A3: Animation and Physics

Course: CPSC 427 - Sep 2021
Due: see course schedule

1 Introduction

The goal of this assignment is to introduce you to basic 2D animation. You will extend
the salmon game you made for Assignment 2 by including in it a basic particle system
implementation.

2 Template

You should use your own Assignment 2 code as a starting point. You will find comments
throughout the files to help you guide in the right direction. Entry points are marked with
TODO A3. The following classes will be important.

Particle Animation You will make your salmon shoot pebbles by implementing a CPU
particle system that instanciates spherical objects and simulates their path in water.

Bouncing Pebbles To make the pebbles collide with other pebbles and characters you
will need to add functionality to PhysicsSystem: :step.

3 Required Work (90%)

1. Getting Started

(a) We recommend pushing your code to a private git repository. Commit all your
edits from Assignment 2 to git, such that you can track and potentially revert
changes.

(b) Keep a separate copy of your Assignment 2 executable and dlls, to be able to
showcase your A2 solutions to TAs on request.

(c) Play the a3_reference.mp4 video to get a sense of what a possible assignment
solution should look like.



CPSC 427

Programming Assignment 3 (Individual)

2. Particle Animation (45%, prereq Rigid Body Physics lecture)

Implement a particle system which generates pebbles that shoot from the salmon’s
mouth every few seconds (adjust the timing for a compelling visual effect). The pebbles
should have randomized initial directions (away from the salmon) and initial velocities.
Their subsequent motion should be driven by a combination of these initial properties
and gravity. Implement this animation in stages:

(a)

Generate periodic pebbles that shoot from the salmon’s mouth and follow a
fixed straight-line path at a fixed speed. The RenderSystem: :restart_game ()
function provides example code for creating static pebbles on the floor. Re-
move the line that accidentally adds the player component to each pebble in
the createPebble().

Randomize initial pebble directions and velocities.

Introduce a new Physics component and add it at pebble creation time. It should
indicate that an entity is affected by physics and may store related properties such
as object mass.

Add gravity into the system to produce physically plausible (non-straight) pebble
paths. Note that the game template computes in pixel units and miliseconds; not
meters and seconds as common in physics;

3. Bouncing Pebbles (35%, prereq Rigid Body Physics lecture)

(a)

(b)

Add interaction in-between pebbles. Detect when two pebbles collide based on
their radius. Make both bounce using physically plausible bounce direction and
speed computations.

Handle the interaction between pebbles and other assets. Make pebbles bounce
with the turtles but pass by fish and salmon (these are slim and avoid collisions).
Make pebble and turtle bounce assuming both have spherical geometry with a

suitable radius and mass. You will have to replace the ’'SUPER APPROXIMATE’
collides() function that is provided in the template.

One could implement the above with if conditions on HardShell and Physics
components, but this is inflexible. Introduce a new component alongside Physics
such that you can ensure that turtles bounce with pebbles but are unaffected by
gravity. You should implement it such that there is one component to indicate that
an object is affected by gravity and another that it bounces on collision. Ignore
the comment in components.hpp that suggests Pebbles should have a HardShell,
it would make them deadly to the salmon.

4 Creative Part(20%)

The required code changes described so far will let you earn up to 80% of the grade. To
earn the remaining 20% to make the game more appealing by implementing one advanced

Page 2 of 4



CPSC 427 Programming Assignment 3 (Individual)

feature. You can also gain bonus points when exceeding our expectations. Marks for the
advanced features will be granted only if both they and all basic features are
fully implemented and functional. Advanced feature suggestions:

1. Machine-oblivious time-stepping that produces consistent animation and Al across
platforms and computational loads. Create and document a test case that showcases
the difference.

2. Include the force of water and the water flowing leftwards in the pebble motion com-
putation. Moreover, add collisions with the bottom side of the window and add a rest
state that disables gravity when pebbles come at rest on the ground to improved the
computational efficiency.

3. Use a single draw call to render all the pebbles at once (requires good OpenGL knowl-
edge), e.g., using glDrawArraysInstanced (), glDrawElementsInstanced, or by using
geometry shaders. This should be more efficient since pebbles only differ in position
and scale, they have the same appearance (shader).

Use your imagination to make other additions than the ones listed above, however, please
make sure you focus on tasks involving advanced OpenGL rendering, advanced physics, and
advanced animation knowledge.

To support both basic and advanced visualization and control features, you need to add a
toggle option where the user switches between the two modes by pushing the ‘a’ and ‘b’ keys
(‘a’ for advanced mode and ‘b’ for basic mode; either at startup or during the game).
Document all the features you add in the README.md file you submit with
the assignment. Advice: implement and test all the required tasks first before
starting the free-form part.

To get full credit you should add at least one of the advanced features above and make it
fully functional and free from bugs. The grading of additional bonuses, features, and the
size of bonuses will be at the marker’s discretion. A bonus is given for solutions that go
beyond the examples listed above. Multiple partially implemented features will not
receive full credit.

5 Hand-in Instructions

1. Create a folder called “a3”. As before, copy all your source files and the CMakeLists.txt
as present in the template to this folder (same folder structure; the TA should be able to
run CMake and compile). Double check that you include the shader folder. Excluded
all generated files, such as /build, .vs, /out and the example videos! These would
consume a lot of space on our server.

2. In addition, create a README.md file (Markdown language as used on github) that
includes your name, student number, and any information you would like to pass on
to the marker.

Page 3 of 4



CPSC 427 Programming Assignment 3 (Individual)

3. The assignment should be handed in with the exact command handin cs-427 a3

This will handin your entire a3 directory tree by making a copy and deleting all sub-
directories. If you want to know more about this handin command, use: man handin.
You can also use the web interface on your myCS page to upload the assignment.

Recall, do not publish your solution on github or any other place. Neither during the course
nor after; both is considered cheating.

Page 4 of 4



