c

How to Think Like 3

Modern C++ Programmer

TIM STRAUBINGER — CPSC 427 — SPRING 2021.
\\

Q JELEINE

Poll Time [b
@ Doing great
e

How you are
doing today?

| am not ready to be in classes again
/

| wish | was in bed

~ ’“J |l am in bed

Talk Outline

O o

BRIEF HISTORY TEMPLATES THE DARK SIDE
OF C++ OF C++

LIFETIMES

Who is Tim (a.k.a timstr)?

> MSc. Student studying under Helge Rhodin and Robert Xiao
o timstr@cs.ubc.ca

o https://timstr.github.io

> Began learning C++ in early 2012

> “understood” C++ circa mid-2018

> Two years of professional experience with C++

> Around 3000-5000 total hours spent with C++

o Still learning new things about C++ 9 years later

mailto:timstr@cs.ubc.ca
https://timstr.github.io/

Additional Resources

isocpp.org/get-started
o Recommended book list

° high-level explanations, tutorials, and design guidance

cppreference.com/w/
°Language and standard library documentation

coliru.stacked-crooked.com
°Free online compiler (great for small exercises)

https://isocpp.org/get-started
https://cppreference.com/w/
https://coliru.stacked-crooked.com/

EY | don’t remember CPSC 221

. new/deleteinsteadofmalloc/free
Poll Time \

| love C++!
What does @

C++ make you Memory leaks and dangling pointers

° ? /
think of~ Templates!

F o3 Please, | just want to graduate

A Brief Tour

of
C++

C++ began being
invented in 1979 by
Danish computer
scientist

Bjarne Stroustrup
(pictured right)

C++is Not Done Being Invented

Stone Cwith
Age Classes C++ C++98 C++03 C++11 C++14 C++20 277

1980 1990 2000 2010 2020

v

2000

1500

1000

500

Length of Language Specification (Number of Pages)

Python

Racket

JavaScript

1200 1400 1600 1800

Why do C++ programmers like C++7

* Runtime performance

e Zero-cost abstractions 6 ﬁ 6

* Compiler optimization
G * Easy and efficient resource management
* Compile-time programming (for advanced users)

* Type Safety

* Many * potential bugs are eliminated at compile time
 Expressiveness e

* Many diverse tools are provided by C++ %
* Many styles of programming are possible
* generic, object-oriented, functional, imperative @7

compile-time, template meta-programming, etc
* but not all

Why don’t C++ programmers like C++7?

* Undefined Behaviour

* C++ gives you the freedom to hurt yourself m@
* Complexity 2 %

* The C++ language is huge g

* C++ programmers readily over-engineer

* Reasoning about C++ can cause headaches 5
C \’)

* Compilation speed <>
* Being a C++ compiler is not easy Gga

this has been

A Brief Tour

of
C++

thank you for watching

9 -

e

-

C++ Templates

; 5 3 g -
\ p
_

2727 int add int(int x, int y) {

2728 int result = x + y;

2729 return result;

2730}

2731

2732 double add double(double x, double y) {
2733 double result = x + vy;

2734 return result;

2735 }

2736

YEY std::string add string(std::string x, std::s
2738 std::string result = x + y;

2739 return result;

2740 }

2741

2742 float add float(float x, float y) {
2743 float result = x + y;

2744 return result;

2745 }

2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746

template<typename T>
T add(T x, T y) {
T result = x + y;
return result;

Templates in C++

C++ is statically typed, and all types must be known at compile time

So how do templates work in C++?
> Automated code duplication! (technically called monomorphisation)
Each time you provide a template function/class with a different type,
a different function/class is generated by the compiler!
> This enables type checking
> The compiler can inspect types and perform all the normal safety checks
> This enables optimization
> The compiler can generate faster code that is specific to each type
> This enable expressive tools
o Templates are extremely powerful at doing many different things

member access
in Python

Nearly everything is
checked at runtime!

Lots of testing required

®

foo(x):
print(x.bar)

__init (self):
self.bar =

Blab
Traceback (most recent call last):
File "blah.py"”, line 12, in <module>
foo(b)
File "blah.py", line 3, in foo
print(x.bar)
AttributeError: 'int' object has no attribute 'bar’

template<typename T>
void foo(T t){
std::cout << t.bar << std::endl;

member access }
in C++ templates

Templates are checked
at compile time!

struct A {
std::string bar = "Blab";
¥

int main(){

auto a = A{};

auto b = 99;

foo(a);

// foo(b); ERROR: request for member 'bar' in 't’',
!/ which is of non-class type 'int’
return 9;

Generic
functions in Java

Only one function is
generated!

