Visual Al

CPSC 533R

Lecture 6. GANs and Unpaired Image Translation

Helge Rhodin

Assignment 3

« Rendering
« Learning shape spaces
* Interpolating in shape spaces

« Work with your teammate only, don’t cheat!
» disciplinary measures will be reported
on your transcripts
» your future applications may be
rejected because of this

Assignment 3: Neural Rendering and Shape Processing

CPSC 532R/533R Visual Al
by Helge Rhodin and Yuchi Zhang

This assignment is on neural rendering and shape processing—computer graphics. We
provide you with a dataset of 2D icons and corresponding vector graphics as shown in
Figure 1. It stems from a line of work on translating low-resolution icons to visually
appealing vector forms and was kindly provided by Sheffer et al. [1] for the purpose of

i TN
FaOEIES

Y
Y

Figure 1: Icon vector graphics and their bitmap representation.

The overall goal of this assignment is to find transformation between icons. We provide
the TmagerIcon dataset as an HDF5 file. As usual, the Assignment3_TaskI.ipynb
notebook provides dataloading, training and validation splits, as well as display and
training functionality. Compatibility of the developed neural networks with color im-
ages is ensured by storing the contained 32 x 32 icon bitmaps as 3 x W x H tensors.
Vector graphics are represented as polygons with N = 96 vertices and are stored as
2 x N tensors, with neighboring points stored sequentially. The polygon representa-
tion with a fixed number of vertices was attained by subsampling the originally curved
vector graphics.

C
o
0

Assignment 3. Convolution with cyclic padding, theory

COﬂVO|UtI0n Input Kernel Output
 instead of inserting zeroes, copy values from the 2 3‘1’22 o[sls4
. . . ; e 01 9 [19]25]10
opposing side of the image iofslafsfor * == = Limtare
.06 |7|8]10
0 0;0;0;-5” il

Kernel

cyclic padding

Cyclic padding, broken in early PyTorch versions

Old, broken versions:
« Setting padding equal to zero or one seems to
have the same effect
* in both cases the output resolution is
reduced, as without padding
« Experienced instability when using cyclic padding
* Only tested with 1D convolutions

 Use the newest version!

UB

0

€

Auto Encoder (AE)

General case General reconstruction objective

h = encodery(x)

x" = decodery(h)
Simple non-linear case
h=0(Wx+b)

x' = o(W'h + b')

Linear case
h=Wx+b
x' = Wh+Db'

arg min Z |x — x'||?
W

:argvénin Z %3y — WWx(;]?

loss(x, x)

A two-layer fully-connected
neural network

Similar to PCA when using squared loss
(W neither forms an ordered nor

orthogonal basis)

W(l) = arg max {Z (X(z) . W)z}

[wl|=1 7

= arg max {WTXTXW}
[wi=1

ENCODER

Input Layer

Qutput Layer

r
DECODER

Autoencoder variants

Bottleneck autoencoder:
« hidden dimension smaller than input dimension
» |leads to compressed representations
* like dimensionality reduction with PCA

Sparse autoencoder:
« hidden dimension larger than input dimension
* hidden activation enforced to be sparse

(= few activations non-zero)

Denoising autoencoder:

« corrupt the input values, e.g. by additive noise
h = encodery(noise(x))
x" = decodery(h)

UBC

ey

Variational Auto Encoder (VAE)

« a probabilistic model
* ‘adding noise on the hidden variables’
* more in lecture 8!

Generative Adversarial Networks
(GAN)

What is a natural image?

« acollection of pixels

* natural textures

* local structure

« spatial consistency

« temporal consistency (video)

How can we model all that?

The year |
started my BSc

‘What makes a good model of natural images?

Yair Weiss'?

! Hebrew University of Jerusalem

yweiss@es.huji.ac.il

Abstract

Many low-level vision algorithms assume a prior proba-
bility over images. and there has been grear interest in try-
ing to learn this prior from examples. Since images are
very non Gaussian, high dimensional, continuous signals,
learning their distribution presents a tremendous computa-
tional challenge. Perhaps the most suceessful recent algo-
rithm is the Fields of Experts (FOE) [20] model which has
shawn impressive performance by modeling image statis-
tics with a product of porentials defined on filter outpurs.
However, as in previous models of images based on filter
outputs [30]. calculating the probability of an image given
the model requires evaluating an intractable partition func-
tion. This makes learning very slow (requires Monte-Carla
sampling at every step) and makes it virtually impossible to
compare the likelihood of two different models. Given this
computarional difficulty, it is havd 1o say whether noninm-
itive features learned by such models represent a true prop-
erty of natural images or an ariifact af the approximations
used during learning.

