Visual Al

CPSC 533R

Lecture 9. Representation learning

Helge Rhodin

Discriminative vs. Generative

Disc.: 'reconstruct a given image'

- Supervised learning
 - classification
 - regression
 - SVM, decision trees, ...

Probabilistic definition

- conditional probability distribution p(y|x)
 - density networks, ...

3D pose

Gen.:'model distribution of images'

- GAN
- VAE
- PCA

image

- '... and their reconstruction'
 - analysis by synthesis
- joint probability distribution p(x,y)
 - e.g, p(x,y) = p(x|y) p(y)

likelihood of image x given pose y prior over all possible 3D poses

'generate images'?

Discriminative models covered in class

20 40 60 80 100 120 140

 \mathcal{O} ρ \cap 00 З 3 Æ 9

Probabilistic interpretation of least squares regression

CPSC 532R/533R - Visual AI - Helge Rhodin

Generative models covered

Recap: GAN concept

Goal: Train a generator, G, that produces naturally looking images

Idea: Train a discriminator, D, that distinguishes between real and fake images. Use this generator to train G

From classical (JS) to Wasserstein GAN

Diverse measures exist to compare probability distributions (here generated and real image distribution)

• The *Total Variation* (TV) distance

$$\delta(\mathbb{P}_r, \mathbb{P}_g) = \sup_{A \in \Sigma} |\mathbb{P}_r(A) - \mathbb{P}_g(A)|$$

• The Kullback-Leibler (KL) divergence

$$KL(\mathbb{P}_r || \mathbb{P}_g) = \int \log\left(\frac{P_r(x)}{P_g(x)}\right) P_r(x) d\mu(x) ,$$

• The Jensen-Shannon (JS) divergence

 $JS(\mathbb{P}_r, \mathbb{P}_g) = KL(\mathbb{P}_r || \mathbb{P}_m) + KL(\mathbb{P}_g || \mathbb{P}_m) ,$

where $\mathbb{P}_m = (\mathbb{P}_r + \mathbb{P}_g)/2$

JS is what the classical GAN optimizes

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} \left[\|x - y\| \right],$$

[Arjovsky et al., Wasserstein GAN. 2017]

SMPL: A Skinned Multi-Person Linear Model

Consists of

- a mesh template
- a low-dimensional set of deformation parameters
- a skeleton rig
- It can be used as a generative model
- prior over shape deformations
- prior over joint angles
- likelihood of point cloud compared to model parameterized by angles and shape weights

$$p(x,y) = p(x|y) p(y)$$

point cloud/mesh

joint & shape parameters

Forward kinematics, linear or not?

Forward kinematics

• non-linear in the angle (due to cos and sin)

$$R_1 = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix} \qquad R_2 = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix}$$

linear/affine given a set of rotation matrices

$$p_2(\theta_1, \theta_2) = R_1 p_1^{(0)} + R_2 R_1 \left(p_2^{(0)} - p_1^{(0)} \right)$$

Inverse kinematics

minimize objective to reach goal location q

 $O(\theta_1, \theta_2) = \|q - p_2(\theta_1, \theta_2)\|$

difficult, due to nonlinear dependency on theta

Recap: Surface mesh

Representation: Vertices connected by edges forming faces (usually triangles)

- Size: N x D + F x 3 (N: # points, D: space dimension, F: #triangles)
- A 3D surface parametrization (can be higher-dimensional)
 - Piece-wise linear with adaptive detail; triangle faces are usual

Benefits

- Good for single and multi-view reconstruction
- Provides orientation information (surface normal)
- Graph convolutions possible

Drawbacks

- Irregular structure (number of neighbors, edge length, face area)
- Difficult to change topology

(shape changes require to create new vertices and edges)

Short break

Go through the list of presentations and classify them into generative or discriminative approaches!

UBC

Variational Autoencoder (VAE) concept

- mapping to a latent variable distribution
 - a parametric distribution
 - usually a Gaussian
 - with variable mean and std parameters
 - impose a prior distribution on the latent variables
 - usually a Gaussian
 - with fixed mean=0 and std=1
- Enables the generation of new samples
 - draw a random sample from the prior
 - pass it through the decoder
 - or draw a sample from the posterior
 - pass it through the decoder

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5da

VAE examples

Generating unseen faces

https://github.com/yzwxx/vae-celebA

Generating music

[Roberts et al., Hierarchical Variational Autoencoders for Music]

The Variational Autoencoder (VAE)

VAE Objective (general)

$$\mathcal{L}(\phi, \theta, \mathbf{x}) = -\mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h}|\mathbf{x})} \left(\log p_{\theta}(\mathbf{x}|\mathbf{h}) \right) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x}) || p(\mathbf{h}))$$

