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Point clouds

Representation: A collection of 3D points

« Size: N x D (Number of points, space dimension)

» Sparse 3 D locations (usually, can be in a higher-dimensional)
« Continuous and adaptive detalil

Benefits

« Well suited for structure from motion form keypoints

« Compact representation of sparse keypoint locations
* human joints, object edges, ...

» Ordered point clouds carry semantics (e.g., first point is the head,
the second the neck position)

Drawbacks

« Unstructured, not well suited for convolutions etc.

* No orientation information

[Snavely et al., Photo Tourism:
Exploring Photo Collections in 3D]



PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation UBC

Applications
l PointNet
f mug? A »
"% table? l
\f!
_, car? ¢ 3 )
Classification Part Segmentation  Semantic Segmentation
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PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation :@:

A network architecture to make point cloud processing invariant to
« the point cloud order

global rigid transform.
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Segmentation Network



Pooling layers max pooling X g
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« usually over a fixed number of pixels
* e.g. 2x2 reduces resolution by 2

ROI Pooling
. Embedding 1
« variants: FH
» global pooling: accumulate over all pixels
. . ROI Poqling
« Region of Interest (Rol) pooling Embedding 2
» split region into regular number of cells =
» pool within each cell
‘ dynamIC! https://medium.com/xplore-ai/implementing-attention-in-

tensorflow-keras-using-roi-pooling-992508b6592b



Volumetric
representations




Recap: Voxel representations

Idea: A 3D tensor that encodes occupancy
» stores binary values
« occupied or empty cell
Size: Cx D x Hx W (C: channels, D: depth, H: height, W: width)
Batched size: N x D x H x W (N: number of elements in mini batch)
Benefits: We can apply 3D convolutions
« A generalization to 2D convolutions with a 3D kernel

Drawback:
» cubic in memory footprint and computational complexity



Signed Distance Field (SDF) ?@#

input domain: dimension equal to the dimension of the space
» usually two or three-dimensional

« output domain: a scalar

* negative for inside of the object

e positive outside

Continuous SDF

« continuous SDF: defined by a parametric function
* e.g., sum of Gaussians, neural network

« discrete SDF: defined on a grid
 e.g.2D grid or 3D grid

 yields additional information on voxel grid: distance to surface L e

« easy to display SDF in color code \ ERNE -] .
(red to blue = negative to positive)

. non-trivial to reconstruct the exact shape boundary Discrete SDF



Implicit functions

Idea: define complex shapes as the zero-crossing of a function
Size: W (the number of parameters of the function)

» independent of output space dimension!
« Any parametric function works

* e.g., mixtures of n Gaussian distributions

with position mu and covariance Sigma

flz) = ZG(o:,uz-,oz-)

& —— contour line / zero crossing

 a neural network?!

[Real-time Hand Tracking Using a Sum
of Anisotropic Gaussians Model]



[Saito et al., PIFu: Pixel-Aligned Implicit Function for :_.l'-!..—-..%

Im P licit functions throu 9 h NNs High-Resolution Clothed Human Digitization]

€

Idea: Train a neural network that takes an image

as well as a 3D query point as input and outputs:

 negative for positions inside the object f(z) = CNNy(z, 1)
« positive outside the object

» reconstruct by densely sampling / marching cubes algorithm

Advantage:

» No explicit limit on resolution (only limited by NN capacity)

Disadvantage:

» Reconstruction requires many network evaluations, its slow!

: Marching @ 6 »i *
— PIFu — &» /I : < Tex-PIFu - ol
= \
8 | '1 . i-.
g& l» - &

n-view inputs (n > 1) 3D occupancy field reconstructed geometry textured reconstruction

Testing
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Additional examples

[Saito et al., PIFu: Pixel-Aligned Implicit Function for
High-Resolution Clothed Human Digitization]
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5D Input Output

R ay -tracin g an d NERF Position + Direction Color + Density

08~ [l o) —

Radiance Field
» for every place & direction, output the radiance

L:R*%x S? - R?

» radiance: ‘outgoing light’, here in RGB space

Volume Rendering
Rendering Loss

Ray-trace the light reaching the camera
« ray from camera to scene

Q

Ray 1 /\ 2
/ | M-t i

Ray 2 /\
J\ || B -gt.

