c

How to Think Like 3

Modern C++ Programmer

16O
TIM STRAUBINGER — CPSC 427 — SPRING 2021. Ep\s
\\

Talk Outline

©O 0

LIFETIMES USING THE MOVE
RIGHT TOOLS SEMANTICS

Additional Resources

isocpp.org/get-started
o Recommended book list

° high-level explanations, tutorials, and design guidance

cppreference.com/w/
°Language and standard library documentation

coliru.stacked-crooked.com
°Free online compiler (great for small exercises)

https://isocpp.org/get-started
https://cppreference.com/w/
https://coliru.stacked-crooked.com/

Lifetimes

and

Resource Management. .
(RS St SR 5 sV W ADREW -

Lifetimes and Value Semantics

* One of C++’s most important features
* C++ lets you decide what happens when objects are created, destroyed, copied, and moved
* |f used correctly, the C++ language will do the extra work for you

* This results in automatic, efficient, and deterministic resource management

* Far more powerful than garbage collection

* Way easier than manual memory management

* Related concept: RAIl (Resource Acquisition is Initialization)

Lifetimes Visualized

int main () {
int a =

std: :cout << a;

return O;

int main () {

Automatic e
Storage
Duration

return O;

int main () {
int* p = nullptr;

Dynamic
StO [d ge :th:ii[g);p; —_—
Duration '

A heap-allocated
object is a resource
that needs cleanup

Types of Lifetimes

Any object in a running C++ program has one of three kinds of lifetimes, a.k.a.
storage durations:

o Static storage duration
> the object lives until the program exits

> Global variables have static storage duration

> Dynamic storage duration

° The start and end of life are not known until runtime
> Heap-allocated objects have dynamic storage duration (think of new or malloc and garbage collection)

> Automatic storage

° The most underrated type of lifetime!
° The object lives until it goes out of scope
> Local variables, function arguments, and class member variables have automatic storage duration

Thinking about resource management

A resource is something that needs additional work to clean up when you’re done using it
Examples of resources:

 Data structures that grow over time (dynamic arrays, trees, linked lists, etc)

* Opened files (operating systems want these back eventually)

* Most hardware devices (things like “connections” and “contexts” and “handles”)

The part of code that is responsible for cleaning up a resource is called the owner

* This part of code has ownership of that resource

Resource Management in Modern C++

In modern C++, Lifetimes and Ownership are combined

This allows automatic, implicit, and efficient resource management

Option A

“C++ beginner

following a 20-
year-old tutorial”

int main() {

int* p = nullptr;

P = new int[10]; =« ¢ ==

int* p2 = new int[20]; =

for (int i = 0; i < 10; ++i) {
p2[i] = plil;

}

int* p3 = p;

p = p2;

delete[] p3; = &« <« = «

deletel[] p;
return O;

int main () {
auto v = vector<int>{};

Option B v.resize(10); = = = —

P v.resize(20); = « <« . o
Modern C++

programmer” return O;
}

Constructor and Destructor

An object's lifetime begins with a constructor

An object's lifetime ends with the destructor

A constructor should guarantee that an object is always in a valid state

* Constructors often acquire a resource

A destructor should clean up everything that the object is responsible for

* Destructors often release a resource

Constructors and destructors are called implicitly as part of the language

* Use this to your advantage!

struct A {

int main() {
auto x = A{};

return 0;

struct A {
A() :p{new int(32)} { }

};

int main () {
auto x = A{};

return 0;

struct A {
A() :p{new int(32)} { }
~A(){ delete p; }

};

int main () {
auto x = A{};

return 0;

Copy Semantics — Construction and Assignment

Let you define what it means to duplicate object (without modifying the original)

Copy constructor is called when a new object is cloned from another object

Copy assignment operator is called when an object’s value is overwritten from another object

Can be enabled or disabled (sometimes it doesn’t make sense to create a copy)

* Example: copyinga std: : vector copies all elements

* Example: std: : fstream (file handle)can’t be copied

Called implicitly as part of language

* Use this to your advantage!

struct A {
A() :p{new int(32)} { }
~A(){ delete p; }

};

int main () {
auto x = A{};

auto y X;

return 0;

struct A {
A() :p{new int(32)} { }
~A(){ delete p; }
A(const A& a) :p{new int(32)} { }
A& operator=(const A&) {
*p = *a.p;
return *this;

}

private:

int* p;

int main () {
auto x = A{};

auto y X;

return 0;

struct A {
A() :p{new int(32)} { }
~A(){ delete p; }
A(const A&) = delete;
A& operator=(const A&) = delete;

Y

int main () {
auto x = A{};

auto y x; // ERROR

return 0;

Move Semantics — Construction and Assignment

Used for transferring ownership of a resource (by modifying the previous owner)

Move constructor creates a new object that takes ownership from another object

Move assignment operator lets an existing object take ownership from another object

