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Overview W
* 9 Lectures (~ once a week) -@resentation (We@
* Introduction * Presentation, once per student (25% of points)
« Deep learning basics and best practices (15 min + 15 min discussion)
* Network architectures for image processing * Read and review one out of the two papers
Representing images and sparse 2D keypoints presented per session (10% of points)

@tmg dense and SD@ : :

* GANSs and unpaired image translation (moved)

* Representing geometry and shape * Projectpitch (3 min, week 6&7)

. : * Project presentation (10 min, week 13&14)
* Representation learning

- Attention models * Projectreport (6 pages, Dec 14)
* 3x Assignments

* Playing with pytorch (5% of points)

Pose estimation (10% of points)

+ Shape generation (10% of points)
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Course projects W
Conditions Project report

e groups of 2-3 students * 6 pages in CVPR double column format

« a CV or CG topic of your choice « Sections: introduction/motivation, related work,

method description, and evaluation

Project proposal
* 3-minute pitch Project presentation

» 10 min talk per group
Project scope
* Motivation (intro & abstract)
« Literature review
* Method development and coding
« Evaluation



Possible project directions |

Improve visual quality Character animation

P>

New network handle mesh and

architectures + X? skeleton sequences

Movie editing

Original Modified

“movie reshaping”



Possible project directions Il #—@
: : e o force &
Killer whale identification Prevent foot sliding

3D pose estimation
- ‘ g

by - External view
reference, not used)

IMU-based?

Andrew W Trites
Professor and Director
Institute for the Oceans and Fisheries UBC

Dr. J6rg Sporri
Sport medicine head

See www.facebook.com/marinemammal University Hospital Balgrist
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Possible project directions lll

€

Fast motion capture Computer graphics Your own ideal!

(simulation)

+ Computer vision
(real world)

Exploit fast-moving

1F




Last year’s project examples

Reinforcement learning from visual feedback (egocentric)
by Daniele Reda and Tianxin Tao

Virtual keyboard
by Willis Peng

Differentiable shadow rendering | 0

Jerry Yin and Dave Pagurek van Mossel



New playgrounds (CS internal)

Multi-cam setups Accelerometer
sensors

360 degree
camera



New playgrounds (within UBC, outside CS) ’-f‘-@-‘

4 Calcium imaging NeUI’OSCIenCG
Link between neural firing and motion?

Centre for Brain Health

Chronic
/ tetrode

Chronic
window

Psychology and VR
People think and behave differently in VR Behavior .E'

recording

Alan Kingstone (Psychology)




2D pose estimation cont.




Recap Integral Regression-based 2D pose estimation

A combination of classification and regression input
1. Detection network to produce heatmaps
« same CNN as for heatmap prediction
2. Soft-max layer to turn heatmap H into probability map P
« normalizing all pixels in each heatmap H
Jalb P i heatmap
[,v]
Plu,v] = soft-max(H, (u,v)) = Zmdth Zhelght o
3. Integration layer to regress joint position (expected position)
« can be interpreted as voting/weighted average prob. map
each pixel votes for its own position, weighted by its probability
width height
pose, = Z Z ;L'P[zc,y}
rz=1 y=1
width height

pose vector

pose, = Y > yPlx,y
z=1 y=1

[Sun et al., Integral Human Pose Regression.]
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Part affinity fields for associating joints of multiple persons f“'w*

An extension of heatmaps (positions) to vectors (directions) | \t
« Ground truth affinity field L* between joints c,k

v ifponlimbec, k
0 otherwise.

Determine presence by

0<v-(p—xj, 1) Zlep and [vy - (p —xj, 1) <oy,

with v defined as

vV = (Xjok = Xj1.0) /[ Xjo.k — X5 k|2

[Cao et al., Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR 2017]
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Dilated/Atrous Convolution and ESP Net

Idea: increase the receptive field

* inserting zeros in the convolutional kernel

* the effective size of n X n dilated convolutional ] *

kernel with dilation rate r, is (n=1)r +1 x (n—1)r +1

* no increase in parameters
* use a set of dilated filters for multi-scale information
Problem: checkerboard patterns

* Fix: Hierarchical feature fusion (HFF)
e add output from different dilations before concat
RGB without I_-IFF with HFF

[dmxmd][a’ngxngd][dn;xmd [dnKXan]

HFF

[Mehta et al. ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation]
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Sequential application of dilated convolution #-@-'é

« maintains high resolution
* increases receptive field of subsequent layers

Convl
+
Pooll Blockl Block2 Block3 Block4 Blocks Blocks Block7
— —_— — —_— — e |:| — 0 — 0
B
tput
Image arce 4 8 16 32 64 128 256 256

(a) Going deeper without atrous convolution.