Types are erased ®

Simple things are
impossible ®

T> T create() {

T();
T;

new T();
required: class
found: type parameter T
where T 1s a type-variable:
T extends Object declared in method <T>create()

Template
functions in C++

Types can be provided
explicitly for great good

The ECS system uses
this extensively.
Take a look ©

template<typename T>

T create(){

auto t = T{};

return

int main(){
auto 1
auto d
auto s

return

t;

9;

create<int>();
create<double>();
create<std::string>();

’-1;;«!‘? |

o

-,

- " . |
In conclusion:
- C++ templates allow code reuse with multiple types

- C++ templates are type-checked at compile time
- C++ templates are efficient and powerful

T
he Dark Side of C++

\

A\

X N
//
N\
N
S

NN

C++ is not safe

* C++ lets you break the rules of language
* When you break the rules, anything can happen

* A good C++ programmer knows how not to break the rules

o~
o 0

But what are these “rules?” \z

°As you read your C++ book or documentation, look out for
the term “Undefined Behaviour”

[~ P

° The are many, many ways to invoke Undefined Behaviour (G

> Any situation causing Undefined Behaviour is a situation that
you need to prevent!

Definition of Undefined Behaviour

*“Renders the entire program meaningless if certain rules of the language are violated.” [1]

*“There are no restrictions on the behavior of the program” [1]

*“Compilers are not required to diagnose undefined behavior [...], and the compiled
program is not required to do anything meaningful.” [1]

*“Because correct C++ programs are free of undefined behavior, compilers may produce
unexpected results when a program that actually has UB is compiled with optimization

enabled” [1]

*If a program encounters UB when given a set of inputs, there are no requirements on its
behavior “not even with regard to operations preceding the first undefined operation” [2]

[1] https://en.cppreference.com/w/cpp/language/ub [2] C++20 Working Draft, Section 4.1.1.5

https://en.cppreference.com/w/cpp/language/ub

Undefined Behaviour in Simpler Terms

If you do something wrong, literally anything can happen when your code runs.

This includes:
* Your code runs and does nothing @
* Your code runs as you expect it to @ |
* Your code crashes with a helpful error message @
* Your code crashes for no explainable reason @ -
* Your code runs and does something just ... weird XX
* Your code runs as you expect it to, but fails later at the worst possible moment

<‘$ 2)

* Your code passes all tests, but hackers can steal your passwords ‘3‘(5(‘)

* Demons come flying out of your nose

#include <iostream>»

* int main() {

Undefined Behaviour means:

char ch; // Oops! Forgot to initialize :-)
std::cout << ch << std::endl;

T et your code
: may do
r nothing

std::cout << "Finish ---
return 9;

1
2
3
4 std::cout << "Start ---" << std::endl;
5
6
7
8

1 #include <iostream>

2

3+ int main(){

4 int 1;

5 double d;

6 bool b;

7 uint8 t u;

8 std::cout <«
e std: :cout <«
18 std::cout <«
11 std::cout <«

1 <<]
d << °
b << °
u << '

= = L] L]

Undefined Behaviour means:

your code may
do what you
believe it should

1
2

#include <iostream>

3~ int main(){
int 1;
double d;

¥

bool

b

uints8 t u;

std::
std::
std::
std::

cout <<
cout <<
cout <<
cout <<

1 <«
d <<

u <<

"\n'
‘\n'
b << °

"\n'

6.95255e-310

>

Undefined Behaviour means:

your code may
do what you
believe it should

..until you change your
compiler settings

1 #include <iostream>
2
3~ 1int main(){
4 int 1;
5 double d;
6 bool b;
7 uint8 t uj;
8 std::cout << 1 << "\n';
O std::cout << d << "\n';
16 std::cout << b << "\n';
11 std::cout << u << "\n';
12}

718172376

e

e

Undefined Behaviour means:

your code may
do what you
believe it should

..until you change your
compiler settings
..or try a different compiler

// Entry point

int main() {
int* ptr = nullptr;
std: :cout << *ptr; .

Exception Thrown B X

Exception thrown: read access violation.
ptr was nullptr.

