CPSC 427
Video Game Programming

Game Play and Al

READY’TF

Helge Rhodin

© Alla Sheffer, Helge Rhodin



Read the zoom chat

Capture the screen

* https://github.com/smasherprog/screen capture lite

Search for the zoom window
 Check for colored symbol

red, green,

« only need to read a few pixels

e |ts fast!

Recognize numbers?
only 10 different ones, brute force?

- blue?

Invite

Chat

Invite

© Alla Sheffer, Helge Rhodin



https://github.com/smasherprog/screen_capture_lite

Mouse gestures

Regression
- least squares fit Hn

* linear, polynomial, and |
other parametric functions

Search

e brute force?
* Dbinary search?
Detection

« key events
e pattern matching t

rvelocity

© Alla Sheffer, Helge Rhodin



Connection to Game Design

- Impact of design on ease of use & engagement

In Wind Waker, the direction
Link looked indicated to the
player something of interest
was there

- Design applications & philosophies are interconnected

© Alla Sheffer, Helge Rhodin



Example of Affordances in Games

o>

Affordances

What does the
pipe afford?

| ‘ | | !
. . Foro 0 1S Ul b8 e 1 il 1
‘_7'_'.&'_‘:.'_"_1"_['_'4’_:J_"_'J_"_‘.‘_::J‘_fij_"_'.'_"_‘J'_TL_":J|_"_‘4_’:_'_'_“J_"_’.'_r'_'l_"_".i_':.‘_'_“ll_:"
! | ! i \ | : !
4 ! 5 i - {

© Alla Sheffer, Helge Rhodin



Users

Who are the players?
Age: Children, adults, university students
Culture

Where will they be playing?
Commuting, at home, remotely

What do they need or want?
Fulfilling plot, relaxing play

© Alla Sheffer, Helge Rhodin



What Motivates Users?

Work has been done to identify reng
player types

o Killers Achievers
Users can be classified by

preference for interacting/acting
with/on others/the world Players <€ o

The four classifications tell us

. iali Explorers
what motivates each player type Socializers P

Interacting

© Alla Sheffer, Helge Rhodin



The Design Process

Brainstorming Release
— Sketch Wireframe  Mockup Prototype _—
Low fidelity High fidelity

prototyping ______________ prototyping

© Alla Sheffer, Helge Rhodin



Low Fidelity Prototyping

« Used for early stages of design
— Quick & cheap to deploy
— Easy to test

* |terate on story and
core gameplay mechanics

- Sketches are a great way

to start designing g S

© Alla Sheffer, Helge Rhodin


https://www.youtube.com/watch?v=iSh3AzmW4kY

Testing Low Fidelity Prototypes

Don’t commit to one approach, design a few prototypes &
compare

Invite someone to try them out

Try to drill down on feedback
If they just say it’s “fun”, ask why?

© Alla Sheffer, Helge Rhodin



— i —
-y Ry

Fail Early, Fail Often, and Iterate on Feedback

Designing something that people will use Iis both an art & a
science

follow established principles
lteration Is how you make it better

Early feedback ensures design meets users’ needs

Throwing around ideas Is quick
Fixing a bad design Is expensive

No idea Is perfect the first time around

© Alla Sheffer, Helge Rhodin



— i —
-y Ry

Medium Fidelity Prototyping

Use medium fidelity prototyping for the early to middle stages
of design

ldentify questions before coding
Be selective with what gets built
Get it right in black and white first

Iterate on tone & feel of game
Supplementary game mechanics
Rough visuals & audio
Feedback

© Alla Sheffer, Helge Rhodin



Greyboxing

» Greyboxing blocks out all elements as shapes to test gameplay

© Alla Sheffer, Helge Rhodin



CPSC 427
Video Game Programming

Game Play and Al

READY’TF

Helge Rhodin

© Alla Sheffer, Helge Rhodin



Invited Talk Schedule

Tuesday, March 2., 5-6 pm
Tuesday, March 9., 5-6 pm
Tuesday, March 16., 5-6 pm
Tuesday, March 23., 5-6 pm
Tuesday, March 30., 5-6 pm

Yggy King (Blackbird Interactive) ECS

Craig Peters (EA) Debugging

Ben (Brace Yourself Games) Ul development
TBD (Skybox) ECS and multi-threading
Dinos (Charm Games) Moving &rendering in VR

Nvidia: RTX and raytracing (working on it)

15

© Alla Sheffer, Helge Rhodin



ECS examples — entity, component, or system?
World grid

enum Tile {empty, wall,
ladder, rock, ..};

,ﬂﬂﬁﬂﬂﬁﬂﬂﬁﬂ ﬂﬂﬁﬂﬂﬁﬂﬂﬁﬂﬂ{ : : : : : : :
,yﬁthh AN thHJnh
1 0 0 0 0 0 1
0 0 3 0 3 0 o)
1 0 0 0 0 0 1
1 1 1 2 1 1 1

© Alla Sheffer, Helge Rhodin



Menu 1tem

 component, system, entity?