Useful only when making a copy is expensive or impossible

Not needed when there is no cleanup work to be done

* In this case, copying is the same thing

Can also be enabled or disabled

struct A {
A() :p{new int(32)} { }
~A(){ delete p; }
A(const A& a) = delete;
A& operator=(const A&) = delete;
A (A&& a) :p{exchange(a.p, nullptr)}{ }
A& operator=(A&& a){
delete p;
p = exchange(a.p, nullptr);
return *this;
}
private:
int* p;

A&& Y
binds to . .
int main () {

temporary auto x = A{};
values!

auto y = std: :move (x) ;

Constructor, Destructor, Copy Constructor, Move Constructor, Copy Assighment Operator, Move Assignment Operator, O h My !

That’s a lot of functions to think about!
How can | wrap my head around writing these?
> Most of the time, you don’t have to write these
> Why? Your C++ compiler generates them for you if you don’t

> The implicitly generated special member functions will do the “obvious” thing

o The generated default constructor will default-construct all member variables
° The generated copy functions copy all member variables
° The generated move functions move all members (but are disabled if you write copy functions)

> Most of the time, you only need to write constructors
> But: you need to write these when you are directly managing a resource

struct X {
int a = 3;
string b = “Hello”;

vector<int> ¢ = {1, 2, 3};
};

int main () {
auto x = X{};

return 0;

Rule of 3/5/0

If your class explicitly defines a destructor, then you're probably managing a resource

(otherwise, you would have no cleanup work to do)

...because you’re probably managing a resource, you should also define copy semantics

 ...to prevent the default copy functions from doing something you don’t intend (Rule of Three)

...and if it makes sense for your resource, you should also define move semantics

* ...to allow relocating objects and transferring ownership (Rule of Five)

If your special member functions do nothing special, get rid of them (they can be generated)

* (Rule of Zero)

https://en.wikipedia.org/wiki/Rule of three (C%2B%2B programming)

https://en.wikipedia.org/wiki/Rule_of_three_(C%2B%2B_programming)

Automatic Storage
with int main()
Standard Library vector<int> x = makeHugeVector ()
Containers

std: :vector<T>

iS a resizable heap-
allocated array

return O;

}

Automatic Storage
with rp——

Standard Library set<int> x = makeiugaset ()
Containers

std: :set<T>
is a binary tree

return O;

}

Automatic Storage
with ——
Standard Libra ry SIS, IR 5 IERSGEUSEATS (]
Containers

std: :unordered map<T>
is a hash table

return O;

}

Get to know your tools!

* Using the Rule of 0 and compiler-generated special member functions, you can write highly

efficient, correct code by reusing the following standard library tools:

* vector<T> for dynamic arrays

* set<T>and map<T> for binary trees

* unordered set<T>andunordered map<T> for hash tables and hash maps
* optional<T> for values that might not exist

° variant<T1l, T2, ...>forvaluesfrom one ofseveral differenttypes

* unique ptr<T> for safely managing a heap object

* shared ptr<T> for safely managing a heap object with multiple owners

* And many, many more! Consult your C++ book and documentation for ideas and guidance

Source
Code

struct X {
“I need heap int a = 3;
allocation for string b = “Hello”;
some reason” vector<int> ¢ = {1, 2, 3};
Using };
Manual
Memory

int main() {
X* x = new X{};

Management

return 0O;

}

“I need heap
allocation for

some reason”
Using

unique ptr

Source
Code

struct X {
int a = 3;
string b = “Hello”;
vector<int> ¢ = {1, 2, 3};
};

int main () {
unique ptr<X> x = make unique<X>();

ua\deanup‘

hu)nnan

return 0O;

/n conclusion:

Jnderstand special member functions. =~ . -
se copy andhﬂove semantics to your advantage

\/

\/

(\') '

se-automatlc storage to dD your cléanup for you

Hang on, what does
std: :move do?

BONUS TECHNICAL DETAILS

observe(std: :vector<BlahBlah>& v) {
std::cout << v.size();

modify(std::vector<BlahBlah>& v) {
v.pop_back();

std: :vector<BlahBlah> consume(std: :vector<BlahBlah> v) {
v.pop_back();
return v;

main() {
v = std

observe(v);
modify(v);

consume(Vv);
consume(Vv);

: :vector<BlahBlah>(99);

main()
observe(std: :vector<BlahBlah>(99));

consume(std: :vector<BlahBlah>(99));

std::vector<BlahBlah> makeMeAvVector() {
return std::vector<BlahBlah>(99);

main() {
observe(makeMeAVector());

consume (makeMeAVector());

main() {

v = std

observe(v);
modify(v);
consume(Vv);

: :vector<BlahBlah>(99);

main()

= std::vector<BlahBlah>(99);

observe(v);
modify(v);

consume(std: :move(v));

