Dave is here to talk to you about

Rendering & Meshes

1. How to deal with screen
edges for A1's distortion

The problem

Screen

Distorted
texture coords

AN

(
(

Outside
texture
coord
bounds

Potential solution 1

Distorted
texture coords

Shrink the screen
relative to the
distorted coordinates

Screen

Potential solution 1

This is what happens
if you zoom about the
origin: you still see
edges

(0,0)

Distorted
texture coords

" scfeen

Potential solution 1

f\v/-\ — —

1. What we start with

Fotential solution 1

/\/

2. Translate so (0,0) is the middle of the screen

Potential solution 1

}‘/\

3. Shrink the screen

Potential solution 1

4. Translate back

Potential solution 2

Keep edges intact,
only distort in the
middle of the screen

Potential solution 2

1. Determine distance
to the edge: minimum
distance to x=0, x=1,
y=0, and y=1

Useful functions:
- mix(from, to, fraction) where fraction € [0, 1] (= distance to the edge in this case)

- clamp(value, min, max) (in this case, min=0 and max=1)

2. How does mesh rendering work, anyway?

Pipeline recap

A mesh consists of: vertex positions and which vertices make faces

Pipeline recap

. D

5 e
® 3
L
4
Properties are interpolated
Vertex shader computes across each face pixel Fragment shader
positions and other —> computes the colour of

properties for each vertex each pixel on each face

What does the vertex shader do?

e \ertex positions start in local coordinates

e [he vertex shader translates those into screen coordinates

o We need to scale/rotate/translate these local coordinates into world coordinates
o OpenGL wants x and y in [-1, 1] and maps that to the window automatically. This is "clip

space" if you need to google things related to it

position transform * position projection * transform * position

local world screen

What does the vertex shader do?

e Also, pass any per-vertex info you might need to compute colours in the
fragment shader with out variables (which become in variables in the
fragment shader)

e.g.

in vec2 in_texcoord;

out vec2 texcoord;

void main() {
texcoord = in_texcoord;
// ...etc

What does the fragment shader do?

e Using per-vertex in variables and global shader uniform variables, compute a
pixel color

e.g.
in vec2 texcoord;
uniform sampler2D image;

layout(location = @) out vec4 out color;

void main() {
out_color = texture(image, texcoord);

}

Compiling shaders

e Shaders get compiled at runtime, not when our C++ gets compiled

e Starting with a string for each shader, we:
o Give the string to OpenGL with glShaderSource()
Tell OpenGL to compile the shader with glCompileShader()
Create a program for the vertex + fragment shader with glCreateProgram()
Attach both shaders to the program with glAttachShader()
Link it all together with glLinkProgram()

o O O O

How do we get mesh info to the shaders?

Pipeline recap

o
CPU

x.v,z}, {x,v,z}, {x,y,2}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

GPU

Pipeline recap (
We need some

p
CPU

space for vertices
and face indices

x.v,z}, {x,v,z}, {x,y,2}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

GPU

Pipeline recap

p
CPU

| made you some
buffers

x.v,z}, {x,v,z}, {x,y,2}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

vaold = 1

vertexBufferld = 2

indicesBufferld = 3

N\

G P U Vertex array object 1

Buffer object 2

Buffer object 3

Pipeline recap Put this vertex

position data for
vertex array 1 in

4 buffer 2 please
cpu

x.v,z}, {x,v,z}, {x,y,2}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

vaold = 1

vertexBufferld = 2

indicesBufferld = 3

-

GPU

Vertex array object 1

Q)‘o
&
0

Buffer object 2
{X,y,Z}, {X’yiz}’ {X,yaz}y

Buffer object 3

Pipeline recap

Put this face index
data for vertex array

~ 1 in buffer 3 please e
cPU GPU

Vertex array object 1

{X,y,z}, {Xaylz}! {X’yiz}’ Q%
Y
A<z:{\/

v1,v2,v3), {v1,v2,v3}, ... o

Buffer object 2 %

{x,y,z}, {x,y,z}, {x,y,z}, @
vaold =1
vertexBufferld = 2 Buffer object 3
.. {v1,v2,v3}, {v1,v2,v3},
indicesBufferld = 3

Pipeline recap

And now draw it
using this shader

/CPU — /GPU

Vertex array object 1

{X,y,z}, {Xayaz}! {X’yiz}’ Q%
Y
4‘2’{\/

v1,v2,v3), {v1,v2,v3}, ... o

Buffer object 2 %

{x,y,z}, {x,y,z}, {x,y,z}, @
vaold =1
vertexBufferld = 2 Buffer object 3
.. {v1,v2,v3}, {v1,v2,v3},
indicesBufferld = 3

Pipeline recap

p
CPU

x.v,z}, {x,v,z}, {x,y,2}, ...

