
2D Rigid Body Physics
and Collision Detection
using Sequential Impulses
TIM STRAUBINGER – CPSC 427 – SPRING 2021



Additional Resources
https://box2d.org/publications/
◦ Materials by Erin Catto, author of Box2D physics engine

https://www.toptal.com/game/video-game-physics-part-i-
an-introduction-to-rigid-body-dynamics
◦ 3-part rigid body dynamics tutorial by Nilson Souto

https://en.wikipedia.org/wiki/List_of_moments_of_inertia
◦ lists moments of inertia for many basic shapes

https://box2d.org/publications/
https://www.toptal.com/game/video-game-physics-part-i-an-introduction-to-rigid-body-dynamics
https://en.wikipedia.org/wiki/List_of_moments_of_inertia


Basics of Rigid Body Physics



What is a Rigid Body?
A physical body (with mass, orientation, and shape) that cannot bend

The orientation is easy to describe globally (e.g. position and velocity about center of mass)
and it does not depend on the shape

The effects of forces/impulses also do not depend on the shape!
◦ These depend on the body’s inertia and moment of inertia (if using rotation), which

are influenced by the body’s mass and distribution of mass

The rigid body’s shape can be ignored in all parts of the physics engine except 
during collision detection



Describing a Rigid Body in 2D
Linear Properties

position (2D vector, e.g. meters)

velocity (2D vector, e.g. meters/second)

mass (scalar, e.g. kg)

Angular Properties

angle (scalar, e.g. radians)

angular velocity (scalar, e.g. radians/second)

moment of inertia (scalar, kg*meters^2)



Moving a Rigid Body
Integrating the equations of motion



What is an Impulse?
Instantaneous change in momentum (where momentum is mass times velocity)

Usually represented as J

Applying an impulse J to a light object causes a large change in velocity

Applying the same impulse J to a heavy object causes a small change in velocity



Why use Impulses?
When rigid bodies collide, potentially infinite forces 
are generated!

◦ Suppose that two objects are colliding, and 1 Newton of 
force is needed for a time step of 1 second to keep 
them separated

◦ For a time step of 0.1 seconds, we would need 10 
Newtons to keep them separated

◦ For a time step of 0.01 seconds, we would need 100 
Newtons

◦ Etc…

Math for solving constraints is easier compared to
forces



Applying Impulses to a Rigid Body
(at the Center of Mass)

Linear Impulses

instantaneous change in linear momentum

Equivalent to force * time

Angular Impulses

Instantaneous change in angular momentum

Equivalent to torque * time



Applying Impulses to a Rigid Body
(at any point)

Achieved by splitting impulse into linear and angular terms relative to center of mass

This step can be ignored if you are not using rotation



Applying Impulses to a Rigid Body
(at any point)

Achieved by splitting impulse into linear and angular terms relative to center of mass

This step can be ignored if you are not using rotation



Collision Detection



Convex Shapes
Slightly-formal definition: a shape is convex if and only if every straight line segment drawn 
between any two points inside the shape is also entirely inside the shape.

Less formal definition: a shape is convex if and only if you can stretch a rubber band around its
perimeter without leaving gaps.

Even less formal definition: a shape is convex if and only if you can’t drink tea out of it.

Convex Not Convex



Separating Axis Theorem
Two convex shapes are not colliding if and only if there exists a
line that separates the two

•In other words, if you can draw a line between two convex shapes 
without touching either, then the two shapes are not colliding.

•Otherwise, if no such line can be found, the shapes are definitely 
colliding

•In practice, only a few interesting lines need to be considered 
(such as edges)

More reading:
https://en.wikipedia.org/wiki/Hyperplane_separation_theorem

https://en.wikipedia.org/wiki/Hyperplane_separation_theorem


Describing a Collision
A few things are needed to describe a single collision between two rigid bodies:

1. The points of collision pa and pb both bodies

2. The collision normal n (e.g. the surface normal at the point of collision)

3. The collision depth d (e.g. how deeply the bodies have passed into each other)

The two rigid bodies involved are denoted A and B



Building Blocks: Point-Point Distance



Building Blocks: Point-Circle Signed Distance



Building Blocks: Edge-Line Signed Distance



General Approach for Convex Collision Detection
1. Rotate and translate both shapes into the world coordinate frame

2. Loop over all interesting edge-corner pairs between both shapes
1. If that edge fully separates the two shapes, there is no collision (SAT). Return early.