Convl rate=2 rate=4 rate=8 rate=16
+
Pooll Blockl Block2 Block3 Block4 Blocks Blockt Block7
=P e E
output
Image arice 4 8 16 16 16 16 16 16

[Chen et al., Rethinking Atrous Convolution for Semantic Image Segmentation]



Objective functions




Recap: MSE, MAE, Cross Entropy, and log-likelihoods

So far:
« simple losses operating element-wise

the |- loss / MSE
the l. loss / MAE

« connecting all elements, but treating them equally

soft-max + log-likelihood
Cross entropy
Gaussian log-likelihood, (Mixture) Density networks

llog—likelihood (:L'a y) - = log(soft—max(f(af:), y))

K
lcross entropy (III, y) - = Z Y14 log(SOft_maX(f[j] (:E)))
j=1

1 _ (y—w)?
ldensity network — 10g e 202
oV 2m

2.04

—lTS —fﬂ -t'; 5 0’0 0’5 l‘l‘l 1.5

Quadratic loss
Io(y, 1) = (y = 1)
Absolute loss
Ly, 1) =y —1|

16



Mean Per-Joint Position Error (MPJPE) ?@#

Euclidean distance d(p,q)
« the square root of the sum of squared coordinate offsets

d(p,q)” = (g1 — p1)* + (@2 — p2)* .

P(x, ¥, 2)

Z-coordinate

=Y

X-coordinate

-coordinate
/ yreoordinat Distance of prediction (solid) to
ground truth (dashed)

« averaged over all points
e groups elements
« 2D: group of 2 elements, e.g., tensor of N x 18 x 2 for a skeleton with 18 joints

« 3D: group of 3 elements
17



Percentage of Correct Keypoints (PCK) W

* The number of keypoints below a threshold
« usually using Euclidean distance

+ less sensitive to outliers ——
« scale sensitive = .
- ] N\
/fv""/ / A
« Scale invariant version: PCKh GReEEEE
 relative to the scale of the GT annotatiog® > 2 | ¢ ~
 e.g. halt the head-neck distance is ‘ wa A0

common for 2D human pose

CPSC 532R/533R - Visual Al - Helge Rhodin 18



Loss comparison W

Contour lines

3D slope

Squared error Absolute error Euclidean distance
MSE MAE MPJPE
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ROC and AUC

Receiver operating characteristic (ROC)

« true positive rate (TPR) against the false positive
rate (FPR)

» defined for binary classification

« applicable for any binary metric (e.g., PCK)
« often reveals important details!

Area Under Curve (AUC)
« ascore for consistency

« the integral (sum) of PCK over different thresholds

« summarizes the ROC curve in single value

« good for ranking approaches with different
precision-recall tradeoffs

Percentage below threshold

Percentage below threshold
2

=
8

3
S

40

=3
=3

®
=3

-3
S

'
S

Drosophila Melanogaster

m— Supervised
— QUIS
= Cycle-GAN (ICCV"17)
= GCc-GAN (CVPR'19)
= Fast-Style-Transfer
= Synthetic

5 10 15 20 25 30 35 40

Absolute error threshold (px)

Drosophila Melanogaster

5 10 15 20 25 30 35 40

Absolute error threshold (px)
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Chamfer distance

A distance between point clouds without correspondence
« sum of distances between closest points
* bi-directional

* closest pointofyinY forall x in X

» closest point of x in X forally in Y

dep(S1,S2) = Z mm lz — yll3 + Z mm lz — y||3

I€S1 """"""""""" 1,-'65'2

* |s not a distance function in the mathematical sense,

because the triangle inequality does not hold

zZ<X+Yy XEV

z

(\\ ?)\ ==
po(\a e W
\“;\55‘\9(\
(751
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A Point Set Generation Network for 3D Object Reconstruction from a Single Image

The chamfer distance is good for cases where points don’t have a
semantic meaning, by contrast to human keypoints.

,\ W \\. ¢

S
b o
P
et

Reconstructed 3D point cloud Shape completion

UBC

:—w‘“ﬁ
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3D transformations

Literature: Multiple View Geometry in Computer Vision

by Richard Hartley and Andrew Zisserman
PDF available online. E.g.: https://github.com/darknight1900/books
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Linear transformations in 2D

f
scaling: [ }C] [Vx] reflection:
y

&
el | L-J_

rotation: V% — |cos(q) -sin(q)||Vx shear: V:c — 1 C .Vx
LYy sin(q) cos(q)| |Vy V;/ vy

|
& -l

€

——)
< <
Q\e{\
Il
—)
o |
—
- O
| F——
<1<1
= R
e—
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Rigid transformations (isometries) W

Definition: Transformations that don’t change the shape of an object, i.e. preserve lengths (an isometry)
* Rotation (linear)

» Reflection (linear)

« Translation (non-linear)

b= L]

