Visual Al

CPSC 533R

Lecture 4. Advanced architectures and sparse 2D keypoints

Helge Rhodin

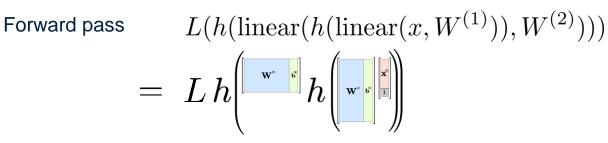
Pick a paper till tonight

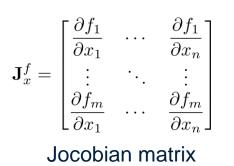
UBC
775
\bigcirc

Ļ	A	В	C	D	E	F	G	ł
		ease insert your name in the subsequent cell and mark your 1st, 2nd and 3rd choices in the Choices column, as ex			Name:	FirstName	e LastName	
-	There should be no read text left once you submit it to Canvas							
4.5		tation sessions						_
1		Topic	Authors	Title & Link	Keywords	Choices		_
	24-Sep	Objective functions II	Bishop	Mixture Density Networks	probabilitic regression			
			Barron et al	A General and Adaptive Robust Loss Function	optimizing the objective function			
	1-Oct	Self-supervision I	Vondrick et al.	Tracking Emerges by Colorizing Videos	self-supervision, color and motion			
			Doersch et al.	Unsupervised visual representation learning by context prediction	self-supervision, classification, tri			
	8-Oct	Human Pose	Wandt et al	Repnet: Weakly supervised training of an adversarial reprojection network for	3D pose, projection, self-supervis			
			Cao et al	Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields	2D pose estimation, skeleton repr			
	15-Oct	GANs	Chan et al.	Everybody Dance Now	image translation			
			Park et al.	Semantic Image Synthesis with Spatially-Adaptive Normalization	GAN, batch-norm, pixel-condition			
			Lu et al.	Layered Neural Rendering for Retiming People in Video	neural rendering, depth estimation			
	22-Oct	Implicit functions	Sitzmann et al.	Implicit neural representations with periodic activation functions	implicit function, gradient, optimi			
			Saito et al.	PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digiti				
			Peng et al.	Convolutional Occupancy Networks	implicit functions, volumetric grid			
	29-Oct	Animation and meshes	Xu et al.	RigNet: Neural Rigging for Articulated Characters	animation, rigging, mesh processi			
	25 000	Animation and meshes	Gao et al.,	Automatic Unpaired Shape Deformation Transfer	autoencorder, meshes, style trans			
			Hanoca et al	Point2Mesh: A Self-prior for Deformable Meshes	shape transfer, 3D texture, autoer			
	5-Nov	Object Detection	Carion et al.	End-to-End Object Detection with Transformers	object detection, transformer arch			
	5-1404	object betection	Wu et al.	Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Im				
			wu et al.	onsupervised ceaning of Probably synmetric beformable so objects non-nin	audoencoder, deptil, symmetry, s		_	
	10 Nov	Body models	Zuffi et al.	Three-D Safari: Learning to Estimate Zebra Pose, Shape, and Texture from Imag	hody mode, animals, antimization			
	10-1000	Body models	Zum et al. Ma et al.			- /		
			ivia et al.	CAPE: Dressing SMPL	body model, mesh processing, au	/		
					and the second second	1 .	1	
	12-NOV	Objective functions II	Peebles et al.	The Hessian Penalty: A Weak Prior for Unsupervised Disentanglement	GAN, latent space disentangleme			_
			Fort et al.	Deep Ensembles: A Loss Landscape Perspective	neural network theory, ensemple	2		F
								L
	17-Nov	Motion	Chu et al.	Learning Temporal Coherence via Self-Supervision for GAN-based Video Gener				
			Luo et al.	Consistent Video Depth Estimation	autoencoder, 3D geometry, temp			
			Holden et al.	Phase-Functioned Neural Networks for Character Control	character animation, temporal mo			
	19-Nov	Self-supervision II	Bielski et al.	Emergence of Object Segmentation in Perturbed Generative Models	GAN, self-supervision, segmentat			
			Crawford et al.	Spatially invariant unsupervised object detection with convolutional neural ne		· · ·		
			Lorenz et al.	Unsupervised Part-Based Disentangling of Object Shape and Appearance	self-supervision, autoencoder, po	· · · ·		
	24-Nov	Rendering	Liu et al.	Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning	differentiable rendering, occlusio			
			Schwartz et al.	The Eyes Have It: An Integrated Eye and Face Model for Photorealistic Facial An	autoencoder, differentiable rende			
	26-Nov	View synthesis	Mildenhall et al.	NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis	novel view synthesis, ray-tracing,			
			Hinton et al.	Transforming Auto-encoders	novel view synthesis, stereo, stru			
,	Alternativ	es (instead of one of the			,			
			Nguyen-Phuoc at al.	HoloGAN: Unsupervised learning of 3D representations from natural images	self-supervision, view synthesis,			
t			Moon et al.	12L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose a				
t								
ï								

