
How to Think Like a
Modern C++ Programmer
TIM STRAUBINGER – CPSC 427 – SPRING 2021

Poll Time
How you are
doing today?

I am alive

Doing well

Doing great

I am not ready to be in classes again

I wish I was in bed

I am in bed

Talk Outline

BRIEF HISTORY
OF C++

TEMPLATES THE DARK SIDE
OF C++

LIFETIMES

Who is Tim (a.k.a timstr)?
◦ MSc. Student studying under Helge Rhodin and Robert Xiao

◦ timstr@cs.ubc.ca

◦ https://timstr.github.io

◦ Began learning C++ in early 2012

◦ “understood” C++ circa mid-2018

◦ Two years of professional experience with C++

◦ Around 3000-5000 total hours spent with C++

◦ Still learning new things about C++ 9 years later

mailto:timstr@cs.ubc.ca
https://timstr.github.io/

Additional Resources
isocpp.org/get-started
◦ Recommended book list

◦ high-level explanations, tutorials, and design guidance

cppreference.com/w/
◦ Language and standard library documentation

coliru.stacked-crooked.com
◦Free online compiler (great for small exercises)

https://isocpp.org/get-started
https://cppreference.com/w/
https://coliru.stacked-crooked.com/

Poll Time
What does
C++ make you
think of?

I don’t remember CPSC 221

new/delete instead of malloc/free

I love C++!

Memory leaks and dangling pointers

Templates!

Please, I just want to graduate

A Brief Tour
of

C++

C++ began being
invented in 1979 by
Danish computer
scientist
Bjarne Stroustrup
(pictured right)

C++ is Not Done Being Invented

1980 2020201020001990

C with
Classes C++ C++98 C++03 C++11 C++14 C++20

Stone
Age ???

0

500

1000

1500

2000

number of pages in the C++ standard

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C++

Java

JavaScript

C

Rust

Racket

Python

Length of Language Specification (Number of Pages)

Why do C++ programmers like C++?
• Runtime performance
• Zero-cost abstractions

• Compiler optimization

• Easy and efficient resource management

• Compile-time programming (for advanced users)

• Type Safety
• Many potential bugs are eliminated at compile time

• Expressiveness
• Many diverse tools are provided by C++

• Many styles of programming are possible

• generic, object-oriented, functional, imperative
compile-time, template meta-programming, etc

but not all

*

*

Why don’t C++ programmers like C++?
•Undefined Behaviour
• C++ gives you the freedom to hurt yourself

• Complexity
• The C++ language is huge

• C++ programmers readily over-engineer

• Reasoning about C++ can cause headaches

• Compilation speed
• Being a C++ compiler is not easy

this has been

A Brief Tour
of

C++
thank you for watching

C++ Templates

Avoiding
Manual
Code
Duplication
D O E S T H I S C O D E LO O K FA M I L I A R
TO YO U ?

Templates to
the rescue!
A U TO M AT E D C O D E D U P L I C AT I O N !

Templates in C++
C++ is statically typed, and all types must be known at compile time

So how do templates work in C++?

◦ Automated code duplication! (technically called monomorphisation)

Each time you provide a template function/class with a different type,
a different function/class is generated by the compiler!

◦ This enables type checking

◦ The compiler can inspect types and perform all the normal safety checks

◦ This enables optimization

◦ The compiler can generate faster code that is specific to each type

◦ This enable expressive tools

◦ Templates are extremely powerful at doing many different things

member access
in Python
Nearly everything is
checked at runtime!

Lots of testing required

member access
in C++ templates
Templates are checked
at compile time!

Generic
functions in Java
Only one function is
generated!

Types are erased

Simple things are
impossible

Template
functions in C++
Types can be provided
explicitly for great good

The ECS system uses
this extensively.
Take a look☺

In conclusion:
- C++ templates allow code reuse with multiple types
- C++ templates are type-checked at compile time
- C++ templates are efficient and powerful

The Dark Side of C++

C++ is not safe
• C++ lets you break the rules of language

•When you break the rules, anything can happen

•A good C++ programmer knows how not to break the rules

But what are these “rules?”
◦As you read your C++ book or documentation, look out for
the term “Undefined Behaviour”
◦ The are many, many ways to invoke Undefined Behaviour

◦ Any situation causing Undefined Behaviour is a situation that
you need to prevent!