« accumulate visibility * radiance

 visibility: a function of opacity/occupancy

Q

2
2

Ray Distance

() (d)

“Neural”: learn the radiance & occupancy field with a NN
+ like the implicit function

[Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis]
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UB

0

Perspective spatial transformer

€

Goal: self-supervised training of reconstruction
Given: set of multi-view images at training time

Training: a neural network that predicts a 3D shape
« consistent with all views S(S)a 4
- using silhouette constraints Input 2D S5
Image IV Volume V ‘ /
Requires:
« 2D to 3D correspondences \ : - g T a
« a perspective 3D spatial transformer [ \ s®
Transformations h
(TOT® Ty S
Target 2D

mask S
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Sampling and interpolation

Re-sampling of images/features "
1. grid generation +
- parametric grid (gray) on +

- differentiable image grid (red)  +

2. grid sampling
* bilinear interpolation .

+ + + + + + + +
« differentiable
« still efficient (X1,y2) (xz2,)2)
compared to non-differentiable cropping and soft windows -
( ’ PRIng ) Bilinear

* moderate smoothness guarantees
(piecewise linear)

interpolation

(X 1,}’1] (X z,yl}
o o[ #o] +
o I:+ DD
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Perspective spatial transformer, details
Input 2D
Concept:
« predict a 3D occupancy grid given the input view
» construct N 3D grids (one for each reference view)
* pyramidal form, with
« position and orientation of reference cameras
* models the perspective effect

« sample the 3D volume d,

« as for 2D spatial transformers, but

by trilinear interpolation
« take the maximum along the depth direction

- models projection T RS

~
~

/
C A
LN

* minimize the distance of this projection to the volume

reference image silhouette (see prev. slide)

*
i

Image I Volume V
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Surface representations




Surface mesh

Representation: Vertices connected by edges forming faces
« Size:NxD + Ex 2 (# points, space dimension, # edges)
« A 3D surface parametrization (can be higher-dimensional)
* Piece-wise linear with adaptive detail; triangle faces are usual
Benefits
« Good for single and multi-view reconstruction
* Provides orientation information (surface normal)
« Graph convolutions possible

Drawbacks
« Irregular structure (hnumber of neighbors, edge length, face area)
 Difficult to change topology

(shape changes require to create new vertices and edges)
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General graph convolution

UB

0

€

o &6 06 06 06 o o
« traditional 2D convolutions is convolution on a regular grid % o000 00 00
e & 06 06 0 o o
. ) ] e 0060 00 0 0 00
Difficulties for general graph convolution 60 e
« no notion of left/right and up/down Convolution on a regular grid
» different number of neighbors o s
« distances between nodes _ \
Solution L || e A
_ _ _ R e I e T ARl o ST L s S
« per-node weight matrix for all nodes (like 1x1 conv.) R I
* weighted average over all neighbors (like average pooling)

1
W =0 [ Y —nw®

—~ Cjj Graph convolution network
J
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https://tkipf.github.io/graph-convolutional-networks/

Details: Mesh Laplacian

Goal: A form of 2" order derivative on the mesh

Laplacian for a function in 3D space:

o*f O*f  O*f

2
vf_3$2+8y2+8z2

Difficulty:

irregularity, where is left / right / up / down?

Solution:

(weighted) average over all neighboring nodes Ni
L(v) =V, — — Z \
1]6/]/
Widely used to encode surface detail and to
compare meshes
* as aloss to compare surfaces

UB

0

€

Finite differences approximation in 1D

s, wpen) > L) =00
f”(mi—la L, xi-l—l) ~ f(a:i—i_l) — zf]’E;Ut) i f(a;i_l)
1 \l/ N\ /

Ti—1 €T Tit1

1D Laplacian

4
INEDN

Graph Laplacian
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Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images W
v . z . s p 2 o &
Input Image Perceptual Feature Pooling Perceptual Feature Pooling Perceptual Feature Pooling

oo
< =

5]
€8
0 =
-

Deformation
Deformation
Graph
Unpooling
Deformation

Ellipsoid Mesh 156 vertices 628 vertices 2466 vertices
Desired:
* an output mesh that matches in position * ... and follows a coarse-to-fine manner

« Chamfer distance * minimize change of Laplacian between
* and has the same surface orientation layers