In this paper we present (1) wactable lower and upper
bounds on the partition function of models based on filter
outputs and (2) efficient learning algovithms thar do not re-
quire any sampling. Our results are based on recent results
in machine learning that deal with Gaussian potentials. We
extend these results to non-Gaussian potentials and derive a
novel, basis rotation algorithm for approximating the mexi-
mum likelihood filters. Our results allow us 1o (1) rigorously
compare the likelihood of different models and (2) caleu-
late high likelihood models of natural image staristics in a
matter of minutes. Applying our results to previous models
shows that the nenintuitive features are not an artifact of the
learning process but rather are capturing rwbust properties
af natural images.

1. Introduction

Signifieant_progress in low-level vision has been
achieved by algorithims.that are based on energy minimiza-
tion. Typically, the algorithm’s Giftputis calculated by min-

William T. Freeman®
2 MIT CSAIL

billfémit.edu

a b c
Figure 1. a. A natural image. b-c. Log histogram of derivatives at
different scales. Natural images have characteristic, heavy-tailed,
non-Gaussian distributions.

L1
REESUWE

| MLV,

Figure 2. Non-intuitive results from previous models. Top: The
filiers learned by the FOE algorithm [19]. Note that they look
nothing like derivative filters. Bottom: the potentials learned by
the Zhu and Mumford algorithm on natural images . For deriv-
atives at the finest scale (left). the potential is qualitatively similar
to the log histogram. But at coarser scales (middle and right) the
potential is flipped, favoring many large filter responses.

imizing an energy function that is the sum of two terms: a
data fidelity term which measure the likelihood of the input
image given the output and a prior term which encodes prior
assumptions about the output . Examples of tasks that have
been tackled using this approach include optical flow esti-
mation [20, 2], stereo vision [3, 5] and image segmentation.
An important subclass of these problems is when the out-
put is itself a “natural image™. This includes problems such
as transparency analysis [13], removal of camera blur [6]
image denoising and image inpainting [19]

For low-level vision tasks where the output is a natural
image, the prior should capture some knowledge about the
space of natural images. This space is obviously a tiny
fraction of the space of N' »x N matrices, but how can we

[Weiss et al., CVPR 2007]

GAN concept

Goal: Train a generator, G, that produces naturally looking images

Idea: Train a discriminator, D, that distinguishes between real and
fake images. Use this generator to train G

Real
Samples

I —

Learn data
distribution

—
enerated
Generator Fake

~ = Samples

=
o,
m
o

0

UB

€

Dissecting GANs

Trying to hand-craft a GAN:
1.

Start with a set of random images

REESS
NENE
wREAE
REEN

Train a discriminator D to classify real/fake images S.

o e
B PN 5121919
RN zlli 7]
RREE 2]2]%]0]

fake real

Select those fake examples that D is most unsure about

B=EEn
BENE
B
i

P 1

&=

UB

0

€

Train a generator G that creates more of
the good fakes from noise
— zBA=f
HREE
Generate new fake images with G. Continue

with 2. until fakes are indistinguishable.

gEes _ goen

HHEB

G——

2]<]7]7] 2]<]7]7]

3]2]2]0] 3]2]2]0)
fake real

This is not how it works, just a mental image!

10

GAN training examples

Training output, showing training iterations over time

https://www.youtube.com/watch?v=4kY8UIzZEKM

CPSC 532R/533R - Visual Al - Helge Rhodin

GAN training examples

E%g%
. . . e

Starts with noise S
* Loss is not decreasing 538525_30

* hard to interpret

e Generator and discriminator
learn together

« Hard to maintain balance!