A
L" —
v

25



Affine transformations & augmented matrix and vector

« Can express rigid
transformations
« Translation
* Rotation
» Reflection
« And any other linear
transformation
* shear
« scale

Linear

f(x) = Wx

UB

0

€

Affine
f(x) =W -x
X
W b |1
Wi1 Wi2 Win b
with W = | W2,1 Wap Wo o, by
X = (X1,X0,...,X;, 1)

26
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Rigid transformations W

Definition: Transformations that don’t change the shape of an object, i.e. preserve lengths (an isometry)
* Rotation (linear)

« Reflection (linear) General shape
 Translation (affine) ' '
[Vj] ~[1 0 t][w w e
Vy 0 1 ty Vy
I1 -

A
L" —
v

. Y

Rigid body

27



Rigid transformations in 3D

Example: Camera transformation, mapping a point p
from world to camera coordinates

Pcam = [ Rworld—mam | tworld—cam ]pworld

team sworld = € = camera position

a:(cl) GJS:Q) 01533) right, up,
Recam—world = CL:E,I) G,rgf) aé?’) = I'ighty up,,
IS N CURN Y right, up,

1 DT
Rworld—)c:am — Rworld—)-cam - Rworld—)cam

T .
tworld—cam = —Ruyorld—scamCanera position

Simple & intuitive in affine transformation matrix form

[ Rworld—)eam | tworld—mam ] — [ R(:a.m—)»world | t(:am—>world ]_1




3D affine transformations

« widely used in computer graphics and computer vision
« achain of linear maps is a linear map
» to map from one camera to the other
« via world coordinates

—1
[ Rcama—mamb | tcamaﬁcamb } — [ R(:amb—>world | t(:amb—>world ] [ R(:ama—>world tcanla_—>w0r1d ]

 a chain of affine transformation matrices is an affine
transformation matrix




Skeleton representation "’“=i‘f“i“=

Representation: Bones connected by rotational joints

Size: Jx 3 +J x 3 (J: #joints, 3: axis + angle, 3: 3D position) Attachment to
next bone

orsize: Jx 3+ B x 1 (3: axis + angle, B: # bones) .
. . L olend
* Ahierarchical skeleton approximating anthropology po I/
« Joint rotation is modelled by axis+angle (3 DOF), exponential maps (3-4 DOF) ,
quaternions (4 DOF) and euler angles (3 DOF)

@ jointangle

Attachment to
previous bone

Benefits

«  Common for human and animal motion capture

* Enforces skeleton constraints explicitly

* s efficient to optimize (human tree/star skeleton structure)

Drawbacks
*  Only approximates the human skeleton
(e.g., the shoulder joint is complex to model properly)

* Indirect representation ] , ]
. . Forward and inverse kinematics
* the end effector position depends on all parent joints

30



Forward and inverse kinematics ?-@-?

Forward kinematics
e given joint axis, angle, and skeleton hierarchy
« compute joint locations
« start at the root (neck or head)
« rotate all child joints (down the hierarchy) by 6

 iteratively continue from parent to child
« until end-effector is reached
« achain of affine transformations!
Inverse kinematics
» given skeleton hierarchy and goal location
« optimize joint angles
« iteratively, gradient descent (as for NNs)

* minimize distance between end effector (computed

by forward kinematics) and goal locations
31



Forward kinematics, linear or not?

Forward kinematics
* non-linear in the angle (due to cos and sin)

= |:00891 —Sin91] Ry — [

sinf)y cosb;

cosfl, —sinfo
sinfly  cosfy

« linear/affine given a set of rotation matrices

q
pa(th,02) = Rlpgo) + Ro Ry (péo) — pgo)) S

Inverse kinematics
* minimize objective to reach goal location ¢

O(01,02) = ||qg — p2(01, 62)]]

 difficult, due to nonlinear dependency on theta

Bonus: implement IK yourself (perhaps use PyTorch?)

https://rgl.s3.eu-central-1.amazonaws.com/media/pages/hw4/CS328 - Homework 4 3.ipynb .



Deep Kinematic Pose Regression ?-'w"—f‘

Regressing joint angles and bone length instead of joint position
« Change of coordinates enforces prior information

* bone length symmetry

« constant bone length (over time)

o ‘ — =1 Y = ‘ = = | peo o
~ —+| CNN |— pr— — | FC layer |—s ) _.‘ K";g"::t'c S o
. L . ] y | A

Joint ldcations

Input image Convolutional Motion Joint Idss

features parameters locations

* Is better than predicting points and enforcing symmetry explicitly
[Imposing Hard Constraints on Deep Networks: Promises and Limitations]

* Feasible using Karush-Kuhn-Tucker Conditions - .
Positively Negative

Workshop on Negative Results in
Computer Vision. CVPR 2017

« Did not work well in practice


http://negative.vision/

Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image @E

Regression of SMPL parameters from images using deep learning
parameters:

« axis-angle of all J joints

« asurface mesh

« skinning weights that associate each vertex to neighboring joints (weighted sum)

34



Projective transformation ‘f—-"w"-f-‘

Perspective projection
* inversely proportional to depth
« usually the third coordinate, denoted by xs;or z
« proportional to the focal length, the distance of the focal

point to the image plane
Pinhole camera model « non-linear, non-affine

» studied in the field of projective geometry, a sub-field of

(yl) f (.315‘1) algebraic geometry

Y2 T3 \ T2

Projection in 3D Euclidean coordinates

35
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Projective transformation & Homogeneous coordinates

€

Equivalence in homogeneous coordinates
« Definition: vectors scaled by any constant lambda are equivalent

T TN | [ o /T |
9 To T2/ Tm
Tm—1 xm—l)\ xm—l/xm

T TmA 1

* models perspective transformations (projection) as a linear transformation

x1
0 0 0
- f L2 1y f L1
wl|l~[0 F 00 — L
1 00 1 0 ""513 Y2 T3 \ 12

Projection in Homogeneous coordinates Projection in Euclidean coordinates

36



Project Idea: Projective transformations within CNNs (ProjResNext)

256-din

« The basis building block of NNs are
affine transformations (linear + bias)
» ldea: Use projective transformations
instead
» Tasks:
« Literature review, has this been
tried?
* How to initialize (to prevent
vanishing gradients)
* Do we need to adapt other NN
structures, e.g., Batch Norm?
*  Willit be better?

256, 1x1, 4 256, 1x1,4 |, . 35| 256, 1x1,4
- - paths -
4,3x3, 4 4,3x3,4 | "=+ | 4,3x3,4
- - -
Projection | Projection Projection
* - -

4, 1x1, 256 4, 1x1,256 4, 1x1, 256

256-d out




3D representations




Depth maps

Representation: a depth value per pixel
« Size: W xH (Width x Height)
« A2.5D representation
« Continuous in Z (depth)
« Discrete in X,Y (horizontal and vertical)

Use cases

* Monocular and stereo reconstruction

* Novel view synthesis

» Well-suited for 2D convolution operations

Drawbacks
« Missing parts and holes
* No semantics/correspondence between frames

6
[Ummenhofer et al. DeMoN: Depth and Motion ;{\\ ({\
Network for Learning Monocular Stereo] \
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Self-supervision in a nutshell

a) Remove part of the input
* e.g. right from left image
b) Train a network to predict the removed part
« enforce additional constraints
* geometric

* temporal
‘ [Ummenhofer et al. DeMoN: Depth and Motion
DeMoN Network for Learning Monocular Stereo]

1. Estimate depth from the image with a NN

2. Estimate camera motion from image pair with a NN

3. Project depth map from first image to second image
* copy associated pixel color

4. Compute loss between the pixel color of the first image
projected on the second



Self-supervision by LeCun

» Predict any part of the input from any
other part.

» Predict the future from the past.

» Predict the future from the recent past.

» Predict the past from the present.
» Predict the top from the bottom.

Predict the occluded from the visible

Pretend there is a part of the input you
don’t know and predict that.

vy

CPSC 532R/533R - Visual Al - Helge Rhodin

R N

« Past Future —
Present
Slide: LeCun

UBC
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Point cloud

Representation: A collection of 3D points

« Size: N x D (Number of points, space dimension)

» Sparse 3 D locations (usually, can be in a higher-dimensional)
« Continuous and adaptive detalil

Benefits

« Well suited for structure from motion form keypoints

« Compact representation of sparse keypoint locations
* human joints, object edges, ...

» Ordered point clouds carry semantics (e.g., first point is the head,
the second the neck position)

Drawbacks

« Unstructured, not well suited for convolutions etc.

* No orientation information

[Snavely et al., Photo Tourism:
Exploring Photo Collections in 3D]
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PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation :@:

A network architecture to make point cloud processing invariant to
« the point cloud order

global rigid transform.

feature mlp (64,128,1024) max mlp
iansform . pool 74 (512,256,k)
S~ . \g shared nx1024 ]
global feature
e i - .
.................................................................................................... ... outputscores -
............................... ':l,¢’—___-_-'-F‘.F—_pointfeaturesm
2
% g |3
n|x 1088 shared ‘g shared & =
! : 2
multiply multiply _,[_I_]_. E 5
mlp (512,256,128) mlp (128,m)

Segmentation Network



PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Applications

car?

7

Classification

CPSC 532R/533R - Visual Al - Helge Rhodin

PointNet

' B

Part Segmentation

Semantic Segmentation
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MonoPerfCap: Human Performance Capture from Monocular Video

-

-




