug settings on

* Run within a debugger
« Set breakpoints
 Examine internal state
* Learn debugger options

© Alla Sheffer, Helge Rhodin

Debugging
(From Waterloo ECE 155, Zarnett & Lam)

« Strategies for Fixing?
« Scientific method.
* Observe a failure.
* Invent a hypothesis.
« 3 Make predictions.
« 4 Test the predictions using experiments and observations.
« Correct? Refine the hypothesis.
 Wrong? Try again with a new hypothesis.
* Repeat

© Alla Sheffer, Helge Rhodin

Debugging (From Waterloo ECE 155)

More (Human Factor) Strategies

 Take a Break/Sleep on it
 Code Review

* Look through code
 Walk someone through the code

© Alla Sheffer, Helge Rhodin

Debugging

More (Human Factor) Strategies

* Question assumptions

e Minimize randomness
e Use same seed

* Check boundary conditions
* Disrupt parallel computations

© Alla Sheffer, Helge Rhodin

Debugging (From Waterloo ECE 155)

More Strategies

« Know your enemy: Types of bugs
« Standard bug (reproducible)
« Sporadic (need to chase — right input combo)

* Heisenbug
 Memory (not Iinitialized or stepped on)
« Parallel execution
e Optimization

© Alla Sheffer, Helge Rhodin

Hard Bugs (cheat sheet)

Bug occurs in Release but not Debug
« Uninitialized data or optimization issue

Bug disappears when changing something innocuous
« Timing or memory overwrite problem

Intermittent problems
 Record as much info when it does happen

Unexplainable behavior
 Retry, Rebuild, Reboot, Reinstall

Internal compiler errors (not likely)
* Full rebuild, divide and conquer, try other machines

Suspect it’s not your code (not likely)
« Check for patches, updates, or reported bugs © Alla Sheffer, Helge Rhodin