Definition of Undefined Behaviour
•“Renders the entire program meaningless if certain rules of the language are violated.” [1]

•“There are no restrictions on the behavior of the program” [1]

•“Compilers are not required to diagnose undefined behavior […], and the compiled
program is not required to do anything meaningful.” [1]

•“Because correct C++ programs are free of undefined behavior, compilers may produce
unexpected results when a program that actually has UB is compiled with optimization
enabled” [1]

•If a program encounters UB when given a set of inputs, there are no requirements on its
behavior “not even with regard to operations preceding the first undefined operation” [2]

[1] https://en.cppreference.com/w/cpp/language/ub [2] C++20 Working Draft, Section 4.1.1.5

https://en.cppreference.com/w/cpp/language/ub

Undefined Behaviour in Simpler Terms
If you do something wrong, literally anything can happen when your code runs.

This includes:
• Your code runs and does nothing

• Your code runs as you expect it to

• Your code crashes with a helpful error message

• Your code crashes for no explainable reason

• Your code runs and does something just … weird

• Your code runs as you expect it to, but fails later at the worst possible moment

• Your code passes all tests, but hackers can steal your passwords

• Demons come flying out of your nose

Undefined Behaviour means:

your code
may do
nothing

Undefined Behaviour means:

your code may
do what you
believe it should

Undefined Behaviour means:

your code may
do what you
believe it should
…until you change your
compiler settings

Undefined Behaviour means:

your code may
do what you
believe it should
…until you change your
compiler settings
…or try a different compiler

Undefined Behaviour means:
your code may crash with a helpful error message

Undefined Behaviour means:
your code may crash for no explainable reason

Undefined Behaviour means:
your code may crash for no explainable reason

Undefined Behaviour means:

your code may
run and do
something
unexplainable

Undefined Behaviour means:

your code might
run fine, but
hackers can steal
your passwords

This is a pointer
to an array

This should be the
length of that array

Undefined Behaviour means:

your code might
run fine, but
hackers can steal
your passwords

Common
Causes of
Undefined
Behaviour

• Reading from an uninitialized variable

• Reading an array out of bounds

• Dereferencing a null pointer

• Dereferencing a pointer that does not point to a valid object

• delete-ing dynamically allocated memory twice

Many famous software bugs and vulnerabilities are
due to Undefined Behaviour!

Why does C++ have Undefined Behaviour?
This sounds terrible!

•Undefined Behaviour simplifies compilation (and language design)

• Compilers can (and do!) assume that Undefined Behaviour never happens

• Compiler’s don’t need to do extra work to ensure safety

• The concept of Undefined Behaviour was inherited from C

• Detecting all types of Undefined Behaviour in C++ is impossible.

What Undefined Behaviour means for you

• The C++ language cannot be learned by trial-and-error.

• Read good C++ books and reliable documentation to learn to avoid Undefined Behaviour

• see https://isocpp.org/get-started and https://en.cppreference.com/w/

• If you write safe code to begin with, you will spend less time debugging

• Read compiler warnings and increase your compiler’s warning level

• We’ve already turned on extra warnings in the starter code for you

• Write your own safety checks when you’re unsure

https://isocpp.org/get-started
https://en.cppreference.com/w/

Avoiding
Undefined
Behaviour with
Safety Checks

Enter the assert(condition) macro!

• In debug mode, halts the program
immediately with a helpful error
message if condition is false

• Use your debugger! it will take you
right to the problem!

• In release mode, does nothing.

• Useful for optimization (fast code)

• Not useful for input validation!

• Use assertions to test your assumptions
and to find unrecoverable errors

• Ordinary exceptions may be throw-n for
recoverable errors (which you can catch)

In conclusion:
- C++ is not safe
- is weird
- must be avoided
- Safety checks make life better

Lifetimes
and
Resource Management
in C++

Lifetimes and Value Semantics
• One of C++’s most important features

• C++ lets you decide what happens when objects are created, destroyed, copied, and moved

• If used correctly, the C++ language will do the extra work for you

• This results in automatic, efficient, and deterministic resource management

• Far more powerful than garbage collection

• Way easier than manual memory management

• Related concept: RAII (Resource Acquisition is Initialization)

Lifetimes Visualized

Lifetimes in
Python
(garbage collection)

Types of Lifetimes
Any object in a running C++ program has one of three kinds of lifetimes, a.k.a.
storage durations:

◦ Static storage duration
◦ the object lives until the program exits

◦ Global variables have static storage duration

◦ Dynamic storage duration
◦ The start and end of life are not known until runtime

◦ Heap-allocated objects have dynamic storage duration (think of new or malloc and garbage collection)

◦ Automatic storage
◦ The most underrated type of lifetime!