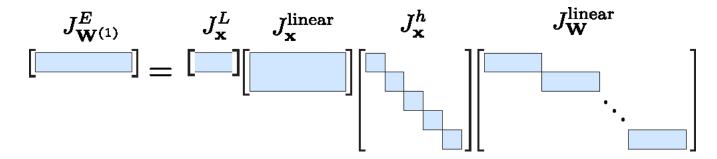
CPSC 532R/533R - Visual AI - Helge Rhodin

Recap: Automatic differentiation and backpropagation





Backwards pass to $W^{(1)}$



CPSC 532R/533R - Visual AI - Helge Rhodin

4

ResNet details

ResNet 32 (32 layers)

64. /2

What if number of channels changes?

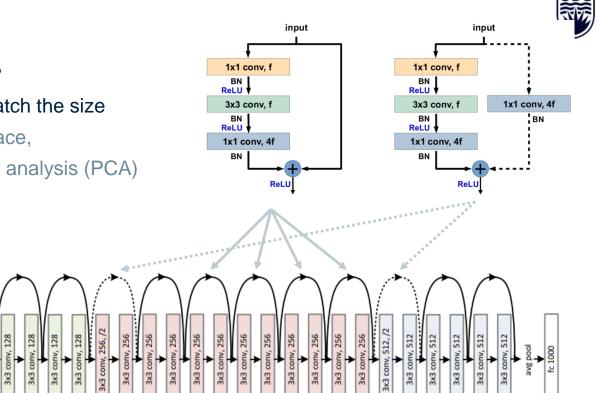
3x3 col

- apply a linear transformation to match the size
 - a projection on a linear subspace, related to principal component analysis (PCA)

, 128

3x3 co 3x3 co 3x3 co

3X3 C(



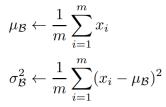
3X3 C

Batch normalization

[Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift]

- Normalize after each linear + activation function
 - normalize across minibatch, to have μ =0 and σ =1

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$



• Strict normalization reduces performance, hence, add a learnable offset and scale

$$y_i \leftarrow \gamma \widehat{x}_i + \beta$$

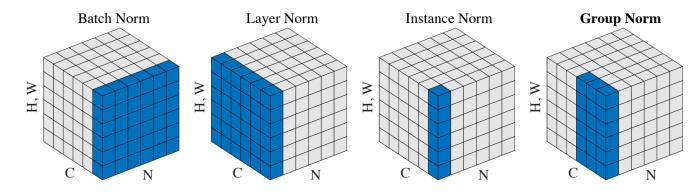
- What if we only have a single image at inference time?
 - Re-apply mean and variance recorded during training (using exponential moving average)

Batch normalization effect and variants

What is the benefit of first normalizing and then 'denormalizing'?

