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Lecture overview

• Convolutions

• Optimizer

• Automatic differentiation and backprop

• Input and output normalization

• Vanishing gradient

• Deep network architectures
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Changes due to high number of students

• Course projects in groups of 2-3 students

• The reading sessions will have 2-3 presentations

• one student moderator per presentation

• Submit paper review the day before at 2pm at 11:59 pm

• these will be forwarded to the moderator
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Recap: Presentation and Project

• 1x Project (40 % of points)

• Project pitch (3 min, week 6&7)

• Project presentation (10 min, week 13&14)

• Project report (6 pages, Dec 14)

• 1x Paper presentation (Weeks 3 – 12)

• Presentation, once per student (25% of points)

(15 min + ~15 min discussion)

• Arrange for a meeting with TA

• Pre-recorded or live, it is your choice

• Read and review one out of the two papers 

presented per session (10% of points)

Detailed info on the website!

The presentation slides must be handed in 

and be discussed with the tutor latest by 

two working days before the presentation.

It is your responsibility to set up a meeting 

(~30 min duration) with the TA three days in 

advance. This session is to your own benefit 

and will not be graded. Submit your final slides 

on Canvas, the Slide upload/Presentation 

Assignment.
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What is the benefit of deep neural networks?

In principle a fully-connected network is sufficient

• universal approximator

• but hard to train!

Empirical observation (for image processing)

• convolution and pooling operations act as a strong prior

• locality

• translational invariance

• a deep network increases the receptive field

• such large context helps

• many simple operations work better than a monolithic  one

• separable conv., group conv., 3x3 instead of 5x5, …

(this lecture)
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Convolutional neural network layer

Convolution

• Local linear transformation + activation function

• sliding window, kernel size=size of window

• the same kernel is applied repeatedly

• stride=1: at every possible location

• stride=S: slide kernel with step length S (jump every other pixel)

• padding=P: add default values at the boundary, with width P

• Multiple layers form a convolutional neural network (CNN)

Transformation of input and output by convolutions

• output size = (input size + 2*padding – kernel size + stride)/stride

• e.g., a 3x3 kernel that preserves size: W + 2*1 – 3 + 1 = W

• e.g., a 4x4 kernel that reduces size by factor two: (W + 2*1 – 4 + 2)/2 = W/2

• holds per dimension, i.e., 1D, 2D and 3D convolutions
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Transposed convolution

Example: 2D transposed convolution with 3x3 kernel

Transposed what?

• Express convolution as linear matrix and transpose it

• special case of a linear/fully-connected layer

[https://d2l.ai/chapter_computer-vision/tranposed-conv.html]

https://d2l.ai/chapter_computer-vision/tranposed-conv.html


8CPSC 532R/533R - Visual AI - Helge Rhodin

Convolution as matrix multiplication
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Convolution with 2x2 kernel

as a linear mapping

Flattened 3x3 input image
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Convolution as matrix multiplication (details)
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Larger input width?

insert zeroes here.

Larger input 

height?

Insert more 

rows here.

Larger kernel?

Add non-zeroes here

(5 values for 3x3 from 2x2)

What about horizontal striding?

Skip every second row
Padding?
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Skip block of rows
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Convolution
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Transposed convolution as matrix multiplication
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Feature map size after convolutional kernels

Transformation of input and output by convolutions

• output size = (input size + 2*padding – kernel size + stride)/stride

• e.g., a 3x3 kernel that preserves size: W + 2*1 – 3 + 1 = W

• e.g., a 4x4 kernel that reduces size by factor two: (W + 2*1 – 4 + 2)/2 = W/2

• holds per dimension, i.e., 1D, 2D and 3D convolutions

Transformation of input and output by transposed convolutions (aka. deconvolution)

• output size = input size * stride - stride + kernel size - 2*padding

• it has exactly the opposite effect of convolution

• e.g., a 3x3 kernel that preserves size: W - 1 + 3 - 2*1 = W

• e.g., a 4x4 kernel that increases size by factor two: W*2 + 2*1 – 4 + 2 = W*2

• e.g., a 3x3 kernel that increases size by two elements: W - 1 + 3 - 2*0 = W + 2



12CPSC 532R/533R - Visual AI - Helge Rhodin

Optimizers

Stochastic Gradient Descent

• Gradient descent on randomized mini batches 

(with learning rate alpha)

Adam

• Momentum-based (continue with larger steps if 

the previous steps point in the same direction)

• Damp step-length if direction changes often

(second moment is high)

• Uses exponential moving average (EMA)

https://hackernoon.com/gradient

-descent-aynk-7cbe95a778da

Adam update rule

momentum

Smaller batch size can be better; 

it induces more noise!

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
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Adam and co.

• Adam is my current favorite

• Not that sensitive to learning rate

• No scheduler necessary

• Intuitive motivation

Disadvantage: Properly tuned SGD can be more 

accurate

• Recent alternative

• Learning with Random Learning Rates

[Blier et al.,]

• give each neuron a different learning rate

• those with inappropriate rates will die

(constant output for all feasible input values)

• parameter free, more stable training

[Kingma, Diederik P., and Jimmy Ba. "Adam: A method for 

stochastic optimization. ICLR 2015]
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Automatic differentiation and backpropagation

Forward pass

Backwards pass to 𝑊(1) Jocobian matrix
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Forward propagation

number of rows

= layer width
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Reverse mode - backpropagation

single row
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Forward vs. reverse mode

Forward accumulation is more  

efficient for functions that have  

more outputs thaninputs.

