
How to Think Like a 
Modern C++ Programmer
TIM STRAUBINGER – CPSC 427 – SPRING 2021



Talk Outline

LIFETIMES USING THE 
RIGHT TOOLS

MOVE 
SEMANTICS



Additional Resources
isocpp.org/get-started
◦ Recommended book list

◦ high-level explanations, tutorials, and design guidance

cppreference.com/w/
◦ Language and standard library documentation

coliru.stacked-crooked.com
◦Free online compiler (great for small exercises)

https://isocpp.org/get-started
https://cppreference.com/w/
https://coliru.stacked-crooked.com/


Lifetimes
and 
Resource Management
in C++



Lifetimes and Value Semantics
• One of C++’s most important features

• C++ lets you decide what happens when objects are created, destroyed, copied, and moved

• If used correctly, the C++ language will do the extra work for you

• This results in automatic, efficient, and deterministic resource management

• Far more powerful than garbage collection

• Way easier than manual memory management

• Related concept: RAII (Resource Acquisition is Initialization)



Lifetimes Visualized





Automatic 
Storage 
Duration



Dynamic
Storage 
Duration
A heap-allocated 
object is a resource
that needs cleanup



Types of Lifetimes
Any object in a running C++ program has one of three kinds of lifetimes, a.k.a. 
storage durations:

◦ Static storage duration
◦ the object lives until the program exits

◦ Global variables have static storage duration

◦ Dynamic storage duration
◦ The start and end of life are not known until runtime

◦ Heap-allocated objects have dynamic storage duration (think of new or malloc and garbage collection)

◦ Automatic storage
◦ The most underrated type of lifetime!

◦ The object lives until it goes out of scope

◦ Local variables, function arguments, and class member variables have automatic storage duration



Thinking about resource management
A resource is something that needs additional work to clean up when you’re done using it

Examples of resources:

• Data structures that grow over time (dynamic arrays, trees, linked lists, etc)

• Opened files (operating systems want these back eventually)

• Most hardware devices (things like “connections” and “contexts” and “handles”)

The part of code that is responsible for cleaning up a resource is called the owner

• This part of code has ownership of that resource



Resource Management in Modern C++
In modern C++, Lifetimes and Ownership are combined

This allows automatic, implicit, and efficient resource management



Option A
“C++ beginner 
following a 20-
year-old tutorial”



Option B
“Modern C++ 
programmer”



Special 
Member 
Functions



Constructor and Destructor
• An object's lifetime begins with a constructor

• An object's lifetime ends with the destructor

• A constructor should guarantee that an object is always in a valid state

• Constructors often acquire a resource

• A destructor should clean up everything that the object is responsible for

• Destructors often release a resource

• Constructors and destructors are called implicitly as part of the language

• Use this to your advantage!









Copy Semantics – Construction and Assignment

• Let you define what it means to duplicate object (without modifying the original)

• Copy constructor is called when a new object is cloned from another object

• Copy assignment operator is called when an object’s value is overwritten from another object

• Can be enabled or disabled (sometimes it doesn’t make sense to create a copy)

• Example: copying a std::vector copies all elements

• Example: std::fstream (file handle) can’t be copied

• Called implicitly as part of language

• Use this to your advantage!









Move Semantics – Construction and Assignment

• Used for transferring ownership of a resource (by modifying the previous owner)

• Move constructor creates a new object that takes ownership from another object

• Move assignment operator lets an existing object take ownership from another object

• Useful only when making a copy is expensive or impossible

• Not needed when there is no cleanup work to be done

• In this case, copying is the same thing

• Can also be enabled or disabled



A&&

binds to 
temporary 
values!



Constructor, Destructor, Copy Constructor, Move Constructor, Copy Assignment Operator, Move Assignment Operator,Oh My!

That’s a lot of functions to think about!
How can I wrap my head around writing these?
◦ Most of the time, you don’t have to write these

◦ Why? Your C++ compiler generates them for you if you don’t

◦ The implicitly generated special member functions will do the “obvious” thing
◦ The generated default constructor will default-construct all member variables

◦ The generated copy functions copy all member variables

◦ The generated move functions move all members (but are disabled if you write copy functions)

◦ Most of the time, you only need to write constructors

◦ But: you need to write these when you are directly managing a resource





Rule of 3/5/0
• If your class explicitly defines a destructor, then you’re probably managing a resource

(otherwise, you would have no cleanup work to do)

• …because you’re probably managing a resource, you should also define copy semantics

• …to prevent the default copy functions from doing something you don’t intend (Rule of Three)

• …and if it makes sense for your resource, you should also define move semantics

• …to allow relocating objects and transferring ownership (Rule of Five)

• If your special member functions do nothing special, get rid of them (they can be generated)

• (Rule of Zero)

https://en.wikipedia.org/wiki/Rule_of_three_(C%2B%2B_programming)

https://en.wikipedia.org/wiki/Rule_of_three_(C%2B%2B_programming)


Automatic Storage
with
Standard Library 
Containers
std::vector<T>

is a resizable heap-
allocated array



Automatic Storage
with
Standard Library 
Containers
std::set<T>

is a binary tree



Automatic Storage
with
Standard Library 
Containers
std::unordered_map<T>

is a hash table



Get to know your tools!
• Using the Rule of 0 and compiler-generated special member functions, you can write highly 

efficient, correct code by reusing the following standard library tools:

• vector<T> for dynamic arrays

• set<T> and map<T> for binary trees

• unordered_set<T> and unordered_map<T> for hash tables and hash maps

• optional<T> for values that might not exist

• variant<T1, T2, ...> for values from one of several different types

• unique_ptr<T> for safely managing a heap object

• shared_ptr<T> for safely managing a heap object with multiple owners

• And many, many more! Consult your C++ book and documentation for ideas and guidance



“I need heap 
allocation for 
some reason”
Using

Manual
Memory
Management



“I need heap 
allocation for 
some reason”
Using

unique_ptr



In conclusion:
- Understand special member functions
- Use copy and move semantics to your advantage
- Use automatic storage to do your cleanup for you



Hang on, what does 
std::move do?
BONUS TECHNICAL DETAILS
