2. If the corner is outside the other shape, skip this loop iteration.

3. Otherwise, find the tentative collision details:
1. The collision point on one shape is the corner being considered

2. The other collision point is simply the nearest point to the corner and the edge

3. The collision normal is the edge normal at its collision point

4. The collision depth is the distance from the edge

4. If the collision depth is the biggest yet seen, record these collision details

3. At this point, no separating axis was found and we thus have a collision

4. Return the collision details for the edge-corner pair with the greatest collision depth



Circle-Circle Collision



Circle-Rectangle Collision: Edge Case



Circle-Rectangle Collision: Corner Case



Circle-Polygon Collision: Edge Case



Circle-Polygon Collision: Corner Case



Polygon-Polygon Collision: Edge Case



Polygon-Polygon Collision: Corner Case



Collision Resolution
using Sequential Impulses



Background: Force-Based Solvers
Not used Sequential Impulses

• Find the change in acceleration needed to prevent objects from passing through each other

• Pros:
• Can bring objects stably to rest

• Well-studied

• Cons:
• Serious drift (no way to directly modify positions or velocities, so errors accumulate quickly)

• Forces become degenerate as time step is made smaller (unintuitive and numerically unstable)



Background: Impulse-Based Solvers
Used in Sequential Impulses

• Find the change in velocity needed to prevent objects from passing through each other

• Pros:
• Easier to reason about that force-based solvers

• No infinite forces

• Can still think in terms of forces (impulse divided by time step results in force)

• Cons:
• Some drift (but it’s easier to correct for)



How to solve a (single) collision
1. Find the relative velocity between the two points of collision

1. If you’re ignoring rotation, this is simply the velocity of both bodies

2. Otherwise, the velocity is given by 

2. Project the relative velocity onto the collision normal (e.g. discard sliding motion)

3. We want this velocity to become zero, which is achieved by applying an impulse



Background: Global Solvers
Not used in Sequential Impulses

• Given a set of equations describing collisions, solve them all at the same time

• Pros:
• Accurate

• Many available algorithms for solving systems of equations

• Cons:
• Bad at handling inequalities (collisions are represented as inequalities )

• Solver algorithms are very complicated and difficult to implement

• Resulting systems equations are absurdly complicated



Background: Global Solvers

https://www.youtube.com/watch?v=zzy6u1z_l9A

https://www.youtube.com/watch?v=zzy6u1z_l9A


Background: Local Solvers
Used in Sequential Impulses

• Given a set of equations describing collisions, solve them one after the other

• Pros:
• Very easy to understand and implement

• Easily handles inequalities (and thus collisions)

• Cons:
• Requires several iterations (but so do most global solvers)

• Convergence trade-offs usually need to be found and tuned manually



Background: Local Solvers



How to solve many collisions using Sequential Impulses
The algorithm:
• For each collision, set the accumulated impulse to 0

• For several iterations (e.g. 1 to 50):
• For every collision:

• Find the impulse needed to solve the collision (ignoring other collisions)

• Slight hack: add a little extra impulse proportional to the collision depth to avoid drift

• Add this impulse to the accumulated impulse

• If the accumulated impulse is less than zero, set it to zero (prevent pulling bodies together)

• Compute the difference in accumulated impulse from the last iteration, and apply it to both bodies













Debugging Tips



Debugging Tips
• Double-check which coordinate frame each point is in.
• Don’t mix coordinate frames without using the appropriate transformation

• Double-check your units (e.g. kg, meters, meters/second, degrees vs radians)
• Remember your high-school physics! Dimensional analysis can help rule out many bugs

• Visualize your rigid bodies’ physical orientations as used in your physics calculations!
• These can easily be different from the visual orientations if you’re not carefull

• Visualize your collision points and their depths
• This is extremely helpful for debugging collision detection



Credits
Some contents in these slides are taken from:

• Erin Catto’s GDC 2014 talk: “Understanding Constraints”
• https://box2d.org/publications/

• Nilson Souto’s rigid body dynamics tutorial series:
• https://www.toptal.com/game/video-game-physics-part-i-an-introduction-to-rigid-body-dynamics

https://box2d.org/publications/
https://www.toptal.com/game/video-game-physics-part-i-an-introduction-to-rigid-body-dynamics



