
Visual AI
CPSC 533R

Lecture 4. Advanced architectures and sparse 2D keypoints

Helge Rhodin

2CPSC 532R/533R - Visual AI - Helge Rhodin

Pick a paper till tonight

4CPSC 532R/533R - Visual AI - Helge Rhodin

Recap: Automatic differentiation and backpropagation

Forward pass

Backwards pass to 𝑊(1) Jocobian matrix

5CPSC 532R/533R - Visual AI - Helge Rhodin

ResNet details

What if number of channels changes?

• apply a linear transformation to match the size

• a projection on a linear subspace,

related to principal component analysis (PCA)

ResNet 32 (32 layers)

6CPSC 532R/533R - Visual AI - Helge Rhodin

Batch normalization

• Normalize after each linear + activation function

• normalize across minibatch, to have µ=0 and ϭ=1

• Strict normalization reduces performance, hence, add a learnable offset and scale

• What if we only have a single image at inference time?

• Re-apply mean and variance recorded during training (using exponential moving average)

[Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift]

7CPSC 532R/533R - Visual AI - Helge Rhodin

Batch normalization effect and variants

What is the benefit of first normalizing and then ‘denormalizing’?

• noise from other images regularizes

• it separates learning of the variance (scale) and bias (offset) from the values itself

• Empirical: training deeper networks, with sigmoid activation, higher learning rate, and

faster convergence

Variants normalize over different slices of the feature tensor:

[Wu and He. Group Normalization]

8CPSC 532R/533R - Visual AI - Helge Rhodin

Self-normalizing neural networks

Self-normalizing Neural Networks

[Klambauer et al.]

• fixed point enforced by choice of activation function

(SELUs)

• stable and attracting fixed point for the function g that

maps mean and variance from one layer to the next

• Possibility to train deep fully connected NNs

Mapping of the function g towards mu=0 and v=1

Fixed point iterations for cos(x)

9CPSC 532R/533R - Visual AI - Helge Rhodin

Regularization

Dropout

• randomly zero out activations

• re-weight the non-zero ones to maintain the

distribution of the unmodified activations

• induced noise reduces overfitting

Weight decay

Prior on neural network weights

Weight decay and square prior are equivalent under

certain conditions (vanilla SGD without momentum)

Check out AdamW in pytorch

10CPSC 532R/533R - Visual AI - Helge Rhodin

Residual networks and skip connections

• Deep networks are hard to train

• Residual blocks with shortcut/skip connections

• no extra parameters

• enables training of deep neural networks

Image net training

Baseline network ResNet version

11CPSC 532R/533R - Visual AI - Helge Rhodin

Other network architectures

Randomly wired networks

(search for best wiring among candidates)

DenseNet

(skip connection to all future layers)

12CPSC 532R/533R - Visual AI - Helge Rhodin

U-Net architecture

• Similar input and output resolution

• A global encoding is learned by

down sampling (to 32 x 32 px)

• Progressive increase of channels

maintains throughput / capacity

• Skip connections preserve details

Encoder

(spatial down sampling)

Decoder

(spatial up sampling)

Skip connections

[U-Net: Convolutional Networks for Biomedical Image Segmentation]

GoogleLeNet (Inception Net V1)

even deeper network with computational efficiency

— 22 layers

— Efficient “Inception” module

— No FC layers

—Only 5 million parameters!

(12x less than AlexNet!)

— Better performance (@6.7 top 5 error)

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

[Szegedy et al., 2014]

ILSVRC winner 2012

* slide from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

15CPSC 532R/533R - Visual AI - Helge Rhodin

Network comparison

The goal is to balance

• accuracy (maximize)

• number of parameters (minimize)

• number of operations (minimize)

• efficiency of operations (maximize)

• cache efficiency

• parallel execution

• precision, e.g. float, float16, binary,…

Parameters

16CPSC 532R/533R - Visual AI - Helge Rhodin

History of Inception Networks

Inception V1 GoogleNet

• Network in network approach

Inception V2

• Use of batch normalization

[Batch normalization: Accelerating deep network training by …]

