Visual Al

CPSC 532R/533R - 2019/2020 Term 2

Lecture 5. Modelling 3D skeletons and point clouds

Helge Rhodin

Overview

- 9 Lectures (~ once a week)
 - Introduction
 - Deep learning basics and best practices
 - Network architectures for image processing
 - Representing images and sparse 2D keypoints
 - Representing dense and 3D keypoints
 - GANs and unpaired image translation (moved)
 - Representing geometry and shape
 - Representation learning
 - Attention models
- 3x Assignments
 - Playing with pytorch (5% of points)
 - Pose estimation (10% of points)
 - Shape generation (10% of points)

- Presentation, once per student (25% of points) (15 min + 15 min discussion)
- Read and review one out of the two papers presented per session (10% of points)

1x Project (<u>40 % of points</u>)

- Project pitch (3 min, week 6&7)
- Project presentation (10 min, week 13&14)
- Project report (6 pages, Dec 14)

Course projects

Conditions

- groups of 2-3 students
- a CV or CG topic of your choice

Project proposal

• 3-minute pitch

Project scope

- Motivation (intro & abstract)
- Literature review
- Method development and coding
- Evaluation

Project report

- 6 pages in CVPR double column format
- Sections: introduction/motivation, related work, method description, and evaluation

Project presentation

• 10 min talk per group

Possible project directions I

Improve visual quality

Character animation

Movie editing

New network architectures + X?

handle mesh and skeleton sequences

"movie reshaping"

Possible project directions II

Killer whale identification

Andrew W Trites Professor and Director Institute for the Oceans and Fisheries UBC See www.facebook.com/marinemammal

Prevent foot sliding

IMU-based?

force &

3D pose estimation

Dr. Jörg Spörri Sport medicine head University Hospital Balgrist

Possible project directions III

Fast motion capture

Exploit fast-moving background

Computer graphics (simulation)

+ Computer vision (real world)

Your own idea!

Last year's project examples

Reinforcement learning from visual feedback (egocentric) by Daniele Reda and Tianxin Tao

Differentiable shadow rendering Jerry Yin and Dave Pagurek van Mossel

New playgrounds (CS internal)

Accelerometer

sensors

Multi-cam setups

CPSC 532R/533R - Visual AI - Helge Rhodin

360 degree camera

New playgrounds (within UBC, outside CS)

Psychology and VR People think and behave differently in VR

Alan Kingstone (Psychology)

Neuroscience Link between neural firing and motion?

Centre for Brain Health

2D pose estimation cont.

input

heatmap

prob. map

CPSC 532R/533R - Visual AI - Helge Rhodin

1.

2.

3.

•

Part affinity fields for associating joints of multiple persons

UBC

An extension of heatmaps (positions) to vectors (directions)

• Ground truth affinity field L* between joints *c,k*

$$\mathbf{L}_{c,k}^{*}(\mathbf{p}) = \begin{cases} \mathbf{v} & \text{if } \mathbf{p} \text{ on limb } c, k \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

Determine presence by

$$0 \leq \mathbf{v} \cdot (\mathbf{p} - \mathbf{x}_{j_1,k}) \leq l_{c,k} \text{ and } |\mathbf{v}_{\perp} \cdot (\mathbf{p} - \mathbf{x}_{j_1,k})| \leq \sigma_l,$$

with v defined as

$$\mathbf{v} = (\mathbf{x}_{j_2,k} - \mathbf{x}_{j_1,k}) / ||\mathbf{x}_{j_2,k} - \mathbf{x}_{j_1,k}||_2$$

[Cao et al., Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR 2017]

Dilated/Atrous Convolution and ESP Net

Idea: increase the receptive field

- inserting zeros in the convolutional kernel
 - the effective size of n × n dilated convolutional kernel with dilation rate r, is (n-1)r +1 x (n-1)r +1
 - no increase in parameters
- use a set of dilated filters for multi-scale information
- Problem: checkerboard patterns
- Fix: Hierarchical feature fusion (HFF)
 - add output from different dilations before concat

without HFF

with HFF

[Mehta et al. ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation]

CPSC 532R/533R - Visual AI - Helge Rhodin

Sequential application of dilated convolution

UBC

- maintains high resolution
- increases receptive field of subsequent layers

(a) Going deeper without atrous convolution.