- noise from other images regularizes
- it separates learning of the variance (scale) and bias (offset) from the values itself
- Empirical: training deeper networks, with sigmoid activation, higher learning rate, and faster convergence

Variants normalize over different slices of the feature tensor:



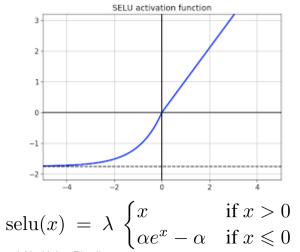
[Wu and He. Group Normalization]

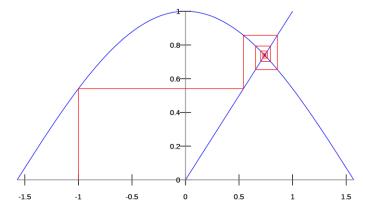
Self-normalizing neural networks

Self-normalizing Neural Networks

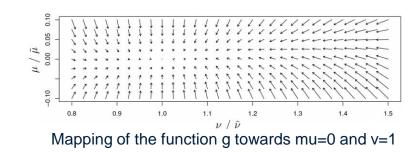
[Klambauer et al.]

- fixed point enforced by choice of activation function (SELUs)
- stable and attracting fixed point for the function g that maps mean and variance from one layer to the next
- Possibility to train deep fully connected NNs





Fixed point iterations for cos(x)



Regularization

Dropout

- randomly zero out activations
- re-weight the non-zero ones to maintain the distribution of the unmodified activations
 - induced noise reduces overfitting

Weight decay

$$\tilde{\mathbf{w}} = (1 - \tau)\mathbf{w}$$
 with τ small)

Weight decay and square prior are equivalent under certain conditions (vanilla SGD without momentum)

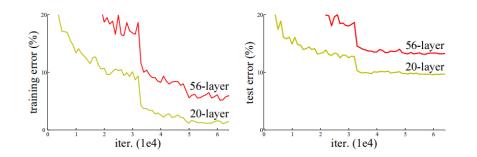
Prior on neural network weights

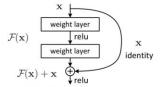
$$\widetilde{E}(\mathbf{w}) = E(\mathbf{w}) + \frac{\lambda}{2}\mathbf{w}^2$$

Check out AdamW in pytorch

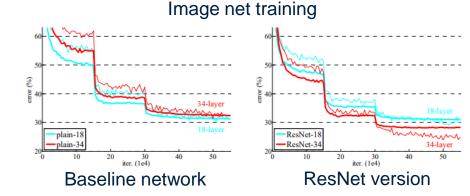
Residual networks and skip connections

• Deep networks are hard to train

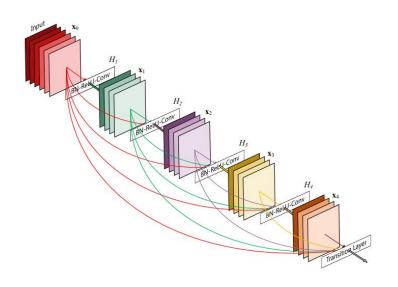


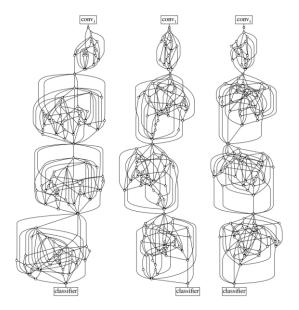


- Residual blocks with shortcut/skip connections
 - $\mathbf{y} = F(\mathbf{x}) + \mathbf{x}$
 - no extra parameters
 - enables training of deep neural networks



Other network architectures



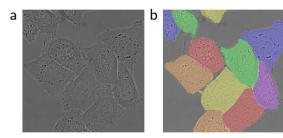


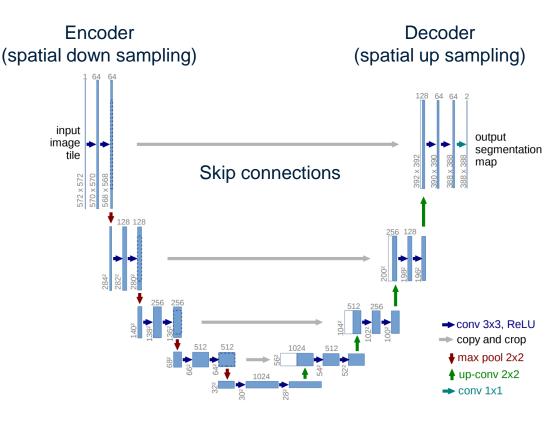
DenseNet (skip connection to all future layers)