Copy Details

4 Exception Settings
¥'| Break when this exception type is thrown
Except when thrown from:

Undefined Behaviour means:

49
50
51
52
53

// Entry point
int main() {

return 9;

[* zalmon - ‘ESStd::_I-Iash-c_TraHs} - E‘*_ﬁnd_hint-:_l‘(eyty}[cm‘st_Mn-deptr_l—lint_ const _Keyty & _Ke
1658 protected:
1651 template <class Keyty>
1652 = _NODISCARD | Hash find last result< Nodeptr> Find last{const Keyty& Keyval, const size t Hashval) const {
1653 J// Tind the insertion point for _Keyval and whether an element identical te Keyval is already in the container
1654 const size type Bucket = Hashval & Mask;
B 1555 _Nodeptr _MWhere = Vec. Mypair. Myval2. MyTirst[{ Bucket << 1) + 1]. Ptr; .
1656 const MNodeptr End = List. Mypair. Myval2. Myhead;
1657 B if (_Where == _End} { Exception Thrown q1
1658 return { End, _Nodeptr{}};
1659 } Exception thrown: read access violation.
1668 I this->_Vec. Mypair._Myval2,_Myfirst was Ox11101110111011A.
1661 const _Nodeptr Bucket lo = Vec. Mypair. Myval2. Mytirst[Bucket << 1]. Ptr;)
1662 B for (;;) 1 Copy Details
1663 // Search backwards to maintain sorted [_Bucket_lo, _Bucket_hi] when !_5tandar 4 BEcxeption Settings
1664 = if (! Traitsobj{ Keyval, Traits:: Kfn{ Where-> Mywval})}) { Break when this exception type is thrown
1665 = if CONSTEXPR IF (! Traits:: Standard) { Except when thrown from:
1666 B if (_Traitsobj({ Traits:: Kfn{ Where-> Myval), Keyval)}) { [] salmon.exe
1::; y PRI [LINEFEE ek, L SAETER LS Open Exception Setiings | Edit Conditions
1669 }
16748
1671 return { Where-:> Next, Where};
1672 I }
1673

1674 = if (_Where == _Bucket lo) {

Undefined Behaviour means:

1 #include <iostream>

2

3~ bool fn() {

4 // Oops! Forgot to return :-)

5 1}

6

7~ int main() {

8 std::cout << "Start ---" << std::endl;
9~ if (fn()) |
10 std::cout << "fn() returned true\n";
11 ~ } else {
12 std::cout << "fn() returned false\n";
13 }
14 std::cout << "Finish ---" << std::endl;
15 return @,

16 }

Undefined Behaviour means:

your code may
run and do
something

unexplainable

#ifndef OPENSSL_NO_HEARTBEATS
int .
tlsl process_heartbeat(SSL *s) you r COde m Ight

{

unsigned char *p = &s->s3->rrec.data[@], - ru n fl ne, bUt

unsigned short hbtype;

mségr:ed lr: payl?ad;_ | haCkerS Can Steal
. | your passwords

hbtype = *p++;
n2s(p, payload);
Pl = p;

if (s->msg_callback)
s->msg_callback(@, s->version, TLS1_RT_HEARTBEAT,

&s->s3->rrec.data[@], s->s3->rrec.length,

@

s, s->msg_callback_arg);

This is a pointer This should be the
to an array length of that array

The Heartbleed Bug

yvour code might
run fine, but
hackers can steal
your passwords

The Heartbleed Bug is a serious vulnerability in the popular OpenSSL cryptographic software library. This
weakness allows stealing the information protected, under normal conditions, by the SSL/TLS encryption used
to secure the Internet. SSL/TLS provides communication security and privacy over the Internet for applications
such as web, email, instant messaging (IM) and some virtual private networks (VPNs).

The Heartbleed bug allows anyone on the Internet to read the memory of the systems protected by the
vulnerable versions of the OpenSSL software. This compromises the secret keys used to identify the service
providers and to encrypt the traffic, the names and passwords of the users and the actual content. This allows
attackers to eavesdrop on communications, steal data directly from the services and users and to impersonate
services and users.

Reading from an uninitialized variable

Reading an array out of bounds

Common . .
Dereferencing a null pointer
Causes of
. Dereferencing a pointer that does not point to a valid object
Undefined
BEhaVIOU r delete-ing dynamically allocated memory twice

Many famous software bugs and vulnerabilities are
due to Undefined Behaviour!

Why does C++ have Undefined Behaviour?
his sounds terrible!