[Chen et al., Rethinking Atrous Convolution for Semantic Image Segmentation]

Objective functions

Recap: MSE, MAE, Cross Entropy, and log-likelihoods

So far:

- simple losses operating element-wise
 - the I₂ loss / MSE
 - the I₁ loss / MAE
- connecting all elements, but treating them equally
 - soft-max + log-likelihood
 - cross entropy
 - Gaussian log-likelihood, (Mixture) Density networks

 $l_{\text{log-likelihood}}(x, y) = -\log(\operatorname{soft-max}(f(x), y))$

$$l_{\text{cross entropy}}(x, y) = -\sum_{j=1}^{K} y_{[j]} \log(\text{soft-max}(f_{[j]}(x)))$$
$$l_{\text{density network}} = \log\left(\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}\right)$$

Quadratic loss

 $l_2(y,l) = (y-l)^2$

Absolute loss

$$l_1(y,l) = |y-l|$$

Mean Per-Joint Position Error (MPJPE)

Euclidean distance d(p,q)

the square root of the sum of squared coordinate offsets

Distance of prediction (solid) to ground truth (dashed)

- averaged over all points
 - groups elements
 - 2D: group of 2 elements, e.g., tensor of N x 18 x 2 for a skeleton with 18 joints
 - 3D: group of 3 elements

Percentage of Correct Keypoints (PCK)

- The number of keypoints below a threshold
 - usually using Euclidean distance
 - less sensitive to outliers
 - scale sensitive
- Scale invariant version: PCKh
 - relative to the scale of the GT annotatio
 - e.g. halt the head-neck distance is common for 2D human pose

Loss comparison

ROC and AUC

Receiver operating characteristic (ROC)

- true positive rate (TPR) against the false positive rate (FPR)
- defined for binary classification
- applicable for any binary metric (e.g., PCK)
- often reveals important details!

Area Under Curve (AUC)

- a score for consistency
- the integral (sum) of PCK over different thresholds
- summarizes the ROC curve in single value
 - good for ranking approaches with different precision-recall tradeoffs

Drosophila Melanogaster

Chamfer distance

A distance between point clouds without correspondence

- sum of distances between closest points
- bi-directional
 - closest point of y in Y for all x in X
 - closest point of x in X for all y in Y

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

• is not a *distance function* in the mathematical sense, because the triangle inequality does not hold

A Point Set Generation Network for 3D Object Reconstruction from a Single Image

The chamfer distance is good for cases where points don't have a semantic meaning, by contrast to human keypoints.

3D transformations

Literature: Multiple View Geometry in Computer Vision by Richard Hartley and Andrew Zisserman PDF available online. E.g.: https://github.com/darknight1900/books

Linear transformations in 2D

 \rightarrow

Rigid transformations (isometries)

Definition: Transformations that don't change the shape of an object, i.e. preserve lengths (an isometry)

- Rotation (linear)
- Reflection (linear)
- Translation (non-linear)

Affine transformations & augmented matrix and vector

Linear

 $f(\mathbf{x}) = \mathbf{W}\mathbf{x}$

- Can express rigid transformations
 - Translation
 - Rotation
 - Reflection
- And any other linear transformation
 - shear
 - scale

 $\tilde{\mathbf{x}} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, \mathbf{1})$

Rigid transformations

- Rotation (linear)
- Reflection (linear)
- Translation (affine)

General shape

3D affine transformations

- widely used in computer graphics and computer vision
- a chain of linear maps is a linear map
 - to map from one camera to the other
 - via world coordinates

 $\begin{bmatrix} \mathbf{R}_{\operatorname{cam}_a \to \operatorname{cam}_b} \mid \mathbf{t}_{\operatorname{cam}_a \to \operatorname{cam}_b} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\operatorname{cam}_b \to \operatorname{world}} \mid \mathbf{t}_{\operatorname{cam}_b \to \operatorname{world}} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{R}_{\operatorname{cam}_a \to \operatorname{world}} \mid \mathbf{t}_{\operatorname{cam}_a \to \operatorname{world}} \end{bmatrix}$

 a chain of affine transformation matrices is an affine transformation matrix

Skeleton representation

Representation: Bones connected by rotational joints Size: J x 3 + J x 3 (J: # joints, 3: axis + angle, 3: 3D position) or size: J x 3 + B x 1 (3: axis + angle, B: # bones)

- A hierarchical skeleton approximating anthropology
- Joint rotation is modelled by axis+angle (3 DOF), exponential maps (3-4 DOF), quaternions (4 DOF) and euler angles (3 DOF)

Benefits

- Common for human and animal motion capture
- Enforces skeleton constraints explicitly
- Is efficient to optimize (human tree/star skeleton structure)

Drawbacks

- Only approximates the human skeleton (e.g., the shoulder joint is complex to model properly)
- Indirect representation
 - the end effector position depends on all parent joints

Forward and inverse kinematics

Forward and inverse kinematics

Forward kinematics

- given joint axis, angle, and skeleton hierarchy
- compute joint locations
 - start at the root (neck or head)
 - rotate all child joints (down the hierarchy) by θ
 - iteratively continue from parent to child
 - until end-effector is reached
- *a chain of affine transformations!* Inverse kinematics
- given skeleton hierarchy and goal location
- optimize joint angles
 - iteratively, gradient descent (as for NNs)
- minimize distance between end effector (computed by forward kinematics) and goal locations

 $\mathbf{p}(\theta_1, \theta_2)$

Forward kinematics, linear or not?