Randomly wired networks (search for best wiring among candidates)

U-Net architecture

- Similar input and output resolution
- A global encoding is learned by down sampling (to 32 x 32 px)
- Progressive increase of channels maintains throughput / capacity
- Skip connections preserve details





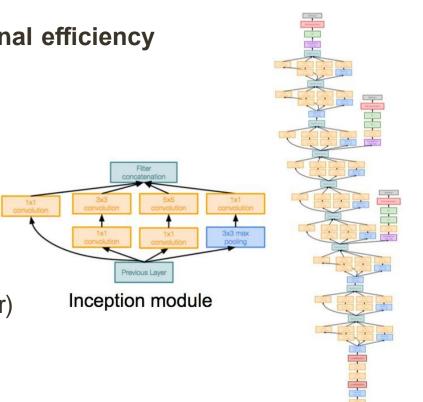
[U-Net: Convolutional Networks for Biomedical Image Segmentation]

GoogleLeNet (Inception Net V1)

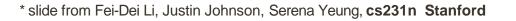
even deeper network with computational efficiency

- 22 layers

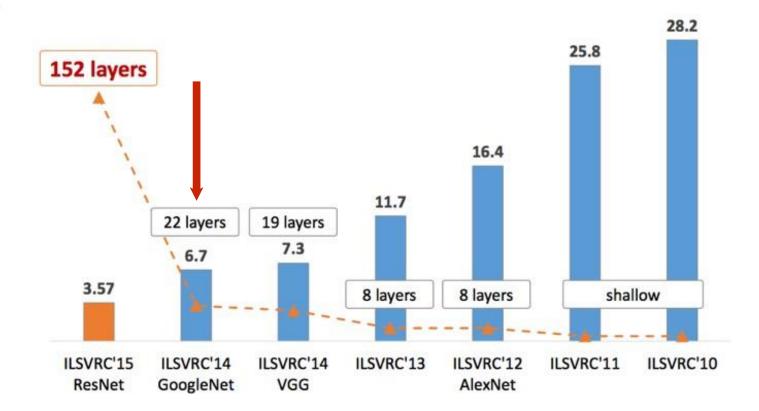
- Efficient "Inception" module
- No FC layers
- -Only 5 million parameters!
- (12x less than AlexNet!)
- Better performance (@6.7 top 5 error)



[Szegedy et al., 2014]



ILSVRC winner 2012



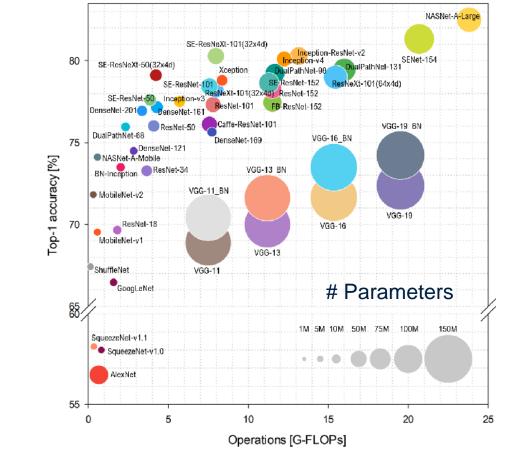
* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

CPSC 532R/533R - Visual AI - Helge Rhodin

Network comparison

The goal is to balance

- accuracy (maximize)
- number of parameters (minimize)
- number of operations (minimize)
- efficiency of operations (maximize)
 - cache efficiency
 - parallel execution
 - precision, e.g. float, float16, binary,...



History of Inception Networks

Inception V1 GoogleNet

- Network in network approach Inception V2
- Use of batch normalization

[Batch normalization: Accelerating deep network training by ...]