{v1,v2,v3}, {v1,v2,v3}, ...

vaold = 1

vertexBufferld = 2

indicesBufferld = 3

Here you go

/
G P U Vertex array object 1
%
{\\0@/
R

@

@

Buffer object 2 3
{X’y’z}’ {X’y’Z}’ {X,y,z}, %

Buffer object 3
{v1,v2,v3}, {v1,v2,v3},

Where does the vertex info come from, anyway?

e Hard-coded (e.g. if you just need a square)
e Dynamically generated
e Imported from modelling software

Importing meshes: obj files

vertex positions (and optionally colors) are specified with:
v -0.5 2.0 -0.2 1.0 0.0 0.0
This will be vertex 1, and the next one will be vertex 2, etc

texture coordinates are specified with vt:
vt 0.2 0.8
This will be texture coord 1

faces are specified as the set of vertex indices around the face:
f123

optionally with texture coordinate indices after a / too:

£ 1/1 2/2 3/3

Making obj files in Blender

1. Either make a shape in Blender or make an SVG somewhere and import it

D [File Edit Render W v Help Layout
“© New

W

Width Size

Convert to Mesh

Set Origin Cor t ts to ano

Collada (Default) (

otion Captur

Scalable Vector Graphics (.svg) ink
Stanford (.ply)

: /e Object
Stl (.stl)

Mirror

() Quit

Snap
front (.obj Parent
) Extensibl (fwrl)

Planes

Making obj files in Blender

2. Hit Ctrl-Tab to go into Vertex Paint mode:

°F Vertex Paint

{5} Weight Paint Sets the object interaction mode: Vertex Paint

Mode

M, Object Mode

i Edit Mode

1 @ start 1 End 250

11 L/_,’ Sculpt Mode

=V m Curve00l %7 Curve.001

7 v Curve.001

Making obj files in Blender

v Vertex Groups

This creates an empty set of vertex 1.
colours for the mesh: 3 v shapeKeys

» UV Maps

¥ Vertex Colors

B Col

» Face Maps

* Normals

» Texture Space

*» Remesh

» Geometry Data

¥ Paper Model Islands

~
[

Not unfolded

Making obj files in Blender

3. Change the object's material so
we can see the colours that we're
going to add by setting the base
colour to the vertex colours:

Base Color

Subsurface

Subsurface Radius

Principled BSDF

metensan:Burley

Vertex Color | Color

[

1.000
0.200
0.100

Metallic

0.000

(o]

Making obj files in Blender

4. Use Vertex Paint mode to paint the vertices the colours you want

R File Edit Render Window Help Layout
Draw v | Radius 228 px @ | Strength 1.000 ¢

°% VertexPaint v =) View Paint

/ User Perspective

(1) Curve

Making obj files in Blender

5. If you ctrl-tab back into Object Mode, use viewport shading to see the colours
_Qptions v Ty (& £
vy @ [@.0:@ v =] Scene Collection

— :
v M = Collaction

Viewport Shading.
Method to display/shade objects inthe 3D View: |

Display in Materal Preview mode

Making obj files in Blender

6. Blender's .obj exporter doesn't
actually support vertex colours,
but its .ply exporter does! Export a
ply instead:

¥ Include

¥ Transform

Forward
Up

Scale

¥ Geometry

Cancel

Selection Only

Y Forward

ZUp

Apply Modifiers
Normals
UVs

Vertex Colors

Export PLY

Making obj files in Blender

7. Convert the .ply to a .obj using MeshLab by doing File = Export Mesh As

Vert Face Wedge Texture Name

Color

Normal
TexCoord

O Al

None

Help Cancel

Making obj files in Blender

8. Put that .obj in your data directory and use it in your game!

Another alternative

e Decompose your character into multiple sprites
e The character has one transform, and each body part has its own:

vec3 pos = projection * transform *
vec3(in_position.xy, 1.0);

vec3 pos = projection *

character_transform * part transform *
vec3(in_position.xy, 1.0);

Depth sorting multiple meshes

Ways of depth sorting

e Using OpenGL's depth buffer
o OpenGL does it for you!

o ...but you need to discard totally transparent sprite pixels yourself
o ...but you still need to draw semi-transparent things in order

e Using the painter's algorithm
o glIDisable(GL_DEPTH_TEST);

o Draw things in back-to-front order

Painter's algorithm in ECS

e Intiny ecs.hpp, we have
ComponentContainer: :sort(comparisonFunction)
e comparisonFunction(a, b) returns whether a comes before b in the list

e.g..
struct Depth { float depth; };
ECS::registry<Depth>.sort([](Depth& a, Depth& b) {

bool should a draw before b = false;

return should_a_draw_before_b;
})s NOTE: removing entities will

reorder components, so you
need to sort again afterwards!

Questions?

