
© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Game Play and AI

1

© Alla Sheffer, Helge Rhodin

Read the zoom chat

• Capture the screen

• https://github.com/smasherprog/screen_capture_lite

• Search for the zoom window

• Check for colored symbol

• red, green, gray, blue?

• only need to read a few pixels

• its fast!

• Recognize numbers?

• only 10 different ones, brute force?

2

https://github.com/smasherprog/screen_capture_lite

© Alla Sheffer, Helge Rhodin

Mouse gestures

Regression

• least squares fit

• linear, polynomial, and
other parametric functions

Search

• brute force?

• binary search?

Detection

• key events

• pattern matching

3

t

velocity

© Alla Sheffer, Helge Rhodin

Connection to Game Design

• Impact of design on ease of use & engagement

• Design applications & philosophies are interconnected

In Wind Waker, the direction

Link looked indicated to the

player something of interest

was there

© Alla Sheffer, Helge Rhodin

Example of Affordances in Games

Affordances

What does the

pipe afford?

© Alla Sheffer, Helge Rhodin

Users

• Who are the players?

– Age: Children, adults, university students

– Culture

• Where will they be playing?

– Commuting, at home, remotely

• What do they need or want?

– Fulfilling plot, relaxing play

© Alla Sheffer, Helge Rhodin

What Motivates Users?

• Work has been done to identify
player types

• Users can be classified by
preference for interacting/acting
with/on others/the world

• The four classifications tell us
what motivates each player type

© Alla Sheffer, Helge Rhodin

The Design Process

Brainstorming Release

Low fidelity

prototyping

High fidelity

prototyping

© Alla Sheffer, Helge Rhodin

Low Fidelity Prototyping

• Used for early stages of design

– Quick & cheap to deploy

– Easy to test

• Iterate on story and

core gameplay mechanics

• Sketches are a great way

to start designing

https://www.youtube.com/watch?v=iSh3AzmW4kY

© Alla Sheffer, Helge Rhodin

Testing Low Fidelity Prototypes

• Don’t commit to one approach, design a few prototypes &
compare

• Invite someone to try them out

• Try to drill down on feedback

– If they just say it’s “fun”, ask why?

© Alla Sheffer, Helge Rhodin

Fail Early, Fail Often, and Iterate on Feedback

• Designing something that people will use is both an art & a
science

– follow established principles

– Iteration is how you make it better

• Early feedback ensures design meets users’ needs

• Throwing around ideas is quick

– Fixing a bad design is expensive

• No idea is perfect the first time around

© Alla Sheffer, Helge Rhodin

Medium Fidelity Prototyping

• Use medium fidelity prototyping for the early to middle stages
of design

– Identify questions before coding

– Be selective with what gets built

– Get it right in black and white first

• Iterate on tone & feel of game

– Supplementary game mechanics

– Rough visuals & audio

– Feedback

© Alla Sheffer, Helge Rhodin

Greyboxing

• Greyboxing blocks out all elements as shapes to test gameplay

© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Game Play and AI

14

© Alla Sheffer, Helge Rhodin

Invited Talk Schedule

Tuesday, March 2., 5-6 pm Yggy King (Blackbird Interactive) ECS

Tuesday, March 9., 5-6 pm Craig Peters (EA) Debugging

Tuesday, March 16., 5-6 pm Ben (Brace Yourself Games) UI development

Tuesday, March 23., 5-6 pm TBD (Skybox) ECS and multi-threading

Tuesday, March 30., 5-6 pm Dinos (Charm Games) Moving &rendering in VR

Nvidia: RTX and raytracing (working on it)

15

© Alla Sheffer, Helge Rhodin

ECS examples – entity, component, or system?

World grid

16

1 1 1 2 1 1 1

1 0 0 0 0 0 1

0 0 3 0 3 0 0

1 0 0 0 0 0 1

1 1 1 2 1 1 1

enum Tile {empty, wall,

ladder, rock, …};

© Alla Sheffer, Helge Rhodin

Menu item

• component, system, entity?

17

Play

© Alla Sheffer, Helge Rhodin

Level Loading with JSON

Libraries:

• https://sourceforge.net/projects/libjson/

• https://github.com/nlohmann/jso

• others?

18

https://sourceforge.net/projects/libjson/
https://github.com/nlohmann/jso

© Alla Sheffer, Helge Rhodin

Loading Entities and Components

19

“entities": [
{
"position": {
"x": -1.7193701,
"y": -0.09165986

},
"velocity": {
"x": 0,
"y": 0

},
"color": {
"x": 0.453125,
"y": 0.453125,
"z": 0.453125

},
"type": “Water Animal"

},

{
"position": {
"x": 2.2221813,
"y": -1.2671415

},
"velocity": {
"x": 0,
"y": 1

},
"radius": 0.9300000000000006,
"color": {
"x": 0.40625,
"y": 0.40625,
"z": 0.40625

},
"type": ”Land Animal”

}
]

• Outer list of entities

• Inner list of components

• Create a factory that

instantiates each

component type

• Equip components with

toJSON(…) and

fromJSON(…) functions

© Alla Sheffer, Helge Rhodin

Factory from JSON

Factory:

20

void ComponentfromJson(Entity e, JsonObject json)
{
if(str1.compare(“Motion") != 0) {

auto motion = Motion::fromJson(json);
ECS::registry->insert(e, motion);