0

<]l]2
AEaa
2]212]0]

Step: 1500

<]sl]2
BHAA
2171717
3] -14]0]

Step: 2500

AEEB BadA ¢ls]/]e)
SHE0A SERAaa
AEand nOaad
BE0E BAfAz BEnnm BOoA

Step: 3500 Step: 5500 Step: 7500 Step: 9500

loss_adv,acc_dis

14:30:00

14:40:00 14:50:00

loss_adv

15:00:00 15:10:00 15:20:00 15:30:00 15:40:00 15:50:00 16:00:00

acc_dis

12

UB

0

GANS

€

Take the average over dataset/minibatch
Random noise

Inén max V(D,G) = m(%n mgx[Ewmpr log D(x)] + E.~p log(l — D(G(2)))]]

A min max game (related to game theory)

D should be high/max D should be low for fake D should be high for fake
for real examples examples examples
(from perspective of D, (from perspective of D, (from perspective of G,
not influenced by G) maximize 1-D) minimize 1-D)

« Effects:
« learning a loss function
» learning the distribution of images
» the generator can generate samples from the distribution of natural images

13

GAN training

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do
e Sample minibatch of mn noise samples {z(1), ..., (™)} from noise prior Dg(2).
e Sample minibatch of m examples {z*),..., ("™} from data generating distribution
pdata(m)'

e Update the discriminator by ascending its stochastic gradient:

m

Vo, 3" s (&%) +105 (1~ 0 (0 (9)))]

end for
e Sample minibatch of m noise samples {z(), ..., 2™} from noise prior p(z).
e Update the generator by descending its stochastic gradient:

Vo, 3 (10 (6 (=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Green: outer loop on generator (gradient descent)

Orange: inner loop on discriminator (gradient ascent)

C
o
0

— crit_real
204 — crit_fake
— gen

10 A

—10

—20 1

T T T T T
200 400 600 800 1000

Chaotic GAN loss behavior
(e.g., generator loss going up not down)

o 4

[Goodfellow et al., Generative Adversarial Networks. 2014]

14

DCGAN

Convolutional generator architecture

1024
A

4
100z ‘ .

Code Project and
reshape

CPSC 532R/533R - Visual Al - Helge Rhodin

Deconv 1

Deconv 3

15

PatchGAN "@*

Patch-wise classification into real or fake (instead of globally)

Discriminator network
128x128x6 64x64x64 A feature map Qf
fake/real probabilities
32x32x128
16x16x256
15%15%512
14x14x1
) J . > Output

.

[Li and Wandt, Precomputed Real-Time Texture Synthesis with
Markovian Generative Adversarial Networks]

16

GAN derivation (self-study)

Theorem: GAN training minimizes the JS divergence between real and generated/fake distributions

e The Jensen-Shannon (JS) divergence

JS(P,,Py) = KL(P,|Pp) + KL(Py||Pry)

where P, = (P, +P,)/2

Proof: The GAN objective has the form

m(_i;n mSX[ngpr log D(x)] + E.~p. [log(l — D(G(2)))]]

 min max [pe(@) log D(z) + / p2(2)log(1 - D(G(2)))

z

— m(%n mgx/xpr(m) log D(x) + /mpg(a?) log(1 — D(x))

min max a og(y) + blog(1l — y)

0

€

Expected value
Bevy f() = [(o) (@) do

Fixed Generator

Assuming known
generator image
distribution p,,

17

UB

0

Kullback—-Leibler divergence and entropy (self-study)

€

Definition p(x) 1 q(x)

DaPl@= [pwyiog (@) dr

oo q(z)

 adistance between two distributions

Interpretation
« information gain achieved if Q is used instead of P
* relative entropy .
« Entropy: H(p) = _Zp(%) log p(z:).
i=1 %ﬂ.ﬁ
« the expected number of extra bits required to
code samples from P using a code optimized for

Q rather than the code optimized for P 0 N 1

UB

0

GAN derivation cont. (self-study)

€

a
. . . * __
The optimal (extremum) of a function of form alog(y) +blog(l1—y) is Yy = —y

alog(y) + blog(1 — y) Sl Y

, _a b y* a

y==-— 1 a+b
y 1-3p - =

a b y 2

—_ = — Find optimal y* by setting y’ = 0. " a

¥»ool=y Y =a+b

From the general form, it follows that the maximum is reached for the discriminator D*

Pr(x)
Pr(x) + pg(x)

pr(x) log D(x) + p,(x) log(1 — D(x)) == Pri=

We assumed that the generator, G, is fixed and we have a way to evaluate p, (generated image distr.)
* in practice, we can not estimate p, (opposed to a VAE)

* we can only sample from p, by sampling from p, and applying G
« but for the mathematical derivation we can make this assumption

19

GAN derivation cont. (self-study) ?-@-?