Expectation over q

Data term / log likelihood

- Common parametrization
- Normal distributions

 $\begin{aligned} p(\mathbf{h}) &= \mathcal{N}(0, 1) \\ q_{\phi}(\mathbf{h} | \mathbf{x}) &= \mathcal{N}(\boldsymbol{e}(\mathbf{x}), \boldsymbol{\omega}(\mathbf{x}) \mathbf{I}) \\ p_{\theta}(\mathbf{x} | \mathbf{h}) &= \mathcal{N}(\boldsymbol{d}(\mathbf{h}), \boldsymbol{\sigma} \mathbf{I}) \end{aligned}$

- parametrized by neural networks
 - encoder e
 - decoder d

Kullback–Leibler divergence (relative entropy)

• a dissimilarity measure between distributions

Regularizer / prior term

- not symmetric, KL(p,q) != KL(q,p)
- Definition for continuous distributions

D

$$_{\mathrm{KL}}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log\left(\frac{p(x)}{q(x)}\right) \, dx$$
probability density of Q

The effect of the prior

- Create a dense and smooth latent space
- without holes
 - all samples will make sense
 - e.g., will reconstruct to plausible images

The effect of the data term

A reconstruction loss

- similarity of prediction to the target
 - input to output similarity for an auto encoder

The Variational Autoencoder (VAE), simplified I

VAE Objective (general)

 $\mathcal{L}(\phi, \theta, \mathbf{x}) = -\mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h} | \mathbf{x})} (\log p_{\theta}(\mathbf{x} | \mathbf{h})) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{h} | \mathbf{x}) \| p(\mathbf{h}))$

$$p_{\theta}(\mathbf{x}|\mathbf{h}) = \mathcal{N}(\boldsymbol{d}(\mathbf{h}), \boldsymbol{\sigma}\mathbf{I})$$

$$\log\left(\mathcal{N}(\mu,\sigma)\right) = \log\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{1}{2\sigma^2}\left(x-\mu\right)^2$$

 $\mathcal{N}(\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

$$\Leftrightarrow \mathcal{L}(\phi, \theta, \mathbf{x}) = \mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h}|\mathbf{x})} \left(\frac{1}{2\sigma^2} \left(\mathbf{x} - \mathbf{d}(h) \right)^2 \right) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x}) \| p(\mathbf{h})) + C$$

$$\Leftrightarrow \mathcal{L}(\phi, \theta, \mathbf{x}) = \lambda \mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h}|\mathbf{x})} \left(\mathbf{x} - \mathbf{d}(h)\right)^{2} + D_{\mathrm{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x}) \| p(\mathbf{h})) + C$$

A simple autoencoder reconstruction loss, the squared difference between input and output

Self-study: Kullback–Leibler divergence and entropy

Definition

$$D_{\mathrm{KL}}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log\left(\frac{p(x)}{q(x)}\right) \, dx$$

Interpretation

information gain achieved if Q is used instead of P

n

relative entropy

• Entropy:
$$H(p) = -\sum_{i=1} p(x_i) \log p(x_i)$$
.

 the expected number of extra bits required to code samples from P using a code optimized for Q rather than the code optimized for P

KL divergence between Normal distributions (univariate case)

UBC

The KL divergence can be split in two parts

$$D_{\mathrm{KL}}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log\left(\frac{p(x)}{q(x)}\right) dx = \int_{-\infty}^{\infty} p(x) \log\left(p(x)\right) dx - \int_{-\infty}^{\infty} p(x) \log\left(q(x)\right) dx$$

For Gaussians $p(x) = N(\mu_1, \sigma_1)$ and $q(x) = N(\mu_2, \sigma_2)$ it holds

$$\int p(x) \log q(x) dx = -\frac{1}{2} \log(2\pi\sigma_2^2) - \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2}$$
Hence
$$KL(p,q) = -\frac{1}{2} \log(2\pi\sigma_1^2) - \frac{1}{2} + \frac{1}{2} \log(2\pi\sigma_2^2) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2}$$

$$= \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}$$

$$\boxed{= -\log \sigma_1 + \frac{\sigma_1^2 + \mu_1^2}{2} - \frac{1}{2}} \quad \longleftarrow \quad \text{Using that m}_2 = 0 \text{ and s}_2 = 1$$

CPSC 532R/533R - Visual AI - Helge Rhodin

https://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians

The Variational Autoencoder (VAE), simplified II

Starting point

$$\Leftrightarrow \mathcal{L}(\phi, \theta, \mathbf{x}) = \lambda \mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h}|\mathbf{x})} \left(\mathbf{x} - \mathbf{d}(\mathbf{h})\right)^{2} + D_{\mathrm{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x}) \| p(\mathbf{h})) + C$$