© Alla Sheffer, Helge Rhodin



18

Level Loading with JSON

Libraries:

https://sourceforge.net/projects/libjson/

https://github.com/nlohmann/jso

others?

© Alla Sheffer, Helge Rhodin


https://sourceforge.net/projects/libjson/
https://github.com/nlohmann/jso

Loading Entities and Components

« Quter list of entities

* Inner list of components

 Create afactory that
Instantiates each
component type

 Equip components with

toJSON(...) and
fromJSON(...) functions

19

“entities": [
{

"position": {
"x": -1.7193701,
"y": -0.09165986

}s

"velocity": {
"x": 0,
"y": 0

}s

"color": {
"x": 0.453125,
"y": 0.453125,
"z": 0.453125

}s
"type": “Water Animal"

}s

}

"position": {
"x": 2.2221813,
"y": -1.2671415

}s
"velocity": {
"x": 0,
"y"i 1
}s
"radius"”: 0.9300000000000006,
"color": {
"x": 0.40625,
"y": 0.40625,
"z": 0.40625
}s

"type": ”Land Animal”

© Alla Sheffer, Helge Rhodin



20

Factory from JSON

Factory:

void ComponentfromJson(Entity e, JsonObject json)
{
if(strl.compare(“Motion™) != 0) {
auto motion = Motion::fromJson(json);
ECS::registry->insert(e, motion);

}

else if(strl.compare(“Salmon") != 0)
auto component = Motion::fromJson(json);
ECS::registry->insert(e, component);

© Alla Sheffer, Helge Rhodin



21

Component from JSON

Component to/from: class Vector2d

{

float x,y;
public:
JsonObject toJson()

{
JsonObject json = Json.object();

json.add("x", x);

json.add("y", y);
return json;

}

static Vector2D fromJson(JsonObject json)

{
double x = json.getFloat("x", 0.0f);
double y = json.getFloat("y", 0.0f);
return Vector2D(x,y);

}

© Alla Sheffer, Helge Rhodin



CPSC 427
Video Game Programming

State machines

READY’TF

Helge Rhodin

© Alla Sheffer, Helge Rhodin



Gameplay

('walking && wantToWalk)

PlayAnim(StartAnim) ;
walking = '

(IsPlaying(StartAnim) && IsAtEndOfAnim()

PlayAnim(WalkLoopAnim) ;

(walking && 'wantToWalk)

PlayAnim(StopAnim) ;
walking = '

From http://twvideoOl.ubm-us.net/ol/vault/gdc2016/Presentations/Clavet_Simon_MotionMatchipgupdihefter, Helge Rhodin



Finite State Machines: States + Transitions

.- . Vé‘TA@D]wé |
RELENSE O \\

PRESS |
| ( 2 ?zésS@ | i s
PULKID G T ' \}UNW&

' Kess@

| DIVING \‘/

© Alla Sheffer, Helge Rhodin



FSM Example: Pac-Man Ghosts

READY’TF

© Alla Sheffer, Helge Rhodin



FSM Example: Pac-Man Ghosts

Wander Maze Return to Base
A A A
(o]

AY U AQC\ 11,@/' 9
5118 %, %, 5 READY’?

< < 6:9,:9 Gf& —

% ) P ":O >

= %, %" =

g W LN & |2

A § G//@/ o

o

Chase Pac-Man wz Flee Pac-Man

Eats
Power
Pellet

© Alla Sheffer, Helge Rhodin



Ghost Al in PAC-MAN

Is the Al for Pac-Man basic?
 chase or run.
* pinary state machine?

* Toru Iwatani, designer of Pac-Man explained:
“wanted each ghostly enemy to have a specific character and
its own particular movements, so they weren't all just chasing
after Pac-Man... which would have been tiresome and flat.”

 the four ghosts have four different behaviors

« different target points in relation to Pac-Man or the maze
« attack phases increase with player progress

* More details: http://tinyurl.com/238I7km

© Alla Sheffer, Helge Rhodin



Finite State Machines (FSMs)

 Each frame:
« Something (the player, an enemy) does something in its state
* [t checks if it needs to transition to a new state

* |f so, it does so for the next iteration

« If not, it stays in the same state

* Applications
 Managing input
 Managing player state
« Simple Al for entities / objects / monsters etc.

