Game Proposal: Minos’ Monster Maze

CPSC 436D - Video Game Programming
Spring 2018/19

Story:

A 2D platformer game where you play as Theseus and have been transported into a digital Greek labyrinth hounded
by classic monsters from Greek mythology (including the infamous Minotaur). You must escape the various levels of
the maze before the Minotaur catches you! Basic keyboard input controls include moving lefi/right and jumping. A
twist to the game is that you can rotate the screen fo get to areas you may otherwise not be able to reach.

Technical Elements:

The game will use geometry for the platform, sprites for characters, and sound bites for the different interactions
within the game. The design of the mazes for each level will be hardcoded into the game. Transformations will be
used to move characters and rotate the platform. The rotations will be about the player character's z-axis. During
rotation, the characters will be frozen until the rotation is complete.

There will be collision detection between the sprites and the platform, and between the sprites themselves. The
monsters will be chasing the player. Upon game update, monsters recalculate distance to hero and determines the
shortest path to get fo the hero. The monster speed increases for each level succession. Game physics include
gravity for jumping and falling objects/sprites.

Advanced Technical Elements:

Player has free rotational control of the map (highest priority)
- impact: players will feel restricted, less control of the game
- alternative: player can only rotate map by 45 degrees

Enemy Al uses a search algorithm to find the shortest path to the hero upon every game update call. After rotation,
enemies’ path finding will be updated and then move in the direction that the algorithm specifies (left or right).
Difficulty can be scaled between levels either by increasing enemy speed and/or reducing frequency of random
idling times.
- impact: this would result in slightly easier gameplay for the user with less advanced enemies
- alternative: only have monsters that move back and forth on predetermined path and a boss with simple AI
behaviour/patterns

Platform Surfaces

Addition of spikes, icy platforms, fading platforms
- impact: less exciting elements to the game
- alternative: do not implement

Saving Game State
If players decide to close the game, they can start from the level they just completed. After finishing a level, generate
a code that players can input to get unlock and start from that level again

- impact: players will be annoyed if they reboot the game and have to start all over

- alternative: players must start from the beginning of the game

Physics to calculate whether a character can keep walking up a platform that is rotated or if it will slide down
- impact: excluding this from the game will not impact gameplay by much, but will simply make character
movement less realistic and will make different platform surfaces not possible to implement.
- alternative: a threshold will be hardcoded so that characters can only walk up platforms that are slanted
less than a specific degree

Power-ups / Rotation Energy Gauge (Lowest priority)

Examples of power-ups. invincibility, ability to freeze enemies

Rotation Energy Gauge: based on how many points collected = how many times you can rotate
- impact: less gameplay mechanics
- alternative: do not implement

Devices:

Keyboard controls player movement and menu selection.

left arrow = move left

right arrow = move right

spacebar = jump

z = rotate clockwise

x = counterclockwise

h = open and close help/instructions menu

esc = pause game (with option to go back to main menu screen)

Concepts:
Main Menu Continue Screen

Minos’ Monster Maze Level Code:

@weamd | —, |+ /@
8 a

rotate

level start - simple enemies patrol back and forth

minataur chases player after a certain period of time /
the player has reached a certain point of the map

circle of visibility shrinks to player when player reaches
the exit

death by encounter with enemy (player explodes into
bits)

£y

Game Paused

Game paused state

Tools:
We plan on using a Pixel art editor and colour palette tool for generating art assets.

Also, to maintain a consistent aesthetic to the game, we plan on using a colour scheme chooser (such as
https://color.adobe.com/)

We might use Audacity if needed to mix sound clips (if we need to do anything too complex to handle in code).

Development Plan:
Week: February 1 - Skeletal Game

- Layout basic class hierarchy/structure
- First level of game (maze design)

- Player controls

- Basic collision detection

- base sprite assets

Week: February 8

- Add simple ‘ghost-type’ enemy Al (not individually controlled, can go through walls)
- State diagrams for enemy Als

- Basic physics (gravity)

- One advanced maze designed and coded (basic platforms)

Week: February 15

- Implement rotation controls

- Background music
Whispers say it’s reading week...

Week: February 22 - Minimal Playability

- Basic enemy Al (following the exact path as the hero or, alternatively, going on a fixed path)

- Tutorial (press H for instructions)

- Atleast two levels of the game designed (difficult enough to sustain at least 2 min of game play)
- Sprite animation

Week: March 1

- Textures applied to most maze components

- Add rolling boulders (geometry)

- Basic main menu screen

- Plan for various platform surfaces + character’s reactions to surfaces

Week: March 8 — Playability

- Platform surfaces (spikes)
- More sophisticated collision detection (against geometry)
- 3-4 playable levels (enough to sustain at least 4 min of game play)

- Background physics (exploding gore when player lands on spikes or collides with enemies), may push to

following week if needed

https://color.adobe.com/

Week: March 15

Implement search algorithm for enemy Al
Refactor if needed
One more playable level

Week: March 22

Physics to calculate if player can continue walking up a platform

Vary efficiency of enemy Al between levels (make them faster/smarter)
One more playable level

Improve calculation efficiency if needed (for lag-free gameplay)

Testing and bug fixing

Week: March 29 — Robust Game

Tutorial level design

5-6 playable levels (enough to sustain at least 6 min of game play)
Saving game state

Menu screen that allows starting at any unlocked levels

Sound effects for most interactions

Check for and fix memory leaks

Week: April 5

Dust effects

Energy gauge for limiting rotation ability

One more playable level

Advanced moving and disappearing/fading platforms

Week: April 12

Implement Power-ups such as invincibility and/or temporarily freezing enemies
Potentially add lighting effects (from torch sprites in background)

One more playable level

Additional elements to platforms such as rolling boulders

Week: April 19 — Grand Finale

Sound effects for all interactions

Potentially different background music for different levels

Potentially add prologue scene before first level and epilogue screen after game is beaten

7-10 playable levels (enough to sustain at least 10 min of game play)

Intuitive “tutorial” level progression, levels should be designed so that the player gradually learns and
masters their movement, rotation skill, and use of environment as he/she plays through each level.