Simplification (for Gaussian prior p and Gaussian q with $\mu_1 = e(\mathbf{x})$ and $\sigma_1 = \boldsymbol{\omega}(\mathbf{x})$ Data term / log likelihood 0 0

$$\Leftrightarrow \mathcal{L}(\phi, \theta, \mathbf{x}) = \lambda \mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h}|\mathbf{x})} \left(\mathbf{x} - \mathbf{d}(\mathbf{h})\right)^{2} + -\log \sigma_{1} + \frac{\sigma_{1}^{2} + \mu_{1}^{2}}{2} + C'$$

Estimating the expectation by sampling (here a single sample)

$$\approx \lambda \left(\mathbf{x} - \mathbf{d}(h)\right)^{2} + -\log \sigma_{1} + \frac{\sigma_{1}^{2} + \mu_{1}^{2}}{2} + C' \text{ with } h \sim q_{\phi}$$
reconstruct
'keep sigma > 0'
'keep sigma and mu small'
Expected value
Expected value
Expected value
Example to the image

f

Sampling from a Gaussian

- Rejection sampling from a uniform distribution
- intuitive approach
- ignores the tails of the distribution
- Better alternative:
- Box-Muller Transform
 - requires only two uniform samples
 - mathematically correct (not an approximation)
 - efficient to compute

The effect of the prior

- Create a dense and smooth latent space
- without holes
 - all samples will make sense
 - e.g., will reconstruct to plausible images

Self study: Deriving the VAE objective via Bayes

• still intractable due to p(x) in the divergence between predicted and true distribution

More at https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Self study: Evidence Lower BOund

Consider the term

CPSC 532R/533R - Visual AI - Helge Rhodin

$$ELBO(\phi) = E_q[\log p(x, z)] - E_q[\log q_\phi(z|x)]$$

Together with the KL divergence from before, we get $\log p(x)$ as

 $\log p(x) = ELBO(\phi) + \mathbf{KL}(q_{\phi}(h|x)||p(h|x))$

This one is the KL from the previous slide (encoder vs. true posterior)!

- the Kullback-Leibler divergence is always greater than or equal to zero
 - minimizing the Kullback-Leibler divergence is equivalent to maximizing the ELBO (making one term bigger must reduce the other one)

(the VAE objective)

 $= -\mathbf{E}_{\mathbf{h} \sim q_{\phi}(\mathbf{h}|\mathbf{x})} (\log p_{\theta}(\mathbf{x}|\mathbf{h})) \\ + D_{\mathrm{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x})||p(\mathbf{h})) \\ \text{This KL measures the} \\ \text{dissimilarity to the prior!}$

Differentiation and sampling

Problem: How to differentiate through the sampling step?

 it's a random process, only statistically dependent on the mean and standard deviation of the sampling distribution

Normal NN differentiation (needed for backpropagation)

What is the Jacobian matrix of the sampling layer?

- How would the sample location change if the parameters of the distribution change?
 - intuition: If the distribution gets wider, the sample should move away from the mean.
 If the mean changes, the sample should move in the same way.

Differentiation and sampling

Problem: How to differentiate through the sampling step?

 it's a random process, only statistically dependent on the mean and standard deviation of the sampling distribution

Solutions:

1. The reparameterization trick: Use

 $h = \mu + \sigma \odot \epsilon$, with $\epsilon \sim \mathcal{N}(0, 1)$

instead of

 $h \sim \mathcal{N}(\mu, \sigma)$

- 2. Monte-Carlo solution
 - related to reinforcement learning and importance sampling
 - works for discrete and continuous variables
 - we will cover it next week

Reparameterization trick, visually and mathematically

Equation: $h = \mu + \sigma \odot \epsilon$, with $\epsilon \sim \mathcal{N}(0, 1)$

Influence

- changing mu
 - increase -> moves sample right
 - decrease -> moves sample left
- changing sigma
 - increase -> moves away from center
 - decrease -> moves to the center

Gradient

 $\begin{aligned} &\frac{\partial h}{\partial \sigma} = \epsilon, \text{ with } \epsilon \sim \mathcal{N}(0,1) \\ &\frac{\partial h}{\partial \mu} = 1 \end{aligned}$

VAE results

Mixed appearance generation

VAE limitations

Generating human pose and appearance

VAE Limitations II

Tradeoff between data and prior term

- high weight on data term (big lambda):
 - crisp reconstruction of training data
 - but latent code is not Gaussian
 - the reconstruction of latent code samples from a Gaussian will be incorrect
- high weight on prior term (small lambda):
 - blurry reconstruction
 - but latent code follows a Gaussian distribution
 - sampling leads to expected outcomes (as good as training samples)

Summary - the big picture

- Discriminative and generative models
- Supervised, self-supervised, weakly-supervised, and unsupervised approaches
- Representing objects sparsely and densely
- Representing 2D and 3D objects
- Fully-connected, deep convolutional nets, and everything in-between
- Probability theory, ML fundamentals
- How to become a good researcher