* Undefined Behaviour simplifies compilation (and language design)
* Compilers can (and do!) assume that Undefined Behaviour never happens
* Compiler’s don’t need to do extra work to ensure safety
* The concept of Undefined Behaviour was inherited from C

* Detecting all types of Undefined Behaviour in C++ is impossible.

What Undefined Behaviour means for you

* The C++ language cannot be learned by trial-and-error.

Read good C++ books and reliable documentation to learn to avoid Undefined Behaviour

* see https://isocpp.org/get-started and https://en.cppreference.com/w/

If you write safe code to begin with, you will spend less time debugging (°v°) (X7 ‘ 'v')

Read compiler warnings and increase your compiler’s warning level

o =
A4

* We’ve already turned on extra warnings in the starter code for you

Write your own safety checks when you’re unsure

https://isocpp.org/get-started
https://en.cppreference.com/w/

Enter the assert (condition) macro!

* In debug mode, halts the program
immediately with a helpful error
message if conditionis false

* Use your debugger! it will take you
right to the problem!

* In release mode, does nothing.

Avoiding
Undefined

Behaviour with R
Safety Checks e Useful for optimization (fast code)

* Not useful for input validation!

e Use assertions to test your assumptions
and to find unrecoverable errors

e Ordinary exceptions may be throw-n for
recoverable errors (which you can catch)

1 #include <iostream>

2

3

4~ int main() A

5 int x = 88;

6 I_{ifnt* ptr = nullptr;|

7~ or (int 1 =10; 1 < 100 && !ptr; ++i) {
8~ for (int j = @; J < 100 && !ptr; ++j) {
9w if (i*1 + %9 == x) {

10 |ptr‘ - &x;'

11 }

12 }

13 }

14 std::cout << << std: :endl;

15 return ©;

1 #include <iostream>
2 I#include <cassert>|
3

4~ int main() {

5 int X = 88;

6 int* ptr = nullptr;

7~ for (int 1 = 0; 1 < 100 && !ptr; ++1) {

8~ for (int j = @; J < 100 && !ptr; ++j) A
9w if (i*1 + j*j == x) {
10 ptr = &x;
11 }
12 }
13

14 [gssert(ptr I= nullptr);
15 std::cout << [*ptr|<< std::endl;

16 return 0;

(WY
P ®WoNOUV A WwWwNRE

[

12
13
14
15
16
17
18
19
20

#include <iostream>
#include <vector>

* class A {
public:
A() : m items{1, 2, 3, 5, 7, 11, 13, 17, 19} {}
v int getItem(int index){

return m_items[index];

}

private:
std::vector<int> m_items;

}s

* int main() {
auto a = A{};
std::cout <<
std: :cout <<
return @;

a.getItem(0)
a.getItem(13)

<< std::endl;
<< std::endl;

1 #include <iostream>
2 #include <vector>
3 #include <cassert>
4
5~ class A {
6 public:
7 A() : m items{1, 2, 3, 5, 7, 11, 13, 17, 19} {}
8~ int getItem(int index){
9 assert(index >= @ && index < m_items.size());
10 return m_items[index];
11 }
12 private:
13 std::vector<int> m_items;
14 };
15
16 * int main() {
17 auto a = A{};
18 std::cout << a.getItem(@) << std::endl;
19 std::cout << a.getItem(13) << std::endl;
20 return 0;

1 #include <iostream>

2 #include <cmath>

3 #include <exception>

4

5+ int main() {

6 auto x = 0.9;

7 std::cin >> X3

8 std::cout << "x is " << x << std::endl;
9

10

11

12 std::cout << "sgrt(x) is " << std::sgrt(x) << std::endl;
13 return ©;

14 }

15

1 #include <iostream>

2 #include <cmath>

3 #include <exception>

4

5+ int main() {

6 auto x = 0.9;

7 std::cin >> x;

8 std::cout << "x is " << x << std::endl;

9w if (x < 0.0) {

10 throw std::runtime_error("Oops! Please enter a non-negative number, thanks! :-)");
11 }

12 std::cout << "sgrt(x) 1s " << std::sqrt(x) << std::endl;
13 return ©;

14 }

15

24 ~ int main() {

25 showLoginPrompt();

26 v if (getUserCommand() == DatabaseAction::Drop){

27 auto uc = getUserCredentials();

28 std::cout << "LOG: " << uc << " wants to delete the database"” << std::endl;
29 |assert(uc == User::Admini}1