* surface normal
_ 2
In = Zp Zq:argminq("p—qng) ”(p — k, Il,;,) HQ

CPSC 532R/533R - Visual Al - Helge Rhodin
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0

Spiral convolution

€

Goal: break the permutation invariance of neighbors

X
Idea: Order neighbors by simple rules {/—\ \\
1. collect all neighbors (d hops in the graph) A 1
2. pick the closest one (geodesic distance) ( ! \ \
3. continue counterclockwise until spiral is of length k \[J \
4. multiply features h along spiral with weight matrix X P,

l
hg T o (hspiral(neighbors(i))W(E))

Advantages:
« fixed number of points in each spiral

3 \ : "‘/ : '-_’/ : ,
- efficient to compute @ ‘, Sl \-
* anisotropic and topology-aware J N N M T,

e easy to optimize



Surface texture #-“W-#

Representation: A map that assigns a color to every point of a surface
« Size: W x H+ N x 2 (W: width, H: height, N: #points for uv-coordinates)
 Dimensions: 2 D (embedded in 3D space via a mesh)

* Discrete in space, continuous in color
« UV-coordinates attached to each mesh vertex define the spatial association
Benefits

« Appearance modelling for graphics and vision
(e.g., rendering and reconstruction)
« Can carry more than color
(shadowmaps, normal maps, feature maps)
Drawbacks
« Texture mapping (assigning vertices to texture map location) is hard

« Only a surface, not volumetric

25


https://en.wikipedia.org/wiki/Texture_mapping

UV mapping

» describe points on the texture with u,v coordinates
« the horizontal and vertical position

* equip each vertex with the u,v coordinate
« a 2D point

Example: teapot.obj

v -3.000000 1.800000 0.000000  (vertex definition)
v -2.991600 1.800000 -0.081000

vt 0.000100 0.000100 (uv texture coordinates)
vt 0.999900 0.000100

f1252 1248 1122  (edges of a triangle/face)
f 1027 1035 1133

CPSC 532R/533R - Visual Al - Helge Rhodin
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Example: mapping a face to a texture ‘-@-—-“

face
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driving [ DRIVING VIDEO:

driving d 4

vector

a form of uv mapping
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Tex2Shape: Detailed Full Human Body Geometry From a Single Image

|

f(#
s

» Convolutional detail estimation via texture and normal maps

CPSC 532R/533R - Visual Al - Helge Rhodin

UBC
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Dense Pose: Dense Human Pose Estimation In The Wild

Issue: Heatmap representations don’t generalize well
to many points (one map per point)

Idea: Encode locations as continuous value
e as u,v coordinates
* generalizes well to multiple people

[Dense Pose: Dense Human
Pose Estimation In The Wild]
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Dense Pose results

We introduce a system that can associate every
image pixel with human body surface coordinates.




Hybrid representations




3D ‘uv coordinates’

wean Y

Idea: Learn to map to 3D coordinates

(0.0,0)
Solution:
« ageneralization of uv-coordinates in 3D “
NOCS Map (‘|‘ 0, [])
Benefits: [Normalized Object Coordinate Space for Category-Level

. 6D Object Pose and Size Estimation]
e compact, continuous, accurate

(b) Normalized Object
Coordinate Space (NOCS)
Map Estimation

(@) Input: Single RGB-D
Image

(c) Output: Category-
Level 6D Pose and Size
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Location maps

Idea: Predict 3D pose in a convolutional manner

Implementation:
1. predict three location maps alongside the heatmap H

" Root Relative
Joint Positions

* respectively one for the x,y,z positon

Location-map

2. retrieve the arg max of the heatmap (2D joint location) e S,

3. Read out the x,y,z maps at the predicted 2D location

Admantages:

 fully convolutional networks, which apply to varying image resolution

» (convolutional) operations are centered around the area of interest (joints)
« generalized well to multiple persons



UBC
VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera "f"@“

» Using location maps

« A combination of feed forward prediction with NNs
and optimization of skeleton parameters

Full-frame Input Bounding Box Heatmaps Location Maps 2D Keypoints 3D Pose 3D Skeleton

I, Bounding Box B, CNN Temporal B} Skeleton 15%
Tracking Regression Filter Fitting
Bl 1 K[ 1 1 Kffl P'L’"J [ P;L]
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