Inception V3

Factorizations

[Rethinking the inception architecture for computer vision]

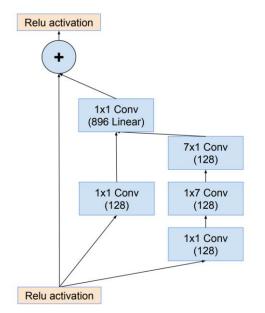
Inception V4

Tuning of filters

[Inception-v4, Inception-ResNet and the Impact of ...]

Inception-ResNet

Skip connections instead of concatenations



Inception ResNet block example

Separable Convolutions

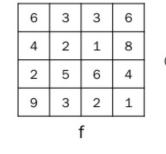
Idea:

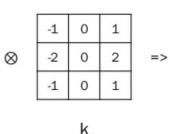
Separate a single convolution operation into a sequence of simpler operations

- e.g., 7x7 convolution into
 - 1x7 and 7x1
- reduction of parameters
 - e.g., 14 vs. 49 for 7x7 conv.

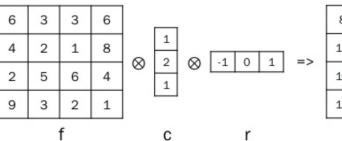
Drawback:

- It models simpler functions
 - no 'diagonal' entries possible
 - successive layers can't be run in parallel





f⊗k



8	-9	12	-7
12	-5	14	-11
10	-2	2	-15
11	-10	-5	-10
	f⊗	c⊗r	

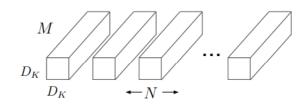
Mobile Net V1

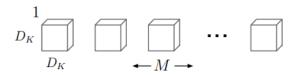
Depthwise separable convolution

- separate a 3x3 convolution with M input and N output channels
 - M 3x3 convolutions, each applied on a single channel
 - N 1x1 convolutions, combining the M intermediate features
 - add ReLU and Batch Normalization after each layer

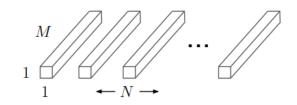
Advantages

- fewer add-mul operations
 (8-9 times less than conventional convolution)
- highly efficient operations
 - 95% of time spend on 1x1 convolutions
 - 1x1 convolutions are highly optimized
 - an instance of general matrix multiplication (GMM)





(b) Depthwise Convolutional Filters

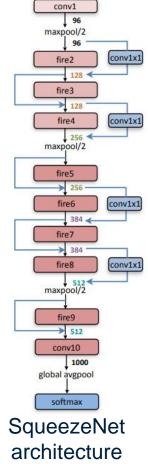


SqueezeNet

Goal: Very small model size and efficient execution

- Strategy 1. Replace 3x3 filters with 1x1 filters
 - a 1x1 filter has 9X fewer parameters than a 3x3 filter
- Strategy 2. Decrease the number of input channels to 3x3 filters
 - (number of input channels) * (number of output channels) * (3*3) •
- Strategy 3. Spatially downsample late
 - known to yield higher accuracy
- No fully connected layers
 - use global average pooling instead ۰

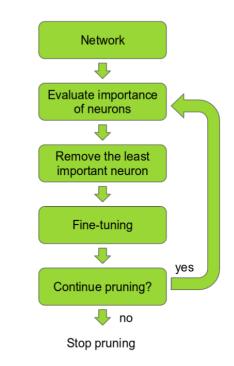
19



Reducing the model footprint

Pruning

- rank the neurons in the network according to how much they contribute, e.g.:
 - L1/L2 mean of neuron weights
 - their mean activations
 - the number of times a neuron wasn't zero on some validation set
- remove the low-ranking neurons
- Deep Compression [Han et al., 2015]
- quantize CNN parameters (e.g. 8-bits of precision)
- uses a codebook



[Pruning Convolutional Neural Networks for Resource Efficient Inference]