30 eleteTheEntireDatabase();

31 }

32 return 0;

33}

24 ~ int main() {

25 showLoginPrompt();

26 ~ if (getUserCommand() == DatabaseAction::Drop){

27 auto uc = getUserCredentials();

28 std::cout << "LOG: " << uc << " wants to delete the database” << std::endl;
29 assert(uc == User::Admin);

30 deleteTheEntireDatabase();

31 }

32 return 0;

33}

24~ int main() A

25« try {

26 showLoginPrompt();

27 ~ if (getUserCommand() == DatabaseAction::Drop){
28 auto uc = getUserCredentials();

29 std::cout << "LOG: " << uc << " wants to delete the database” << std::endl;
30~ if (uc !'= User::Admin) {

31 throw AuthenticationError{};

32 }

33 deleteTheEntireDatabase();

34 }

35~ } catch (const std::exception& e){

36 std::cout << "ERROR: " << e.what() << std::endl;
37 }

38 return o,

39}

In conclusion

a
~ must be avoided

- Safety checks make life better

IS WeEIr

Mﬂfﬁ.ﬁ//ﬂ

o

ﬁam,v///ﬂ
///u.
TR .
N§
B
R,
ﬂ///d
2 oo,
L8

///////d
Ry
Ao

///Hhuf/ .

,_.ff/fdv
P
A Do

r/////f

]
A

Ay

N

Lifetimes

and

Resource Management. .
(RS St SR 5 sV W ADREW -

Lifetimes and Value Semantics

* One of C++’s most important features
* C++ lets you decide what happens when objects are created, destroyed, copied, and moved
* |f used correctly, the C++ language will do the extra work for you

* This results in automatic, efficient, and deterministic resource management

* Far more powerful than garbage collection

* Way easier than manual memory management

* Related concept: RAIl (Resource Acquisition is Initialization)

Lifetimes Visualized

int main () {
int a =

std: :cout << a;

return O;

int main () {
int a =

std: :cout << a;

return O;

int main () {
int a =
const char* s = “Foo”;

std: :cout < a < s;

return O;

Lifetimes in
Python

(garbage collection)

def main() :
a=2=0
s = “Hello”
if 99 < 100:
b = False
print (b)
return

Il w5

Types of Lifetimes

Any object in a running C++ program has one of three kinds of lifetimes, a.k.a.
storage durations:

o Static storage duration
> the object lives until the program exits

> Global variables have static storage duration

> Dynamic storage duration

° The start and end of life are not known until runtime
> Heap-allocated objects have dynamic storage duration (think of new or malloc and garbage collection)

> Automatic storage

° The most underrated type of lifetime!
° The object lives until it goes out of scope
> Local variables, function arguments, and class member variables have automatic storage duration

int main () {

Automatic e
Storage
Duration

return O;

Dynamic

Storage
Duration

A heap-allocated
object is a resource
that needs cleanup

int main () {

}

int* p = nullptr;

return O;

10

int main () {
int* p = nullptr;

Dynamic
StO [d ge :th:ii[g);p; —_—
Duration '

A heap-allocated
object is a resource
that needs cleanup

Thinking about resource management

A resource is something that needs additional work to clean up when you’re done using it
Examples of resources:

 Data structures that grow over time (dynamic arrays, trees, linked lists, etc)

* Opened files (operating systems want these back eventually)

* Most hardware devices (things like “connections” and “contexts” and “handles”)

The part of code that is responsible for cleaning up a resource is called the owner

* This part of code has ownership of that resource

Managing
Resources with
Lifetimes

std: :ofstreamisa
handle to an output file

rrcout <«

Managing
Resources with
Lifetimes

std: :ofstreamisa
handle to an output file

e

<fstream>

<10stream>

1]
|
T 1]

std::ofstream{"out.txt"};

rcout <«

1l E ld_ e~

~

Y

<< std::endl;

Compare C++to C

#include <fstream>
#include <iostream>

int main() {

auto f = std::ofstream{"out.txt"};

if (1) {
std::cout << "Error :(" << std::endl;
return 1;

}

f << 'A’;

return ©;

#include <stdio.h>

int main() {

FILE* £ = fopen(“out.txt", "w");

if (f == NULL) {
printf("Error :(");
return 1;

}

Gott, Close 7
fprintf(f, "A"); Manygyy,
fclose(f);
return 0;