A smaller rowdimension is 

more efficient.

Reverse accumulation is more  

efficient for functions that have  

more inputs thanoutputs.
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Backpropagation — a special case

Creating the Jacobian matrices is expensive. Instead, matrix products can be simplified.

Backpropagation through activationfunction

element-wise

multiplication
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More optimizations
Creating the Jacobian matrices is expensive. Instead, matrix products can be simplified.

Backpropagation through activationfunction

needs to be

flattened

Backpropagation through linearlayer

elementwise multiplication
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Advantage of backpropagation
Backpropagation is a form of reverse automatic differentiation, where the Jacobi matrix is  not explicitly computed. 

The gradient is propagated by simpler equivalent operations.

Jacobianformulation

Compactbackpropagation
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The gradient vanishes exponentially with 

respect to the number of layers if                

Vanishing gradients problem

The objective function

The gradient of O with respect to 𝑊(2)

The gradient of O with respect to 𝑊(1)

Sigmoid

derivative of sigmoid

Use ReLU rather than sigmoid

in deep neural networks!



Interactive session

Monitoring feature activations
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Input and output normalization

Goal: Normalize input and output variables to have 

µ=0 and ϭ=1

• For an image, normalize each pixel by the std and 

mean color (averaged over the training set)

Related to data whitening

• whitening transforms a random vector to have 

zero mean and unit diagonal covariance 

• by contrast, the default normalization for deep 

learning is element wise, neglecting dependency

• the resulting covariance is not diagonal!

http://cs231n.github.io/neural-networks-2/

http://cs231n.github.io/neural-networks-2/
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Neural network initialization

Goal: preserve mean and variance through the network

• Assume that the input is a random variable with 

var(x) = 1 and mean(x) = 0

• Derive the function g that describes the change of 

variance and mean between layers

Initialize the neural network weights (weights of linear layers) such that g is the identity function

• For the linear neuron with K incoming neurons

(simple) Xavier Initialization: Initialize with samples from a (Gaussian) distribution with std = 1/𝐾

layer i layer i+1



25CPSC 532R/533R - Visual AI - Helge Rhodin

Neural network initialization II

The activation function changes the distribution

• the mean of ReLU(x) is nonzero

• hence, the variance of product equation does not apply

• instead, it holds

• and, assuming that y is from a symmetric distribution,

• the variance transformation of linear layer + activation becomes

Kaiming He Initialization: Initialize with samples from a (Gaussian) distribution with std = 2/𝐾
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Other initializations

SIREN network

• sin(x) activation

• requires different initialization as with ReLU

• sin(x) works poorly when not adapting init

Xavier Initialization / ‘Normalized initialization’ by Glorot and Bengio

• for hyperbolic tangent and softsign

• fan-in:   n_i the dimension of the previous layer 

• fan-out: n_i+1 the output dimension of the layer

• motivation for fan-out: normalization of the gradients

• same derivation as for the forward pass, 

but going backwards through the layers
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Batch normalization

• Normalize after each linear + activation function

• normalize across minibatch, to have µ=0 and ϭ=1

• Strict normalization reduces performance, hence, add back a learnable offset and scale

• What if we only have a single image at inference time?

• Re-apply mean and variance recorded during training (using exponential moving average)

[Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift]
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Batch normalization effect and variants

What is the benefit of first normalizing and then ‘denormalizing’?

• noise from other images regularizes

• it separates learning of the variance (scale) and bias (offset) from the values itself

• Empirical: training deeper networks, with sigmoid activation, higher learning rate, and 

faster convergence

Variants normalize over different slices of the feature tensor:

[Wu and He. Group Normalization]
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Regularization

Dropout

• randomly zero out activations

• re-weight the non-zero ones to maintain the 

distribution of the unmodified activations

• induced noise reduces overfitting

Weight decay

Prior on neural network weights

Weight decay and square prior are equivalent under 

certain conditions (vanilla SGD without momentum)
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Self-normalizing neural networks

Self-normalizing Neural Networks

[Klambauer et al.]

• fixed point enforced by choice of activation function 

(SELUs)

• stable and attracting fixed point for the function g that 

maps mean and variance from one layer to the next

• Possibility to train deep fully connected NNs

Mapping of the function g towards mu=0 and v=1

Fixed point iterations for cos(x)
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Residual networks and skip connections

• Deep networks are hard to train

• Residual blocks with shortcut/skip connections

• no extra parameters

• enables training of deep neural networks

Image net training

Baseline network ResNet version
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Other network architectures

Randomly wired networks

(search for best wiring among candidates) 

DenseNet

(skip connection to all future layers)
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U-Net architecture

• Similar input and output resolution

• A global encoding is learned by 

down sampling (to 32 x 32 px) 

• Progressive increase of channels 

maintains throughput / capacity

• Skip connections preserve details

Encoder

(spatial down sampling)

Decoder

(spatial up sampling)

Skip connections

[U-Net: Convolutional Networks for Biomedical Image Segmentation]
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Spatial down and up-sampling

Spatial down-sampling

• max-pooling

• average pooling

• convolution with stride

Spatial up-sampling

• max-unpooling

• (bilinear) interpolation

• deconvolution

[Learning Deconvolution Network for Semantic Segmentation]