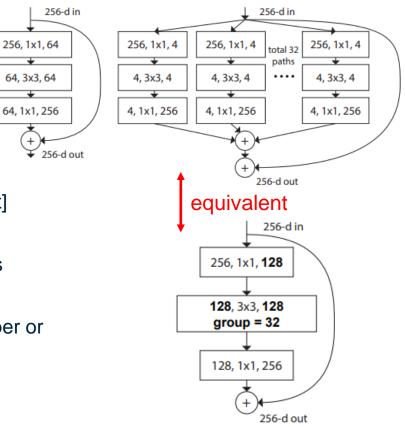
ResNeXt: Aggregated Residual Transformations

- Idea: "vertical residual blocks"
- create blocks with identical topology
 - and independent weights
 - replicate them c times ("cardinality")
- add these blocks together
- add a skip connection as in ResNet
- Related: Krizhevsky et al.'s grouped convolutions [AlexNet]

Advantage:

- larger number of channels, same number of operations
- improved performance
- increasing cardinality is more effective than going deeper or wider when we increase the capacity

A new (NeXt) dimension: depth, width, and cardinality



UBC

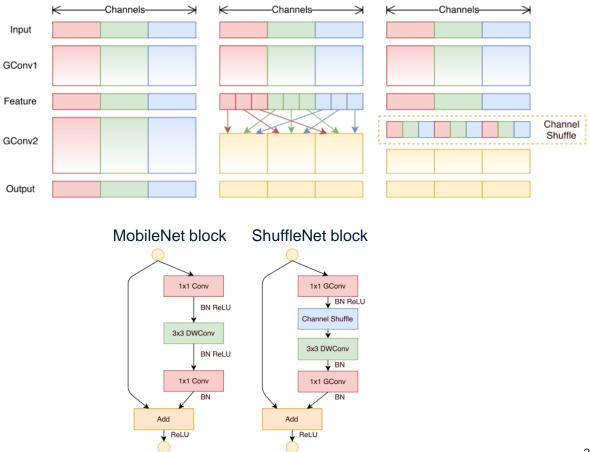
ShuffleNet

Idea:

- Group-wise convolution
- shuffle features for cross-talk

Advantage:

- less parameters for 1x1 conv
 - 1/ #g parameters, where #g is the cardinality
 - recall that MobileNet spent
 95% in 1x1 convolution



Discussion

Assignment I & II

Assignment I

- is due today tomorrow!
- submit on Canvas

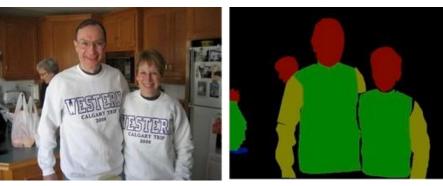
Assignment II

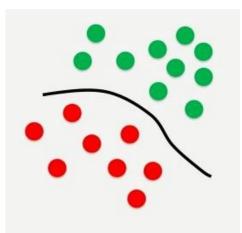
- released today
- later parts may require content from Thursday
 - start with preliminaries and Task I



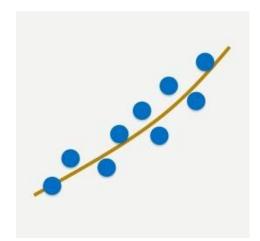
Classification vs. regression

Classification





Regression



Classification and regression

Regression

• for continuous values

 $\operatorname{nn}(\mathbf{x}) \to y \in \mathbb{R}$

• squared loss is most common

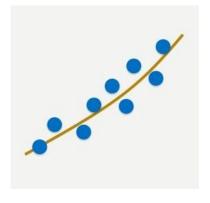
 $l_2(y,l) = (y-l)^2$

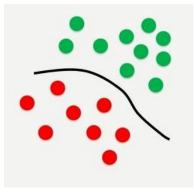
Classification

• discrete classes

 $nn(\mathbf{x}) \to \mathbf{y} \in [0,1]$

• naïve least-squares loss $l_2(\mathbf{y}, \mathbf{l}) = \|\mathbf{y} - \mathbf{l}\|^2$

