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Pick a paper till tonight
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Recap: Automatic differentiation and backpropagation

Forward pass

Backwards pass to 𝑊(1) Jocobian matrix
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ResNet details

What if number of channels changes?

• apply a linear transformation to match the size

• a projection on a linear subspace,

related to principal component analysis (PCA)

ResNet 32 (32 layers)
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Batch normalization

• Normalize after each linear + activation function

• normalize across minibatch, to have µ=0 and ϭ=1

• Strict normalization reduces performance, hence, add a learnable offset and scale

• What if we only have a single image at inference time?

• Re-apply mean and variance recorded during training (using exponential moving average)

[Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift]
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Batch normalization effect and variants

What is the benefit of first normalizing and then ‘denormalizing’?

• noise from other images regularizes

• it separates learning of the variance (scale) and bias (offset) from the values itself

• Empirical: training deeper networks, with sigmoid activation, higher learning rate, and 

faster convergence

Variants normalize over different slices of the feature tensor:

[Wu and He. Group Normalization]
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Self-normalizing neural networks

Self-normalizing Neural Networks

[Klambauer et al.]

• fixed point enforced by choice of activation function 

(SELUs)

• stable and attracting fixed point for the function g that 

maps mean and variance from one layer to the next

• Possibility to train deep fully connected NNs

Mapping of the function g towards mu=0 and v=1

Fixed point iterations for cos(x)
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Regularization

Dropout

• randomly zero out activations

• re-weight the non-zero ones to maintain the 

distribution of the unmodified activations

• induced noise reduces overfitting

Weight decay

Prior on neural network weights

Weight decay and square prior are equivalent under 

certain conditions (vanilla SGD without momentum)

Check out AdamW in pytorch
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Residual networks and skip connections

• Deep networks are hard to train

• Residual blocks with shortcut/skip connections

• no extra parameters

• enables training of deep neural networks

Image net training

Baseline network ResNet version
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Other network architectures

Randomly wired networks

(search for best wiring among candidates) 

DenseNet

(skip connection to all future layers)
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U-Net architecture

• Similar input and output resolution

• A global encoding is learned by 

down sampling (to 32 x 32 px) 

• Progressive increase of channels 

maintains throughput / capacity

• Skip connections preserve details

Encoder

(spatial down sampling)

Decoder

(spatial up sampling)

Skip connections

[U-Net: Convolutional Networks for Biomedical Image Segmentation]



GoogleLeNet (Inception Net V1)

even deeper network with computational efficiency

— 22 layers

— Efficient “Inception” module

— No FC layers

—Only 5 million parameters!  

(12x less than AlexNet!)

— Better performance (@6.7 top 5 error)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[ Szegedy et al., 2014 ]



ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Network comparison

The goal is to balance

• accuracy (maximize)

• number of parameters (minimize)

• number of operations (minimize)

• efficiency of operations (maximize)

• cache efficiency

• parallel execution

• precision, e.g. float, float16, binary,…

# Parameters
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History of Inception Networks

Inception V1 GoogleNet

• Network in network approach

Inception V2

• Use of batch normalization 

[Batch normalization: Accelerating deep network training by …]

Inception V3

• Factorizations 

[Rethinking the inception architecture for computer vision]

Inception V4 

• Tuning of filters

[Inception-v4, Inception-ResNet and the Impact of …]

Inception-ResNet

• Skip connections instead of concatenations
Inception ResNet block example
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Separable Convolutions

Idea: 

Separate a single convolution operation into a sequence of simpler operations

• e.g., 7x7 convolution into

• 1x7 and 7x1

• reduction of parameters

• e.g., 14 vs. 49 for 7x7 conv.

Drawback:

It models simpler functions

• no ‘diagonal’ entries possible

• successive layers can’t be run in parallel
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Mobile Net V1

Depthwise separable convolution

• separate a 3x3 convolution with M input and N output channels

• M 3x3 convolutions, each applied on a single channel

• N 1x1 convolutions, combining the M intermediate features

• add ReLU and Batch Normalization after each layer 

Advantages

• fewer add-mul operations

(8-9 times less than conventional convolution)

• highly efficient operations

• 95% of time spend on 1x1 convolutions

• 1x1 convolutions are highly optimized

• an instance of general matrix multiplication (GMM)
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SqueezeNet

Goal: Very small model size and efficient execution

• Strategy 1. Replace 3x3 filters with 1x1 filters

• a 1x1 filter has 9X fewer parameters than a 3x3 filter

• Strategy 2. Decrease the number of input channels to 3x3 filters

• (number of input channels) * (number of output channels) * (3*3)

• Strategy 3. Spatially downsample late

• known to yield higher accuracy

• No fully connected layers

• use global average pooling instead

SqueezeNet

architecture
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Reducing the model footprint

Pruning

• rank the neurons in the network according to how 

much they contribute, e.g.:

• L1/L2 mean of neuron weights

• their mean activations

• the number of times a neuron wasn’t zero on 

some validation set

• remove the low-ranking neurons

Deep Compression [Han et al., 2015]

• quantize CNN parameters (e.g. 8-bits of precision)

• uses a codebook

[Pruning Convolutional Neural Networks 

for Resource Efficient Inference]
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ResNeXt: Aggregated Residual Transformations

Idea: “vertical residual blocks”

• create blocks with identical topology  

• and independent weights

• replicate them c times (“cardinality”) 

• add these blocks together

• add a skip connection as in ResNet

Related: Krizhevsky et al.’s grouped convolutions [AlexNet]

Advantage:

• larger number of channels, same number of operations

• improved performance

• increasing cardinality is more effective than going deeper or 

wider when we increase the capacity

A new (NeXt) dimension: depth, width, and cardinality

equivalent
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ShuffleNet

Idea:

• Group-wise convolution

• shuffle features for cross-talk

Advantage:

• less parameters for 1x1 conv

• 1/ #g parameters, where #g is 

the cardinality

• recall that MobileNet spent 

95% in 1x1 convolution

MobileNet block ShuffleNet block
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Discussion
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Assignment I & II

Assignment I

• is due today tomorrow!

• submit on Canvas

Assignment II

• released today

• later parts may require content from Thursday

• start with preliminaries and Task I
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Classification vs. regression

Classification                                                                              Regression
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Regression

• for continuous values

• squared loss is most common

Classification

• discrete classes

• naïve least-squares loss

Classification and regression
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Regression-based 2D pose estimation

A classical regression task

• Input: 

• grid of color values, an image (3 x W x H)

• Output: 

• pairs of continuous values, the position in the image

• one pair for each of the K keypoints (2 x K) 

• Neural network architecture:

• Some convolutional layers to infer an internal 

representation of the human pose (C x W’ x H’)

• One or more fully-connected layers to aggregate 

spatial information into the output values 

(C * W’ * H’)   → (2 x K)
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Heatmap-based 2D pose estimation

Phrase the regression task as classification

• separate heatmap 𝐻𝑗 for each joint 𝑗

• Each pixel of 𝐻𝑗 encodes the ‘probability’ of containing joint 𝑗

• not a true probability as pixels don’t sum to one

• Advantages:

• Inferred with fully convolutional networks

• less parameters than fully connected ones (MLPs)

• applies to arbitrary image resolution and aspect ratio 

(can be different from training)

• translation invariance

• locality

• Generalizes to multiple and arbitrary number of persons

[Tompson et al., Efficient object localization using convolutional networks.]
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Disadvantages of heatmaps

• Disadvantage:

• Large image scale variations

• Two-stage pipelines are alleviating this

1. Detect person bounding box at coarse 

resolution

2. Infer skeleton pose within box at high 

resolution

• Not end-to-end differentiable

(pose extraction requires arg-max function)

• No sub-pixel accuracy

• multi-scale approaches can overcome this at the 

cost of execution time

(average over runs on re-scaled input)
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Integral Regression-based 2D pose estimation I

A combination of classification and regression

1. Detection network to produce heatmaps

• same CNN as for heatmap prediction

2. Soft-max layer to turn heatmap H into probability map P

• normalizing all pixels in each heatmap H 

3. Integration layer to regress joint position (expected position)

• can be interpreted as voting/weighted average

each pixel votes for its own position, weighted by its probability

[Sun et al., Integral Human Pose Regression.]

input

heatmap

prob. map

pose vector
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Details

heatmap

probability map

pose vector

x-position y-position
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Integral Regression-based 2D pose estimation II

Advantages

1. Fully-convolutional CNN (as for heatmap classification)

2. Differentiable 2D pose regression

• soft-max is differentiable, stable, and efficient to compute

• sum over probability map is differentiable

3. End-to-end training

• no difference between training and inference

• sub-pixel accuracy possible through joint influence of pixels

• low-resolution heatmaps possible

input

heatmap

prob. map

pose vector
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Attention: numerical stability

shift invariance is used to 

increase numerical stability!

Exp normalize trick within cross-entropy

The PyTorch implementation includes this step

exp
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Integral Regression-based 2D pose estimation III

Disadvantages / open questions = possible course projects!

1. Sensitive to outliers

• if there are two maxima in the heatmap, the predicted position will 

be in the middle of the two

2. How to support multiple people, at different scales?

• Some form of hierarchical model?

3. Part affinity fields have been successful, can we develop a 

differentiable model?

• An elongated ellipse that has position and orientation?

4. What about occluded joints?

5. What about temporal information?

6. Is it possible to infer neck-centered human pose (not knowing the 

absolute position, only relative distance of keypoints to the neck)?
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Issues?

Your laptop / desktop

• No GPU? -> google colab or university (see lecture 2)

• Note, parallel dataloaders might not work well on Windows:

Error: “Can't pickle <function <lambda>  …”

• fix: disable threading by setting num_workers=0

• Other issues encountered?