© Alla Sheffer, Helge Rhodin



FSMs: States + Transitions

3
.
7
<
i
.
L
+*
-

From http://twvideoOl.ubm-us.net/ol/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf © Alla Sheffer, Helge Rhodin



FSMs: States + Transitions

(speed > 3.0f)
PlayAnim(RunAnim) ;
(speed > 0.0f)

PlayAnim(WalkAnim) ;

PlayAnim(IdleAnim) ;

From http://twvideoOl.ubm-us.net/ol/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf © Alla Sheffer, Helge Rhodin



FSMs: Failure to Scale

No way to do long-term planning

No way to ask “How do | get here
from there?”

No way to reason about long-term
goals

I

Shmeaniy
L7 5 ANN
‘ FSMs can get large and hard to

- \kj_ follow
R b Can’t generalize for larger games

EEE

From http://twvideoOl.ubm-us.net/ol/vault/gdc2016/Presentations/Clavet Simon MotionMatchif@d\ s gheffer, Helge Rhodin



Behaviour Trees:

How To Simulate Your Dragon

=

Start!

Guard Treasure

Get More Treasure

Post Selfies To Facebook

» |s there a thief?

Make thief flee!

~

Z Condition Node

J

_Instruction Node

Fly to Castle!

Steal treasure!

r

.

» Treasure light enough to get home?

~

J

' Take treasure home!

© Alla Sheffer, Helge Rhodin



Behaviour Trees

 flow of decision making of an Al agent
* [Each frame:

Visit a node
See if any higher priority nodes now run
If so, execute them instead
See if my currently running node falls
If so, return to the root of the behaviour tree! Start again!
See if the currently running node is done
If so, run the lower priority node in the current branch of the tree

© Alla Sheffer, Helge Rhodin



Fly to castle! Can | take it home2

Steal treasure!

>,
/ m'(
<
‘ C an
v' N 1
I8
~) AR
] o

40 miles later >

(runs until complete)

© Alla Sheffer, Helge Rhodin



Behaviour Trees

How To Simulate Your Dragon

Start!

Guard Treasure

Get More Treasure

Post Selfies To Facebook

|

» |s there a thief?

Make thief flee!

Z Condition Node

_Instruction Node

)/ g ly to Castle!

Steal treasure!

r

.

» Treasure light enough to get home?

~

J

' Take treasure home!

© Alla Sheffer, Helge Rhodin



Schematic examples

Sequence

Wall to Door

Cpen Door

Walk through Door

Close Door

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2
21339/Behavior_trees_for Al How_they work.php

© Alla Sheffer, Helge Rhodin



Schematic examples

—

Sequence

Y N

Wallc to Doar Selector Wallc through Doar Close Door
Cpen Door Sequence smash Doar
LInlock Doar Cpen Door

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2
21339/Behavior_trees_for Al How_they work.php

© Alla Sheffer, Helge Rhodin



&
And more complex...

https://www.gamasutra.com/
Sequence

blogs/ChrisSimpson/2014071
/ v \F 7/221339/Behavior_trees_for
Inverter

GetDoorStackFromBuilding Until Fail _Al_How_they_work.php
l Y
Sequence [sMull (usedDoor)
FopFromStack (door) Inverter DeCO rator
Sequence
Walk (doar) Selector Walk thru (door) Succeeder Setvariable (door,usedDoor)
Open (door) Unlock (door) Smash (door) Close (door)

© Alla Sheffer, Helge Rhodin



Types

Sequence
/ ¥
GetDoarStackFromBuilding Lntil Fail
hJ
Sequence

AN

Inverter

L 4

|sMull (usedDaoaor)

Composite

Leaf

Y

Decorator

Leaf

Open (door)

Unlock (door)

Smash (door)

Close (door)

PopFromStack (door) Inverter
Y
Sequence
Walk (door) Selector Walk thru (doar) Succeeder Setvariable (door,usedDoor)
¥ Y

v

Leaf

© Alla Sheffer, Helge Rhodin



Types

ssaence | COMpPOSIte
/ ¥
GetDoarStackFromBuilding Lntil Fail Inverter
Y Y
Sequence IsMull (usedDoor)

