Visual Al

CPSC 533R

Extra Lecture. How to give a good talk

Helge Rhodin

based on *How to give a good talk* by Christian Theobalt

Intention

- get the best grade?
- entertaining?
- tell a story?
- build tension?
- inform?
- teach?
- trigger future research?
- discuss?
- clarify?
- make people remember? a bit of everything!

Who is in your audience?

- Sometimes: Researchers in related fields
 - ECE, Math, ...
- Often: Researchers in your general field
 - computer science
- Mostly: Researchers in your specialization
 - computer vision, computer graphics, machine learning
 - newcomers, veterans,

BSc, MSc, PhD, ...

Make sure that you make it accessible for your audience, or choose the right audience for your presentation.

Structure

Basic rule

- Say what you are going to say
 - 1-3 main points in the introduction
- Say it
 - Give the talk –main insights / method
- Then say what you said
 - Summarize main points in the conclusion

Don't try to build suspense and then unveil a surprise ending

Tell a story

Prepare your material so that it tells a story logically

- Subject: title, authors, acknowledgements
- Introduction / overview / motivation
- Method / approach
- Results / information / analysis
- Conclusion / future work / summary

What is motivated in the introduction needs to be explained in the method and validated in the experiments.

• not a novel / thriller!

More details: http://www.cgd.ucar.edu/cms/agu/scientific_talk.html

How to structure the method section?

- Give an overview of your goals and methods
 - you can use web sources for figures ۲
 - reference source!
 - for some papers there are great tutorials, github pages, and **supplemental videos** ۲
 - check them out!
- Introduce the input and output
 - notation for the main quantities/variables
 - exactly one equation ۲
- Explain the method at hand of simple examples
 - a sketch •
 - input-output examples
- Focus on one aspect in detail
 - try to isolate independent contributions and focus on the most important

3D latent

variables

encoder

Shallow

How to structure the related work section?

- focus on the particular research field in question (be narrow)
- pick 1-2 works representing the current state-of-the-art (could be newer than the paper you present if it is 'historic')
 - published in major venues (only an indicator)
 - published by major groups (only an indicator)
- don't try to present them
 - just highlight the main result or conclusion
 - to be able to say what the new thing in this work is
 - explain details only if directly required to understand your presentation/paper
- can also be part of the evaluation
 - show improvements by side-by-side comparison

Result section

UBC

Method	N-MPJPE	P-MPJPE
$\mathbf{OursUnet}^{\star}$	145.6	112.2
OursUnet [*] , w/o appearance space, as in [50,51]	159.0	117.1
OursUnet [*] , w/o background handling, as in [50,51]	159.6	124.6
OursUnet [*] , w/o 3D latent space, as in [9,10]	191.7	139.0

1x simple table

1x graphs

1x video

Many figures

Common mistakes

Too much material

- remember: You will never be able to tell the full story
- you must select pieces that are most relevant
- decide on what to keep based on
 - your audience
 - why do you give this talk
 - what do you want your audience to learn

No clear message

- importance of problem and its solution
- why and how
- main ideas, insight, and novelty over related work

"Being a graduate student": facilitate discussion, ideas for improvement

Is a slide needed or not?

Three important criteria

- is it important for the main points in the story?
- will the audience understand and value this point?
- will the audience remember?

Everything is somewhat important, but you have to cut!

- create backup slides for those aspects that you deem important but can't fit into the main presentation (general advice!)
 - i.e. have slides for 15 min of presentation
 - + additional content for 3 to 5 min discussion

How much math?

- People are used to study equations, not to see them for 2 minutes on a slide
- Equations should support your explanation, not harm it
- Common mistake: too many / too few equations
- use them as little as possible...
- ...and as much as needed
- don't use them to impress people
- use only important equations, take time, explain properly
- Use latex to generate equations
- Mac: LaTeX it (allows easy generation and copy paste to Keynote)
- Windows: IguanaTeX plugin for PowerPoint

Anything special for this lecture?

Focus your presentation on

- Learning: convey concepts and methods to the other students
- Outlook: Explain what makes this a good paper. What works, what doesn't? What could I (grad student) be working on in the future?
- **Connecting:** put your work in context to lecture material, other presentations, and related work in the literature
- Practice: improve your own presentation skills

In all of these cases, give reasons! Why is something important, why does it work, why the attained result good? ...

CPSC 532R/533R - Visual AI - Helge Rhodin

Ē	~		
Ē	<		1
Ē	V	_	1

What else?

- Recommended to use PowerPoint or Keynote
- open source tools exists but have many glitches
 - or do you know a good one?
- latex beamer puts the wrong incentives (equations)

Practice your talk

- in front of friends or colleagues
- don't practice toooo often (you loose the energy)
- Test the presentation equipment
- zoom or recording tools
- use a good mic

Ask for feedback!

• TA and others---not on the day before the presentation (you need time to incorporate suggestions)

Presentations in CPSC 533R

- 1. Submit your slides three days in advance on Canvas
 - you can still polish afterwards
- 2. Arrange for a meeting with TA
- If you record (your choice), record the day before the presentation
 - PowerPoint file or .mp4 video
 - Send download link to the instructor and TA by mail until 11:59 pm
- 3. Be in time for your presentation
 - 10 minutes before the lecture start
- 4. Present, 15 min

- 5. Discussion ~15 min
 - don't feel responsible to answer all questions, your discussion time should be 3-5 min.

We want an open and general discussion in class.

Moderate the discussion of another paper
(two days or a week later)

