
Visual AI
CPSC 533R – 2020/2021 Term 1

Lecture 3. Deep Nets and their optimization

Helge Rhodin

2CPSC 532R/533R - Visual AI - Helge Rhodin

Lecture overview

• Convolutions

• Optimizer

• Automatic differentiation and backprop

• Input and output normalization

• Vanishing gradient

• Deep network architectures

3CPSC 532R/533R - Visual AI - Helge Rhodin

Changes due to high number of students

• Course projects in groups of 2-3 students

• The reading sessions will have 2-3 presentations

• one student moderator per presentation

• Submit paper review the day before at 2pm at 11:59 pm

• these will be forwarded to the moderator

4CPSC 532R/533R - Visual AI - Helge Rhodin

Recap: Presentation and Project

• 1x Project (40 % of points)

• Project pitch (3 min, week 6&7)

• Project presentation (10 min, week 13&14)

• Project report (6 pages, Dec 14)

• 1x Paper presentation (Weeks 3 – 12)

• Presentation, once per student (25% of points)

(15 min + ~15 min discussion)

• Arrange for a meeting with TA

• Pre-recorded or live, it is your choice

• Read and review one out of the two papers

presented per session (10% of points)

Detailed info on the website!

The presentation slides must be handed in

and be discussed with the tutor latest by

two working days before the presentation.

It is your responsibility to set up a meeting

(~30 min duration) with the TA three days in

advance. This session is to your own benefit

and will not be graded. Submit your final slides

on Canvas, the Slide upload/Presentation

Assignment.

5CPSC 532R/533R - Visual AI - Helge Rhodin

What is the benefit of deep neural networks?

In principle a fully-connected network is sufficient

• universal approximator

• but hard to train!

Empirical observation (for image processing)

• convolution and pooling operations act as a strong prior

• locality

• translational invariance

• a deep network increases the receptive field

• such large context helps

• many simple operations work better than a monolithic one

• separable conv., group conv., 3x3 instead of 5x5, …

(this lecture)

6CPSC 532R/533R - Visual AI - Helge Rhodin

Convolutional neural network layer

Convolution

• Local linear transformation + activation function

• sliding window, kernel size=size of window

• the same kernel is applied repeatedly

• stride=1: at every possible location

• stride=S: slide kernel with step length S (jump every other pixel)

• padding=P: add default values at the boundary, with width P

• Multiple layers form a convolutional neural network (CNN)

Transformation of input and output by convolutions

• output size = (input size + 2*padding – kernel size + stride)/stride

• e.g., a 3x3 kernel that preserves size: W + 2*1 – 3 + 1 = W

• e.g., a 4x4 kernel that reduces size by factor two: (W + 2*1 – 4 + 2)/2 = W/2

• holds per dimension, i.e., 1D, 2D and 3D convolutions

7CPSC 532R/533R - Visual AI - Helge Rhodin

Transposed convolution

Example: 2D transposed convolution with 3x3 kernel

Transposed what?

• Express convolution as linear matrix and transpose it

• special case of a linear/fully-connected layer

[https://d2l.ai/chapter_computer-vision/tranposed-conv.html]

https://d2l.ai/chapter_computer-vision/tranposed-conv.html

8CPSC 532R/533R - Visual AI - Helge Rhodin

Convolution as matrix multiplication

0, 1, 0, 2, 3, 0, 0, 0, 0

0, 0, 1, 0, 2, 3, 0, 0, 0

0, 0, 0, 0, 1, 0, 2, 3, 0

0, 0, 0, 0, 0, 1, 0, 2, 3

1

2

3

4

5

6

7

8

9

1, 2, 3

4, 5, 6

7, 8, 9

Input

Kernel

0, 1

2, 3

=

0∙1 + 1∙2 + 2∙4 + 3∙5

0∙2 + 1∙3 + 2∙5 + 3∙6

0∙4 + 1∙5 + 2∙7 + 3∙8

0∙5 + 1∙6 + 2∙8 + 3∙9

=

25

31

43

49

Output

* =
25, 31

43, 49

Convolution operator

Convolution with 2x2 kernel

as a linear mapping

Flattened 3x3 input image

9CPSC 532R/533R - Visual AI - Helge Rhodin

Convolution as matrix multiplication (details)

0, 1, 0, 2, 3, 0, 0, 0, 0

0, 0, 1, 0, 2, 3, 0, 0, 0

0, 0, 0, 0, 1, 0, 2, 3, 0

0, 0, 0, 0, 0, 1, 0, 2, 3

1

2

3

4

5

6

7

8

9

1, 2, 3

4, 5, 6

7, 8, 9

Input

Kernel

0, 1

2, 3

Larger input width?

insert zeroes here.

Larger input

height?

Insert more

rows here.

Larger kernel?