AN

PopFromStack (door) Inverter
Y
CompOS|te Sequence

mpasite N\,

Decorator

Composite

Leaf

Y

Decorator

Walk (door)

Selector

Walk thru (door)

Succeeder

Setvariable (door,usedDoor)

Y

Open (door)

Unlock (door)

Smash (door)

Y

Close (door)

L eaf

v

Leaf

Leaf

© Alla Sheffer, Helge Rhodin



41

Behaviour Tree Elements

leaves, are the actual commands that control the Al entity

e upon tick, return: Success, Failure, or Running

branches are utility nodes that control the AI’'s walk down the tree
* loop through leaves: first to last or random

 inverter: turn Failure -> Success

* toreach the sequences of commands best suited to the situation

trees can be extremely deep
* nodes calling sub-trees of reusable functions
 libraries of behaviours chained together

© Alla Sheffer, Helge Rhodin



42

Analogy

 think of composites and decorators as
- simple functions: negate, ...
 if statements, while loops, ... for defining flow
« leaf nodes are game specific functions that actually do the work
Examples:
« walk to destination
* using shortest path
e success upon reaching the destination
« avoid salmon, until at distance
* g0 straight

© Alla Sheffer, Helge Rhodin



Behaviour Trees are Modular!

Can re-use behaviours for different purposes

Can implement a behaviour as a smaller FSM

Can be data-driven (loaded from a file, not hard coded)
JSON?!

Can easily be constructed by non-programmers

Can be used for goal based programming

© Alla Sheffer, Helge Rhodin



Strategy

© Alla Sheffer, Helge Rhodin



Strategy

« (Given current state, determine BEST next move
« Short term: best among immediate options

« Long term: what brings something closest to a goal
« How?

e Search for path to best outcome
« Across states/state parameters

© Alla Sheffer, Helge Rhodin



Pathfinding

« How do | get from point A to point B?

© Alla Sheffer, Helge Rhodin



DFS: Depth First Search

Shaded nodes
represent the end of
paths on the frontier

Explore each path on the
frontier until its end (or until a

goal is found) before
considering any other path.

© Alla Sheffer, Helge Rhodin



Breadth-first search (BFS)

 Explore all paths of ‘/O\

length L on the frontier,

before looking at path ,Q\
of length L +1

A1 PRE R R
2 ?R?.O/Q?.Oﬂ;: Oﬂ O
o0 O O O

lla Sheffer, Helge Rhodin




49

Breadth-first

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

© Alla Sheffer, Helge Rhodin



When to use BFS vs. DFS?

The search graph has cycles or is infinite
BFS
We need the shortest path to a solution

BFS
There are only solutions at great depth

DFS

There are some solutions at shallow depth

BFS

No way the search graph will fit into memory
DFS

© Alla Sheffer, Helge Rhodin



Search with Costs

Def.: The cost of a path Is the
sum of the costs of its arcs

cost({n0 VN >): iZkl:COSt«nil, n;))

Want to find the solution that
minimizes cost

© Alla Sheffer, Helge Rhodin



Lowest-Cost-First Search (LCFS)

* Lowest-cost-first search finds the path with the
lowest cost to a goal node

« At each stage, it selects the path with the lowest cost
on the frontier.

 The frontier is implemented as a priority queue
ordered by path cost.

52

© Alla Sheffer, Helge Rhodin



Use of search

« Use search to determine next state (next state on shortest path to
goal/best outcome)

 Measures:
« Evaluate goal/best outcome
« Evaluate distance (shortest path in what metric?)

Problems:
« Cost of full search (at every step) can be prohibitive
« Search in adversarial environment

« Player will try to outsmart you

© Alla Sheffer, Helge Rhodin



Heuristic Search

Blind search algorithms do not take goal into account until they reach it

We often have estimates of distance/cost from node n to a goal node

Estimate = search heuristic
a scoring function h(x)

o4

© Alla Sheffer, Helge Rhodin



Best First Search (BestFS)

Best First: always choose the path on the frontier with the smallest h
value

* Frontier = priority gueue ordered by h
* Once reach goal can discard most unexplored paths...
« Why?
« Worst case: still explore all/most space
« Best case: very efficient
« Greedy: (only) expand path whose last node seems closest to the goal
« Get solution that is locally best

© Alla Sheffer, Helge Rhodin



56

A* search

https://en.wikipedia.org/wiki/A*_search_algorithm

© Alla Sheffer, Helge Rhodin