Using the optimal value of D, we reach a form that is equal to the JS-divergence

min V(D*, G) = / pr(x) 1og D*(x) + py(x) log(1 ‘D*(x)))dx Jensen—Shannon divergence
_ pr(x) Pg(x) _ 1) 1
= [(poroe 20—t pt08 — P20) Dys(P | Q) = 5Dxs(P | M)+ 5Dx1(Q || M)
with v l(P o)
=(P+
1 r 1 rt+
Dys(p,llpg) = EDKL(pr”p > pg) + EDKL(PgH%) 2

2 . . .
= l(/ pr)log — P dx) 3 / Py log —2E0)_ dx) Kullback—Leibler divergence (relative entropy)

2 D (X) + pg(x) 2 Pr(x) + pe(x)
= <log2+ /p,(x)log (xl))'f))+ - dissimilarity measure between distributions
x pPr pg .
) |:
%<10g2+/pg(x)log%dx> not symmetric, KL(p,q) '= KL(q,p)
i * PevThs « Definition for continuous distributions
= E<1og4 + min V(D*,G))

PPl @= [pw)iog (M) dr

— o q(z)

probability density of P and Q, the distribution of real and fake images

[https://medium.com/@jonathan_hui/proof-gan-optimal-point-658116a236fb]

https://medium.com/@jonathan_hui/proof-gan-optimal-point-658116a236fb

From classical (JS) to Wasserstein GAN

UBC

ey

ﬂiulbih

Diverse measures exist to compare probability distributions (here generated and real image distribution)

e The Total Variation (TV) distance

5(Pr. By) = sup [P,(4) ~ By(4)

e The Kullback-Leibler (KL) divergence

Kumpg:]m(%%)am@wu

e The Jensen-Shannon (JS) divergence

JS(Pr,Py) = KL(Py||Pm) + KL(P,||Pr) ,
where P, =

(P, +1Pg)/2

JS is what the classical GAN optimizes

e The Earth-Mover (EM) distance or Wasserstein-1

W(P,,P,) = inf

E - ’
~el(P,.,P,) (xry)N’r[|‘T y||]

Compare in this direction

ot in this direction

EM distance principle

[Arjovsky et al., Wasserstein GAN. 2017]

21

GAN vs. WGAN

Wasserstein distance is even simpler!

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do
e Sample minibatch of m noise samples {z(%), ..., 2(™)} from noise prior p, ().
o Sample minibatch of m examples {z(!),..., (™} from data generating distribution

pdaw(z)'
e Update the discriminator by ascending its stochastic gradient:

S0t 35 e (20) 46 (1 (0 (+0)))]

end for
o Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior py(z).
o Update the generator by descending its stochastic gradient:

Vo, 2 3 log (1- (6 (=)
=]
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

GAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, ncritic = 9.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic; the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 60, initial generator’s parameters.
: while 6 has not converged do
for t =0,..., Neritic do
Sample {z(V}7 | ~ P, a batch from the real data.
Sample {z(i)}m ~ p(z) a batch of prior samples.

1

2

3

: () (@)

5: Juw Vw m . Z"; fuw(g0(2))
6: mp(w w) ==]
it

8

9

W wto-] a R
w chp(—c,c)
end for
; Sample {z(M}™, ~ p(z) a batch of prior samples.
100 go =V >in fulge(2))
11: 6 + 6 — a - RMSProp(0, g¢)
12: end while

WGAN

the only difference is the log
(besides different notations)

22

Style GAN results

Source A: gender, age, hair length, glasses, pose

K

Source B: -
everything Result of combining A and B

else

Style GAN internals

« Compute style description given noise (form of non-Gaussian noise)

« Apply style and add noise at all layers (of ProgGAN generator)

Latent z € Z

Fully-connected

PixelNorm

(a) Traditional

Latent z € Z

Normalize

Mapping

Ty

T T

-
@]

-
]

Synthesis network g

Const 4x4x512

Noise

~BatchNorm

(b) Style-based generator

with mean/std
controlled by A

C
@
0

|

Noise on all layers
No noise

Noise in fine layers

Noise in coarse layers

N
i

Adaptive Instance Normalization (AdalN)

Instance Normalization:
» like batch norm, but normalizing across the spatial
dimensions (instead of elements in the batch)

Conditional Instance Normalization

« make the offset and scaling (gamma and beta)
dependent on a style s
* e.g., extracted with pre-trained network

Adaptive Instance Normalization
« normalize the mean and std of the target with the
one of the source

AdaIN(z,y) = o(y) (

x — p(x)
o(x)

) + pu(y)

UB

0

€

[Huang and Belongie. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization]

25

(Unpaired) Image translation

Paired vs. unpaired image translation

N
cee \l\ =
;"7,, &
——

Unpaired

27

Image translation #-@-#

First week of paper reading..