Forward kinematics

• non-linear in the angle (due to cos and sin)

$$R_1 = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix} \qquad R_2 = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix}$$

linear/affine given a set of rotation matrices

$$p_2(\theta_1, \theta_2) = R_1 p_1^{(0)} + R_2 R_1 \left(p_2^{(0)} - p_1^{(0)} \right)$$

Inverse kinematics

minimize objective to reach goal location q

 $O(\theta_1, \theta_2) = \|q - p_2(\theta_1, \theta_2)\|$

difficult, due to nonlinear dependency on theta

Deep Kinematic Pose Regression

Regressing joint angles and bone length instead of joint position

- Change of coordinates enforces prior information
 - bone length symmetry
 - constant bone length (over time)

- Is better than predicting points and enforcing symmetry explicitly
 [Imposing Hard Constraints on Deep Networks: Promises and Limitations]
 - Feasible using Karush-Kuhn-Tucker Conditions
 - Did not work well in practice

<u>Positively Negative</u> Workshop on Negative Results in Computer Vision. CVPR 2017

Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

- Regression of SMPL parameters from images using deep learning parameters:
 - axis-angle of all J joints
 - a surface mesh
 - skinning weights that associate each vertex to neighboring joints (weighted sum)

Projective transformation

Pinhole camera model

[https://en.wikipedia.org/wiki /Pinhole_camera_model]

 $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \frac{f}{x_3} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

Projection in 3D Euclidean coordinates

Perspective projection

- inversely proportional to depth
 - usually the third coordinate, denoted by x₃ or z
 - proportional to the focal length, the distance of the focal point to the image plane
- non-linear, non-affine
- studied in the field of projective geometry, a sub-field of algebraic geometry

Projective transformation & Homogeneous coordinates

Equivalence in homogeneous coordinates

• Definition: vectors scaled by any constant lambda are equivalent

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{m-1} \\ x_m \end{bmatrix} = \begin{bmatrix} x_1 \lambda \\ x_2 \lambda \\ \vdots \\ x_{m-1} \lambda \\ x_m \lambda \end{bmatrix} = \begin{bmatrix} x_1/x_m \\ x_2/x_m \\ \vdots \\ x_{m-1}/x_m \\ 1 \end{bmatrix}$$

• models perspective transformations (projection) as a linear transformation

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} \sim \begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

Projection in Homogeneous coordinates

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = -\frac{f}{x_3} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Projection in Euclidean coordinates

Project Idea: Projective transformations within CNNs (ProjResNext)

- The basis building block of NNs are affine transformations (linear + bias)
- Idea: Use projective transformations instead
- Tasks:
 - Literature review, has this been tried?
 - How to initialize (to prevent vanishing gradients)
 - Do we need to adapt other NN structures, e.g., Batch Norm?
 - Will it be better?

3D representations

Depth maps

Representation: a depth value per pixel

- Size: W x H (Width x Height)
- A 2.5 D representation
 - Continuous in Z (depth)
 - Discrete in X,Y (horizontal and vertical)

Use cases

- Monocular and stereo reconstruction
- Novel view synthesis
- Well-suited for 2D convolution operations

Drawbacks

- Missing parts and holes
- No semantics/correspondence between frames

Kinect depth map viewed from the top. its sparse!

3d-depth-warping

Self-supervision in a nutshell

- a) Remove part of the input
 - e.g. right from left image
- b) Train a network to predict the removed part
 - enforce additional constraints
 - geometric
 - temporal
 -

DeMoN

- 1. Estimate depth from the image with a NN
- 2. Estimate camera motion from image pair with a NN
- 3. Project depth map from first image to second image
 - copy associated pixel color
- 4. Compute loss between the pixel color of the first image projected on the second

[Ummenhofer et al. DeMoN: Depth and Motion Network for Learning Monocular Stereo]

Self-supervision by LeCun

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.

Point cloud

- Representation: A collection of 3D points
- Size: N x D (Number of points, space dimension)
- Sparse 3 D locations (usually, can be in a higher-dimensional)
 - Continuous and adaptive detail

Benefits

- Well suited for structure from motion form keypoints
- Compact representation of sparse keypoint locations
 - human joints, object edges, ...
- Ordered point clouds carry semantics (e.g., first point is the head, the second the neck position)

Drawbacks

- Unstructured, not well suited for convolutions etc.
- No orientation information

[Snavely et al., Photo Tourism: Exploring Photo Collections in 3D]

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

A network architecture to make point cloud processing invariant to

output scores

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

MonoPerfCap: Human Performance Capture from Monocular Video