Compare C++ to Python

#include <fstream>
#include <iostream>

: Try:

maln() { - | I Il 1T

f = std::ofstream{"out.txt"}; with DPEH(out.txt”, "w) as f:

f.write("A")

if (1) { i

std::cout << "Error :(" << std::endl; except:

return 1; pPlnt(Error :()
}
f << 'A’;
return ©;

package blah;

import java.io.FileOutputStream;
Com pa re C++ to Java import java.io.IOException;

public class FileOutputStreamDemo {
public static void main(String[] args) {
FileOutputStream f = null;

#include <fstream>
#include <iostream>

try {

int main() { f = new FileOutputStream("out.txt");

auto f = std::ofstream{"out.txt"};
f.write(65);

, f.flush();

|
1f ('f;.F § e P f.close();

std::cout << "Error :(" << std::endl; } catch (Exception e) {

return 1; System.out.print(“Error :(");
} VV\ } finally {

WO : I
ust 'y if (f != null) {
f << 'A’ \NO\N’SC‘(\ code W f.close();
’ so MY qle! }
turn @ ro €\0° ° }

return 0;

Resource Management in Modern C++

In modern C++, Lifetimes and Ownership are combined

This allows automatic, implicit, and efficient resource management

int main () {
int* p = nullptr;

delete[] p; = c—
return O;

10

int main () {
auto v = vector<int>{};

v.resize (10); =

return O;

No more Jeaksi
No more SCrew-yps|

10

int main() {
How to Resize a int* p = nullptr;

Dynamic Array
Using P = new int[10];, =« - ==

Manual
Memory
Management

int* p2 = new int[20]; =

for (int i = 0; i < 10; ++i){
p2[i] = plil;

}

p = p2;

delete[] P2, e e o

return 0;

How to Resize a

Dynamic Array
Using

Manual
Memory
Management

Attempt 2/N

Source
Code

int main() {
int* p = nullptr;

P = new int[1l0]; =« ¢ == .=

int* p2 = new int[20]; =

for (int 1 = 0; i < 10; ++1i){
p2[i] = plil;

}

int* p3 = p;

P = p2;

delete[] p3; = &« <« = +« &

return O;

How to Resize a

Dynamic Array
Using

Manual
Memory
Management

Attempt 3/N

Source
Code

int main() {
int* p = nullptr;

P = new int[1l0]; =« ¢ == .=

int* p2 = new int[20]; =

for (int 1 = 0; i < 10; ++1i){
p2[i] = plil;

}

int* p3 = p;

P = p2;

delete[] p3; = &« <« = +« &

deletel[] p;
return O;

How to Resize a

Dynamic Array
Using
vector

Attempt 1/1

Source
Code

int main () {
auto v = vector<int>{};

- @ -

v.resize(10),;, =
°o o @

v.resize(20); = . -«

return 0;

}

Option A

“C++ beginner

following a 20-
year-old tutorial”

int main() {

int* p = nullptr;

P = new int[10]; =« ¢ ==

int* p2 = new int[20]; =

for (int i = 0; i < 10; ++i) {
p2[i] = plil;

}

int* p3 = p;

p = p2;

delete[] p3; = &« <« = «

deletel[] p;
return O;

int main () {
auto v = vector<int>{};

Option B v.resize(10); = = = —

P v.resize(20); = « <« . o
Modern C++

programmer” return O;
}

int main () {

Exception Safety int* p = nullptr;

Using

Manual P = new int[10]; =« - ==

Memory

Management throw runtime error (”“oops!”) ;
delete[] p;

return O;

int main () {

Exception Safety auto v = vector<int>{};
Using
vector v.resize(10); = = = —

throw runtime error (”oops!”);

return O;

Constructor and Destructor

An object's lifetime begins with a constructor

An object's lifetime ends with the destructor

A constructor should guarantee that an object is always in a valid state

* Constructors often acquire a resource

A destructor should clean up everything that the object is responsible for

* Destructors often release a resource

Constructors and destructors are called implicitly as part of the language

* Use this to your advantage!

struct A {

int main() {
auto x = A{};

return 0;

struct A {
A() :p{new int(32)} { }

};

int main () {
auto x = A{};

return 0;

struct A {
A() :p{new int(32)} { }
~A(){ delete p; }

};

int main () {
auto x = A{};

return 0;

Copy Semantics — Construction and Assignment

Let you define what it means to duplicate object (without modifying the original)