Add non-zeroes here

(5 values for 3x3 from 2x2)

What about horizontal striding?

Skip every second row
Padding?

Insert row with some kernel

elements missing

What about vertical striding?

Skip block of rows

*

Convolution

10CPSC 532R/533R - Visual AI - Helge Rhodin

Transposed convolution as matrix multiplication

0

1∙25

1∙31

2∙25

3∙25+2∙31+1∙43

3∙31+1∙49

2∙43

3∙43+2∙49

3∙49

=

25

31

43

49

0

25

31

50

180

142

86

227

147

=

Transposed weight matrix

0, 25, 31

50, 180, 142

86, 227, 147

Output

Kernel

0, 1

2, 3

Input

*

=

25, 31

43, 49

Transposed convolution

T

11CPSC 532R/533R - Visual AI - Helge Rhodin

Feature map size after convolutional kernels

Transformation of input and output by convolutions

• output size = (input size + 2*padding – kernel size + stride)/stride

• e.g., a 3x3 kernel that preserves size: W + 2*1 – 3 + 1 = W

• e.g., a 4x4 kernel that reduces size by factor two: (W + 2*1 – 4 + 2)/2 = W/2

• holds per dimension, i.e., 1D, 2D and 3D convolutions

Transformation of input and output by transposed convolutions (aka. deconvolution)

• output size = input size * stride - stride + kernel size - 2*padding

• it has exactly the opposite effect of convolution

• e.g., a 3x3 kernel that preserves size: W - 1 + 3 - 2*1 = W

• e.g., a 4x4 kernel that increases size by factor two: W*2 + 2*1 – 4 + 2 = W*2

• e.g., a 3x3 kernel that increases size by two elements: W - 1 + 3 - 2*0 = W + 2

12CPSC 532R/533R - Visual AI - Helge Rhodin

Optimizers

Stochastic Gradient Descent

• Gradient descent on randomized mini batches

(with learning rate alpha)

Adam

• Momentum-based (continue with larger steps if

the previous steps point in the same direction)

• Damp step-length if direction changes often

(second moment is high)

• Uses exponential moving average (EMA)

https://hackernoon.com/gradient

-descent-aynk-7cbe95a778da

Adam update rule

momentum

Smaller batch size can be better;

it induces more noise!

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

13CPSC 532R/533R - Visual AI - Helge Rhodin

Adam and co.

• Adam is my current favorite

• Not that sensitive to learning rate

• No scheduler necessary

• Intuitive motivation

Disadvantage: Properly tuned SGD can be more

accurate

• Recent alternative

• Learning with Random Learning Rates

[Blier et al.,]

• give each neuron a different learning rate

• those with inappropriate rates will die

(constant output for all feasible input values)

• parameter free, more stable training

[Kingma, Diederik P., and Jimmy Ba. "Adam: A method for

stochastic optimization. ICLR 2015]

14CPSC 532R/533R - Visual AI - Helge Rhodin

Automatic differentiation and backpropagation

Forward pass

Backwards pass to 𝑊(1) Jocobian matrix

15CPSC 532R/533R - Visual AI - Helge Rhodin

Forward propagation

number of rows

= layer width

16CPSC 532R/533R - Visual AI - Helge Rhodin

Reverse mode - backpropagation

single row

17CPSC 532R/533R - Visual AI - Helge Rhodin

Forward vs. reverse mode

Forward accumulation is more

efficient for functions that have

more outputs thaninputs.

A smaller rowdimension is

more efficient.

Reverse accumulation is more

efficient for functions that have

more inputs thanoutputs.

18CPSC 532R/533R - Visual AI - Helge Rhodin

Backpropagation — a special case

Creating the Jacobian matrices is expensive. Instead, matrix products can be simplified.

Backpropagation through activationfunction

element-wise

multiplication

19CPSC 532R/533R - Visual AI - Helge Rhodin

More optimizations
Creating the Jacobian matrices is expensive. Instead, matrix products can be simplified.

Backpropagation through activationfunction

needs to be

flattened

Backpropagation through linearlayer

elementwise multiplication

20CPSC 532R/533R - Visual AI - Helge Rhodin

Advantage of backpropagation
Backpropagation is a form of reverse automatic differentiation, where the Jacobi matrix is not explicitly computed.

The gradient is propagated by simpler equivalent operations.

Jacobianformulation

Compactbackpropagation

21CPSC 532R/533R - Visual AI - Helge Rhodin

The gradient vanishes exponentially with

respect to the number of layers if

Vanishing gradients problem

The objective function

The gradient of O with respect to 𝑊(2)

The gradient of O with respect to 𝑊(1)

Sigmoid

derivative of sigmoid

Use ReLU rather than sigmoid

in deep neural networks!