Inception V3

• Factorizations

[Rethinking the inception architecture for computer vision]

Inception V4

• Tuning of filters

[Inception-v4, Inception-ResNet and the Impact of …]

Inception-ResNet

• Skip connections instead of concatenations
Inception ResNet block example

17CPSC 532R/533R - Visual AI - Helge Rhodin

Separable Convolutions

Idea:

Separate a single convolution operation into a sequence of simpler operations

• e.g., 7x7 convolution into

• 1x7 and 7x1

• reduction of parameters

• e.g., 14 vs. 49 for 7x7 conv.

Drawback:

It models simpler functions

• no ‘diagonal’ entries possible

• successive layers can’t be run in parallel

18CPSC 532R/533R - Visual AI - Helge Rhodin

Mobile Net V1

Depthwise separable convolution

• separate a 3x3 convolution with M input and N output channels

• M 3x3 convolutions, each applied on a single channel

• N 1x1 convolutions, combining the M intermediate features

• add ReLU and Batch Normalization after each layer

Advantages

• fewer add-mul operations

(8-9 times less than conventional convolution)

• highly efficient operations

• 95% of time spend on 1x1 convolutions

• 1x1 convolutions are highly optimized

• an instance of general matrix multiplication (GMM)

19CPSC 532R/533R - Visual AI - Helge Rhodin

SqueezeNet

Goal: Very small model size and efficient execution

• Strategy 1. Replace 3x3 filters with 1x1 filters

• a 1x1 filter has 9X fewer parameters than a 3x3 filter

• Strategy 2. Decrease the number of input channels to 3x3 filters

• (number of input channels) * (number of output channels) * (3*3)

• Strategy 3. Spatially downsample late

• known to yield higher accuracy

• No fully connected layers

• use global average pooling instead

SqueezeNet

architecture

20CPSC 532R/533R - Visual AI - Helge Rhodin

Reducing the model footprint

Pruning

• rank the neurons in the network according to how

much they contribute, e.g.:

• L1/L2 mean of neuron weights

• their mean activations

• the number of times a neuron wasn’t zero on

some validation set

• remove the low-ranking neurons

Deep Compression [Han et al., 2015]

• quantize CNN parameters (e.g. 8-bits of precision)

• uses a codebook

[Pruning Convolutional Neural Networks

for Resource Efficient Inference]

21CPSC 532R/533R - Visual AI - Helge Rhodin

ResNeXt: Aggregated Residual Transformations

Idea: “vertical residual blocks”

• create blocks with identical topology

• and independent weights

• replicate them c times (“cardinality”)

• add these blocks together

• add a skip connection as in ResNet

Related: Krizhevsky et al.’s grouped convolutions [AlexNet]

Advantage:

• larger number of channels, same number of operations

• improved performance

• increasing cardinality is more effective than going deeper or

wider when we increase the capacity

A new (NeXt) dimension: depth, width, and cardinality

equivalent

22CPSC 532R/533R - Visual AI - Helge Rhodin

ShuffleNet

Idea:

• Group-wise convolution

• shuffle features for cross-talk

Advantage:

• less parameters for 1x1 conv

• 1/ #g parameters, where #g is

the cardinality

• recall that MobileNet spent

95% in 1x1 convolution

MobileNet block ShuffleNet block

23CPSC 532R/533R - Visual AI - Helge Rhodin

Discussion

24CPSC 532R/533R - Visual AI - Helge Rhodin

Assignment I & II

Assignment I

• is due today tomorrow!