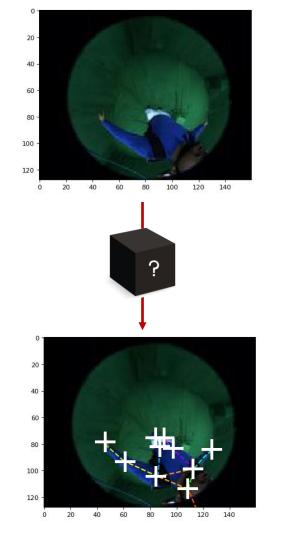




Regression-based 2D pose estimation

A classical regression task

- Input:
 - grid of color values, an image (3 x W x H)
- Output:
 - pairs of continuous values, the position in the image
 - one pair for each of the K keypoints (2 x K)
- Neural network architecture:
 - Some convolutional layers to infer an internal representation of the human pose (C x W' x H')
 - One or more fully-connected layers to aggregate spatial information into the output values (C * W' * H') → (2 x K)



Heatmap-based 2D pose estimation

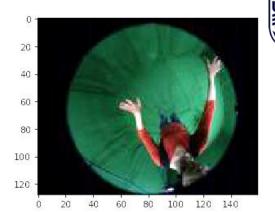
Phrase the regression task as classification

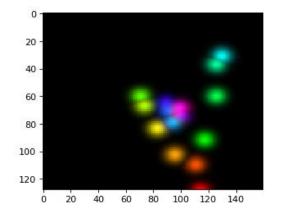
- separate heatmap H_j for each joint j
- Each pixel of H_j encodes the 'probability' of containing joint j
 - not a true probability as pixels don't sum to one

• Advantages:

- Inferred with fully convolutional networks
 - less parameters than fully connected ones (MLPs)
 - applies to arbitrary image resolution and aspect ratio (can be different from training)
 - translation invariance
 - locality
- Generalizes to multiple and arbitrary number of persons

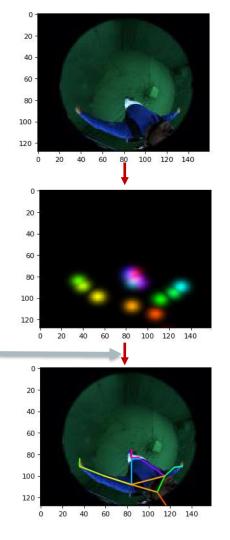
[Tompson et al., Efficient object localization using convolutional networks.]

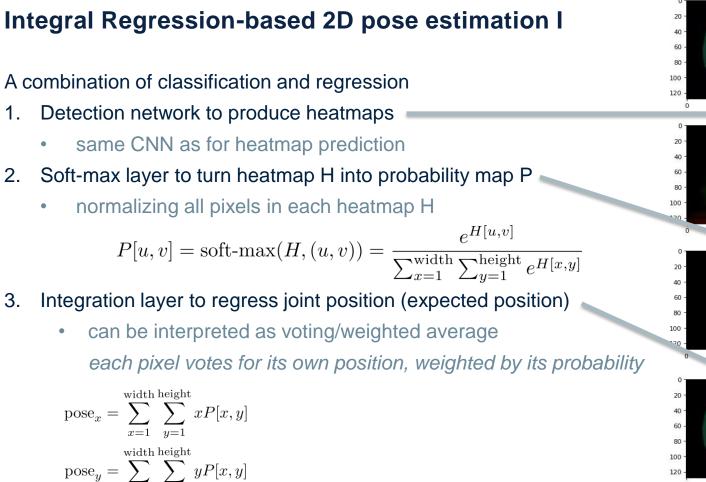




Disadvantages of heatmaps

- Disadvantage:
 - Large image scale variations
 - Two-stage pipelines are alleviating this
 - 1. Detect person bounding box at coarse resolution
 - 2. Infer skeleton pose within box at high resolution
 - Not end-to-end differentiable (pose extraction requires arg-max function)
 - No sub-pixel accuracy
 - multi-scale approaches can overcome this at the cost of execution time (average over runs on re-scaled input)





[Sun et al., Integral Human Pose Regression.]

1.

2.

3.