Interactive session

Monitoring feature activations

23CPSC 532R/533R - Visual AI - Helge Rhodin

Input and output normalization

Goal: Normalize input and output variables to have

µ=0 and ϭ=1

• For an image, normalize each pixel by the std and

mean color (averaged over the training set)

Related to data whitening

• whitening transforms a random vector to have

zero mean and unit diagonal covariance

• by contrast, the default normalization for deep

learning is element wise, neglecting dependency

• the resulting covariance is not diagonal!

http://cs231n.github.io/neural-networks-2/

http://cs231n.github.io/neural-networks-2/

24CPSC 532R/533R - Visual AI - Helge Rhodin

Neural network initialization

Goal: preserve mean and variance through the network

• Assume that the input is a random variable with

var(x) = 1 and mean(x) = 0

• Derive the function g that describes the change of

variance and mean between layers

Initialize the neural network weights (weights of linear layers) such that g is the identity function

• For the linear neuron with K incoming neurons

(simple) Xavier Initialization: Initialize with samples from a (Gaussian) distribution with std = 1/𝐾

layer i layer i+1

25CPSC 532R/533R - Visual AI - Helge Rhodin

Neural network initialization II

The activation function changes the distribution

• the mean of ReLU(x) is nonzero

• hence, the variance of product equation does not apply

• instead, it holds

• and, assuming that y is from a symmetric distribution,

• the variance transformation of linear layer + activation becomes

Kaiming He Initialization: Initialize with samples from a (Gaussian) distribution with std = 2/𝐾

26CPSC 532R/533R - Visual AI - Helge Rhodin

Other initializations

SIREN network

• sin(x) activation

• requires different initialization as with ReLU

• sin(x) works poorly when not adapting init

Xavier Initialization / ‘Normalized initialization’ by Glorot and Bengio

• for hyperbolic tangent and softsign

• fan-in: n_i the dimension of the previous layer

• fan-out: n_i+1 the output dimension of the layer

• motivation for fan-out: normalization of the gradients

• same derivation as for the forward pass,

but going backwards through the layers

27CPSC 532R/533R - Visual AI - Helge Rhodin

Batch normalization

• Normalize after each linear + activation function

• normalize across minibatch, to have µ=0 and ϭ=1

• Strict normalization reduces performance, hence, add back a learnable offset and scale

• What if we only have a single image at inference time?

• Re-apply mean and variance recorded during training (using exponential moving average)

[Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift]

28CPSC 532R/533R - Visual AI - Helge Rhodin

Batch normalization effect and variants

What is the benefit of first normalizing and then ‘denormalizing’?

• noise from other images regularizes

• it separates learning of the variance (scale) and bias (offset) from the values itself

• Empirical: training deeper networks, with sigmoid activation, higher learning rate, and

faster convergence

Variants normalize over different slices of the feature tensor:

[Wu and He. Group Normalization]

29CPSC 532R/533R - Visual AI - Helge Rhodin

Regularization

Dropout

• randomly zero out activations

• re-weight the non-zero ones to maintain the

distribution of the unmodified activations

• induced noise reduces overfitting

Weight decay

Prior on neural network weights

Weight decay and square prior are equivalent under

certain conditions (vanilla SGD without momentum)

30CPSC 532R/533R - Visual AI - Helge Rhodin

Self-normalizing neural networks

Self-normalizing Neural Networks

[Klambauer et al.]

• fixed point enforced by choice of activation function

(SELUs)

• stable and attracting fixed point for the function g that

maps mean and variance from one layer to the next

• Possibility to train deep fully connected NNs

Mapping of the function g towards mu=0 and v=1

Fixed point iterations for cos(x)

31CPSC 532R/533R - Visual AI - Helge Rhodin

Residual networks and skip connections

• Deep networks are hard to train

• Residual blocks with shortcut/skip connections

• no extra parameters

• enables training of deep neural networks

Image net training

Baseline network ResNet version

32CPSC 532R/533R - Visual AI - Helge Rhodin

Other network architectures

Randomly wired networks

(search for best wiring among candidates)

DenseNet

(skip connection to all future layers)

33CPSC 532R/533R - Visual AI - Helge Rhodin

U-Net architecture

• Similar input and output resolution

• A global encoding is learned by

down sampling (to 32 x 32 px)

• Progressive increase of channels

maintains throughput / capacity

• Skip connections preserve details

Encoder

(spatial down sampling)

Decoder

(spatial up sampling)

Skip connections

[U-Net: Convolutional Networks for Biomedical Image Segmentation]

34CPSC 532R/533R - Visual AI - Helge Rhodin

Spatial down and up-sampling

Spatial down-sampling

• max-pooling

• average pooling

• convolution with stride

Spatial up-sampling

• max-unpooling

• (bilinear) interpolation

• deconvolution

[Learning Deconvolution Network for Semantic Segmentation]