◦ The object lives until it goes out of scope

◦ Local variables, function arguments, and class member variables have automatic storage duration

Automatic
Storage
Duration

Dynamic
Storage
Duration
A heap-allocated
object is a resource
that needs cleanup

Dynamic
Storage
Duration
A heap-allocated
object is a resource
that needs cleanup

Thinking about resource management
A resource is something that needs additional work to clean up when you’re done using it

Examples of resources:

• Data structures that grow over time (dynamic arrays, trees, linked lists, etc)

• Opened files (operating systems want these back eventually)

• Most hardware devices (things like “connections” and “contexts” and “handles”)

The part of code that is responsible for cleaning up a resource is called the owner

• This part of code has ownership of that resource

Managing
Resources with
Lifetimes
std::ofstream is a

handle to an output file

Managing
Resources with
Lifetimes
std::ofstream is a

handle to an output file

Compare C++ to C

Compare C++ to Python

Compare C++ to Java

Resource Management in Modern C++
In modern C++, Lifetimes and Ownership are combined

This allows automatic, implicit, and efficient resource management

How to Resize a
Dynamic Array
Using

Manual
Memory
Management

How to Resize a
Dynamic Array
Using

Manual
Memory
Management
Attempt 2/N

How to Resize a
Dynamic Array
Using

Manual
Memory
Management
Attempt 3/N

How to Resize a
Dynamic Array
Using

vector
Attempt 1/1

Option A
“C++ beginner
following a 20-
year-old tutorial”

Option B
“Modern C++
programmer”

Exception Safety
Using

Manual
Memory
Management

Exception Safety
Using

vector

Special
Member
Functions

Constructor and Destructor
• An object's lifetime begins with a constructor

• An object's lifetime ends with the destructor

• A constructor should guarantee that an object is always in a valid state

• Constructors often acquire a resource

• A destructor should clean up everything that the object is responsible for

• Destructors often release a resource

• Constructors and destructors are called implicitly as part of the language

• Use this to your advantage!

Copy Semantics – Construction and Assignment

• Let you define what it means to duplicate object (without modifying the original)

• Copy constructor is called when a new object is cloned from another object

• Copy assignment operator is called when an object’s value is overwritten from another object

• Can be enabled or disabled (sometimes it doesn’t make sense to create a copy)

• Example: copying a std::vector copies all elements

• Example: std::fstream (file handle) can’t ne copied

• Called implicitly as part of language

• Use this to your advantage!

Move Semantics – Construction and Assignment

• Used for transferring ownership of a resource (by modifying the previous owner)

• Move constructor creates a new object that takes ownership from another object

• Move assignment operator lets an existing object take ownership from another object

• Useful only when making a copy is expensive or impossible

• Not needed when there is no cleanup work to be done

• In this case, copying is the same thing

• Can also be enabled or disabled

Destructor, Copy Constructor, Move Constructor, Copy Assignment Operator, Move Assignment Operator, Oh My!

That’s a lot of functions to think about!
How can I wrap my head around writing these?
◦ Most of the time, you don’t have to write these

◦ Why? Your C++ compiler generates them for you if you don’t

◦ The implicitly generated special member functions will do the “obvious” thing
◦ The generated default constructor will default-construct all member variables

◦ The generated copy functions copy all member variables

◦ The generated move functions move all member variables

◦ Most of the time, you only need to write constructors

◦ But: you need to write these when you are directly managing a resource

Rule of 3/5/0
• If your class explicitly defines a destructor, then you’re probably managing a resource

(otherwise, you would have no cleanup work to do)

• …because you’re probably managing a resource, you should also define copy semantics

• …to prevent the default copy functions from doing something you don’t intend (Rule of Three)

• …and if it makes sense for your resource, you should also define move semantics

• …to allow relocating objects and transferring ownership (Rule of Five)

• If your special member functions do nothing special, get rid of them (they can be generated)

• (Rule of Zero)

https://en.wikipedia.org/wiki/Rule_of_three_(C%2B%2B_programming)

https://en.wikipedia.org/wiki/Rule_of_three_(C%2B%2B_programming)

Get to know your tools!
• Using the Rule of 0 and compiler-generated special member functions, you can write highly

efficient, correct code by reusing the following standard library tools:

• vector<T> for dynamic arrays

• set<T> and map<T> for binary trees

• unordered_set<T> and unordered_map<T> for hash tables and hash maps

• optional<T> for values that might not exist

• variant<T1, T2, ...> for values from one of several different types

• unique_ptr<T> for safely managing a heap object

• shared_ptr<T> for safely managing a heap object with multiple owners

• And many, many more! Consult your C++ book and documentation for ideas and guidance

“I need heap
allocation for
some reason”
Using

Manual
Memory
Management

“I need heap
allocation for
some reason”
Using

unique_ptr

In conclusion:
- Understand special member functions
- Use copy and move semantics to your advantage
- Use automatic storage to do your cleanup for you