• submit on Canvas

Assignment II

• released today

• later parts may require content from Thursday

• start with preliminaries and Task I

25CPSC 532R/533R - Visual AI - Helge Rhodin

Classification vs. regression

Classification Regression

26CPSC 532R/533R - Visual AI - Helge Rhodin

Regression

• for continuous values

• squared loss is most common

Classification

• discrete classes

• naïve least-squares loss

Classification and regression

28CPSC 532R/533R - Visual AI - Helge Rhodin

Regression-based 2D pose estimation

A classical regression task

• Input:

• grid of color values, an image (3 x W x H)

• Output:

• pairs of continuous values, the position in the image

• one pair for each of the K keypoints (2 x K)

• Neural network architecture:

• Some convolutional layers to infer an internal

representation of the human pose (C x W’ x H’)

• One or more fully-connected layers to aggregate

spatial information into the output values

(C * W’ * H’) → (2 x K)

29CPSC 532R/533R - Visual AI - Helge Rhodin

Heatmap-based 2D pose estimation

Phrase the regression task as classification

• separate heatmap 𝐻𝑗 for each joint 𝑗

• Each pixel of 𝐻𝑗 encodes the ‘probability’ of containing joint 𝑗

• not a true probability as pixels don’t sum to one

• Advantages:

• Inferred with fully convolutional networks

• less parameters than fully connected ones (MLPs)

• applies to arbitrary image resolution and aspect ratio

(can be different from training)

• translation invariance

• locality

• Generalizes to multiple and arbitrary number of persons

[Tompson et al., Efficient object localization using convolutional networks.]

30CPSC 532R/533R - Visual AI - Helge Rhodin

Disadvantages of heatmaps

• Disadvantage:

• Large image scale variations

• Two-stage pipelines are alleviating this

1. Detect person bounding box at coarse

resolution

2. Infer skeleton pose within box at high

resolution

• Not end-to-end differentiable

(pose extraction requires arg-max function)

• No sub-pixel accuracy

• multi-scale approaches can overcome this at the

cost of execution time

(average over runs on re-scaled input)

31CPSC 532R/533R - Visual AI - Helge Rhodin

Integral Regression-based 2D pose estimation I

A combination of classification and regression

1. Detection network to produce heatmaps

• same CNN as for heatmap prediction

2. Soft-max layer to turn heatmap H into probability map P

• normalizing all pixels in each heatmap H

3. Integration layer to regress joint position (expected position)

• can be interpreted as voting/weighted average

each pixel votes for its own position, weighted by its probability

[Sun et al., Integral Human Pose Regression.]

input

heatmap

prob. map

pose vector

32CPSC 532R/533R - Visual AI - Helge Rhodin

Details

heatmap

probability map

pose vector

x-position y-position

33CPSC 532R/533R - Visual AI - Helge Rhodin

Integral Regression-based 2D pose estimation II

Advantages

1. Fully-convolutional CNN (as for heatmap classification)

2. Differentiable 2D pose regression

• soft-max is differentiable, stable, and efficient to compute

• sum over probability map is differentiable

3. End-to-end training

• no difference between training and inference

• sub-pixel accuracy possible through joint influence of pixels

• low-resolution heatmaps possible

input

heatmap

prob. map

pose vector

34CPSC 532R/533R - Visual AI - Helge Rhodin

Attention: numerical stability

shift invariance is used to

increase numerical stability!

Exp normalize trick within cross-entropy

The PyTorch implementation includes this step

exp

35CPSC 532R/533R - Visual AI - Helge Rhodin

Integral Regression-based 2D pose estimation III

Disadvantages / open questions = possible course projects!

1. Sensitive to outliers

• if there are two maxima in the heatmap, the predicted position will

be in the middle of the two

2. How to support multiple people, at different scales?

• Some form of hierarchical model?

3. Part affinity fields have been successful, can we develop a

differentiable model?

• An elongated ellipse that has position and orientation?

4. What about occluded joints?

5. What about temporal information?

6. Is it possible to infer neck-centered human pose (not knowing the

absolute position, only relative distance of keypoints to the neck)?

36CPSC 532R/533R - Visual AI - Helge Rhodin

Issues?

Your laptop / desktop

• No GPU? -> google colab or university (see lecture 2)

• Note, parallel dataloaders might not work well on Windows:

Error: “Can't pickle <function <lambda> …”

• fix: disable threading by setting num_workers=0

• Other issues encountered?