•

31

input

100

100

50

50

100

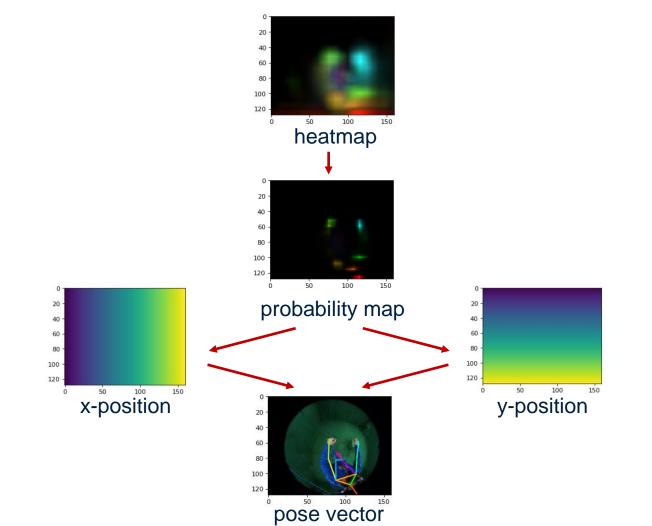
150

heatmap

prob. map

pose vector

Details



Integral Regression-based 2D pose estimation II

Advantages

- 1. Fully-convolutional CNN (as for heatmap classification)
- 2. Differentiable 2D pose regression
 - soft-max is differentiable, stable, and efficient to compute

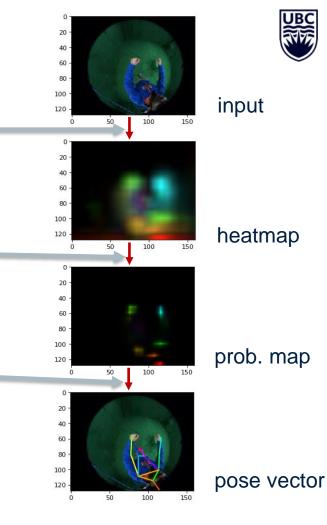
$$P[u, v] = \text{soft-max}(H, (u, v)) = \frac{e^{H[u, v]}}{\sum_{x=1}^{\text{width}} \sum_{y=1}^{\text{height}} e^{H[x, y]}}$$

• sum over probability map is differentiable

$$pose_x = \sum_{x=1}^{\text{width height}} \sum_{y=1}^{xP[x,y]} xP[x,y]$$
$$pose_y = \sum_{x=1}^{\text{width height}} \sum_{y=1}^{xP[x,y]} yP[x,y]$$

3. End-to-end training

- no difference between training and inference
- sub-pixel accuracy possible through joint influence of pixels
 - low-resolution heatmaps possible



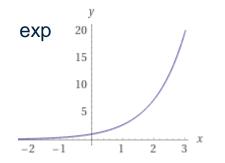
Attention: numerical stability

Exp normalize trick within cross-entropy

soft-max(z, i) =
$$\frac{e^{z_{[i]} - \bar{z}} e^{\bar{z}}}{\sum_{j=1}^{K} e^{z_{[j]} - \bar{z}} e^{\bar{z}}}$$
$$= \frac{e^{z_{[i]} - \bar{z}}}{\sum_{j=1}^{K} e^{z_{[j]} - \bar{z}}}$$

shift invariance is used to increase numerical stability!

The PyTorch implementation includes this step



Integral Regression-based 2D pose estimation III

UBC

- Disadvantages / open questions = possible course projects!
- 1. Sensitive to outliers
 - if there are two maxima in the heatmap, the predicted position will be in the middle of the two
- 2. How to support multiple people, at different scales?
 - Some form of hierarchical model?
- 3. Part affinity fields have been successful, can we develop a differentiable model?
 - An elongated ellipse that has position and orientation?
- 4. What about occluded joints?
- 5. What about temporal information?
- 6. Is it possible to infer neck-centered human pose (not knowing the absolute position, only relative distance of keypoints to the neck)?

Issues?

Your laptop / desktop

- No GPU? -> google colab or university (see lecture 2)
- Note, parallel dataloaders might not work well on Windows: Error: "Can't pickle <function <lambda> …"
 - fix: disable threading by setting num_workers=0
- Other issues encountered?