Labels to Street Scene Labels to Facade BW to Color

input] out input output
Day to Night Edges to Photo

input output input output

[Isola et al., Image-to-Image Translation with Conditional Adversarial Networks] .

Further image to image translation examples

Source to Target Result

Detected
. Pose
f
Source domain A a) Unpaired ~ Synthetic image b) Training a
[Everybody dance now] (simulation with annotation) image and pose pose detector

———_ _&‘-

transfer

=N —

——

- 7-.

«'Synthetic annotation

— 2 =5 5

N\

[Deformation-aware Unpaired Image Translation for Pose Estimation on Laboratory Animals]

29

Even more image to image translation examples

Input Image

‘,X 717~,., bas
‘\}1 (

& U Coordinates

Parf Index

“J(4
‘!Lg‘u
\ @9 ¥Y°

v WA

V Coordinates

[Dense pose]

Conditional Generative Adversarial Nets

GAN, but with additional input (here edge map) on top of the noise
« the noise will trigger properties that are hidden in the condition, here color
* both the generator and discriminator receive the condition as input

UB

0

€

31

Paired vs. unpaired

L 3 I) q —

Unpaired

32

Cycle GAN 'f'@*

Monet _ Photos Zebras T Horses

Unpaired image translation
« aset of images for the source
(e.g., many paintings)

« aset of images for the target
(e.g., real photographs)
* no image-to-image spatial correspondence

photo —>Monet ; horse —» zebra

* no image-to-image color correspondence Summer £ Winter

How can we learn a mapping?
* by limiting the capacity of the translator
« few parameters
» local operations (convolution)
* ensuring that the generated target images are realistic

winter —> summer

* similar in distribution
33

UB

Cycle GAN principle =~

0

€

Construct an identity function by chaining two translation networks

c Dx
7 - N : - 7 -
DX DY Y S~ £Z ~ X Yy
1) G A F F

"_ﬁ.\S o loss

. cycle-consistency |, ..s
‘ s

X Y X\ Y X Y cycle-consistency

F loss

« Jointly learn to

« map from X to Y and back to X i .
P Canonical solutions?

« map fromY to X and back to Y

34

Training examples (face to ramen)

« example images of both
classes in one batch
* map between domains
* one generator per class
» apply discriminator on all
generated images
« one discriminator per class

_»ya _>X’

(fake)

(fake)

y—»x’—»y’

(fake) (fake)

35

Cycle GAN issues

Warning:

« difficult to train

* requires similar objects in source and target
* e.g., zebra and horse

« works best on textures, not so well on shape changes
» good on zebra and horse
« bad to translate from mouse to elephant

36

Further reading

UB

—|

0

€

37

C
o
0

Style influence grows with depth

Style transfer

Idea: ‘turn NN training on its head’

« apply gradient descent

» with respect to the ‘input’ image

(instead of NN weights)

» keep the neural network weights fixed

Content
Representations

« find neural network features that

1. capture style (averaged spatially)
« correlation between features of a layer
2. capture content
« |2 difference between features of a layer
« set the objective function as the distance of ‘input’
» to style target (painting), in terms of style features
« to content target (photo), in terms of content features

[Gatys et al., A Neural Algorithm of Artistic Style 2015] 38

Style transfer results

39

Progressive GAN (ProgGAN)

Concept:
* build a classical GAN setup
* generator G
* discriminator D
« start low res (4x4)
« train for a bit, then add new layers
« optimize all layers
« new and old

Benefits:

* quick convergence

» scales to high resolution
« 1024 x 1024

G Latent Latent Latent
)) 4
[N N
| T —_—
: ——
— |
H H []
i : !]
' ! : 3
| | 1024x1024 |
o : } i
e B B
| iReals : iReals . iReals
D P . | 1024x1024 |
P i i]
[]
[]
P [—
- ! [———
| :
b ———
[axa_] [axa_]

v

Training progresses

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here refers to convolutional layers operating on N x N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

40

Progressive GAN example

®x &N

4x4

CPSC 532R/533R - Visual Al - Helge Rhodin

Training time: 0 days
4x4 resolution

Zz =random code
Generator

N x = real image
Discriminator

x' = generated image

41