Copy constructor is called when a new object is cloned from another object

Copy assignment operator is called when an object’s value is overwritten from another object

Can be enabled or disabled (sometimes it doesn’t make sense to create a copy)

* Example: copyinga std: : vector copies all elements

* Example: std: : fstream (file handle)can’t ne copied

Called implicitly as part of language

* Use this to your advantage!

struct A {
A() :p{new int(32)} { }
~A(){ delete p; }

};

int main () {
auto x = A{};

auto y X;

return 0;

struct A {
A() :p{new int(32)} { }
~A(){ delete p; }
A(const A& a) :p{new int(32)} { }
A& operator=(const A&) {
*p = *a.p;
return *this;

int main () {
auto x = A{};

auto y X;

return 0;

struct A {
A() :p{new int(32)} { }
~A(){ delete p; }
A(const A&) = delete;
A& operator=(const A&) = delete;

Y

int main () {
auto x = A{};

auto y x; // ERROR

return 0;

Move Semantics — Construction and Assignment

Used for transferring ownership of a resource (by modifying the previous owner)

Move constructor creates a new object that takes ownership from another object

Move assignment operator lets an existing object take ownership from another object

Useful only when making a copy is expensive or impossible

Not needed when there is no cleanup work to be done

* In this case, copying is the same thing

Can also be enabled or disabled

struct A {
A() :p{new int(32)} { }
~A(){ delete p; }
A(const A& a) = delete;
A& operator=(const A&) = delete;
A (A&& a) :p{exchange(a.p, nullptr)}{ }
A& operator=(A&& a){
delete p;
p = exchange(a.p, nullptr);
return *this;
}
private:
int* p;
};

int main () {
auto x = A{};

auto y std: :move (x) ;

return 0;

Destructor, Copy Constructor, Move Constructor, Copy Assignment Operator, Move Assighment Operator, O h My I

That’s a lot of functions to think about!
How can | wrap my head around writing these?
> Most of the time, you don’t have to write these
> Why? Your C++ compiler generates them for you if you don’t

> The implicitly generated special member functions will do the “obvious” thing

o The generated default constructor will default-construct all member variables
° The generated copy functions copy all member variables
> The generated move functions move all member variables

> Most of the time, you only need to write constructors
> But: you need to write these when you are directly managing a resource

struct X {
int a = 3;
string b = “Hello”;

vector<int> ¢ = {1, 2, 3};
};

int main () {
auto x = X{};

return 0;

Rule of 3/5/0

If your class explicitly defines a destructor, then you're probably managing a resource

(otherwise, you would have no cleanup work to do)

...because you’re probably managing a resource, you should also define copy semantics

 ...to prevent the default copy functions from doing something you don’t intend (Rule of Three)

...and if it makes sense for your resource, you should also define move semantics

 ..to allow relocating objects and transferring ownership (Rule of Five)

If your special member functions do nothing special, get rid of them (they can be generated)

* (Rule of Zero)

https://en.wikipedia.org/wiki/Rule of three (C%2B%2B programming)

https://en.wikipedia.org/wiki/Rule_of_three_(C%2B%2B_programming)

Get to know your tools!

* Using the Rule of 0 and compiler-generated special member functions, you can write highly

efficient, correct code by reusing the following standard library tools:

* vector<T> for dynamic arrays

* set<T>and map<T> for binary trees

* unordered set<T>andunordered map<T> for hash tables and hash maps
* optional<T> for values that might not exist

° variant<T1l, T2, ...>forvaluesfrom one ofseveral differenttypes

* unique ptr<T> for safely managing a heap object

* shared ptr<T> for safely managing a heap object with multiple owners

* And many, many more! Consult your C++ book and documentation for ideas and guidance

Source
Code

struct X {
“I need heap int a = 3;
allocation for string b = “Hello”;
some reason” vector<int> ¢ = {1, 2, 3};
Using };
Manual
Memory

int main() {
X* x = new X{};

Management

return 0O;

}

“I need heap
allocation for

some reason”
Using

unique ptr

Source
Code

struct X {
int a = 3;
string b = “Hello”;
vector<int> ¢ = {1, 2, 3};
};

int main () {
unique ptr<X> x = make unique<X>();

ua\deanup‘

hu)nnan

return 0O;

/n conclusion:

Jnderstand special member functions. =~ . -
se copy andhﬂove semantics to your advantage

\/

\/

(\') '

se-automatlc storage to dD your cléanup for you