}
else if(str1.compare(“Salmon") != 0)

auto component = Motion::fromJson(json);
ECS::registry->insert(e, component);

}
…

}

© Alla Sheffer, Helge Rhodin

Component from JSON

Component to/from:

21

class Vector2D
{

float x,y;
public:
JsonObject toJson()
{

JsonObject json = Json.object();
json.add("x", x);
json.add("y", y);
return json;

}

static Vector2D fromJson(JsonObject json)
{

double x = json.getFloat("x", 0.0f);
double y = json.getFloat("y", 0.0f);
return Vector2D(x,y);

}
}

© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

State machines

22

© Alla Sheffer, Helge Rhodin

Gameplay

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

© Alla Sheffer, Helge Rhodin

Finite State Machines: States + Transitions

© Alla Sheffer, Helge Rhodin

FSM Example: Pac-Man Ghosts

© Alla Sheffer, Helge Rhodin

FSM Example: Pac-Man Ghosts

Wander Maze

Chase Pac-Man

Return to Base

Flee Pac-Man

P
a
c
-M

a
n

 L
o

s
t

P
a
c
-M

a
n

 S
e
e
n

G
h

o
s
t A

tta
c
k
e
d

Pac-Man

Eats

Power

Pellet

© Alla Sheffer, Helge Rhodin

Ghost AI in PAC-MAN

Is the AI for Pac-Man basic?

• chase or run.

• binary state machine?

• Toru Iwatani, designer of Pac-Man explained:
“wanted each ghostly enemy to have a specific character and
 w u m m , w ’ ju
after Pac-Man... which would have been tiresome and flat.”

• the four ghosts have four different behaviors

• different target points in relation to Pac-Man or the maze

• attack phases increase with player progress

• More details: http://tinyurl.com/238l7km
27

© Alla Sheffer, Helge Rhodin

Finite State Machines (FSMs)

• Each frame:

• Something (the player, an enemy) does something in its state

• It checks if it needs to transition to a new state

• If so, it does so for the next iteration

• If not, it stays in the same state

• Applications

• Managing input

• Managing player state

• Simple AI for entities / objects / monsters etc.

© Alla Sheffer, Helge Rhodin

FSMs: States + Transitions

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

© Alla Sheffer, Helge Rhodin

FSMs: States + Transitions

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

© Alla Sheffer, Helge Rhodin

FSMs: Failure to Scale

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

No way to do long-term planning

No way to ask “How do I get here
from there?”

No way to reason about long-term
goals

FSMs can get large and hard to
follow

Can’t generalize for larger games

© Alla Sheffer, Helge Rhodin

Behaviour Trees:

How To Simulate Your Dragon

Start!

Guard Treasure Get More Treasure Post Selfies To Facebook

Make thief flee!

Fly to Castle!
Is there a thief?

Treasure light enough to get home?

Steal treasure!

Take treasure home!

Condition Node

Instruction Node

© Alla Sheffer, Helge Rhodin

Behaviour Trees

• flow of decision making of an AI agent

• Each frame:

• Visit a node

• See if any higher priority nodes now run

• If so, execute them instead

• See if my currently running node fails

• If so, return to the root of the behaviour tree! Start again!

• See if the currently running node is done

• If so, run the lower priority node in the current branch of the tree

© Alla Sheffer, Helge Rhodin

Start!

Is there a thief?

No! 40 miles later

Fly to castle! Can I take it home?
Steal treasure!

Success

(runs until complete)

© Alla Sheffer, Helge Rhodin

Behaviour Trees:

How To Simulate Your Dragon

Start!

Guard Treasure Get More Treasure Post Selfies To Facebook

Make thief flee!

Fly to Castle!
Is there a thief?

Treasure light enough to get home?

Steal treasure!

Take treasure home!

Condition Node

Instruction Node

© Alla Sheffer, Helge Rhodin

Schematic examples

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2

21339/Behavior_trees_for_AI_How_they_work.php

© Alla Sheffer, Helge Rhodin

Schematic examples

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2

21339/Behavior_trees_for_AI_How_they_work.php

© Alla Sheffer, Helge Rhodin

And more complex…

https://www.gamasutra.com/

blogs/ChrisSimpson/2014071

7/221339/Behavior_trees_for

_AI_How_they_work.php

Decorator

© Alla Sheffer, Helge Rhodin

Types

© Alla Sheffer, Helge Rhodin

Types

Decorator

Composite

Composite

Composite

Leaf

© Alla Sheffer, Helge Rhodin

Behaviour Tree Elements

• leaves, are the actual commands that control the AI entity

• upon tick, return: Success, Failure, or Running

• branches are utility nodes that control the AI’s walk down the tree

• loop through leaves: first to last or random

• inverter: turn Failure -> Success

• to reach the sequences of commands best suited to the situation

• trees can be extremely deep

• nodes calling sub-trees of reusable functions

• libraries of behaviours chained together
41

© Alla Sheffer, Helge Rhodin

Analogy

• think of composites and decorators as

• simple functions: negate, …

• if statements, while loops, … for defining flow

• leaf nodes are game specific functions that actually do the work

Examples:

• walk to destination

• using shortest path

• success upon reaching the destination

• avoid salmon, until at distance

• go straight

42

© Alla Sheffer, Helge Rhodin

Behaviour Trees are Modular!

• Can re-use behaviours for different purposes

• Can implement a behaviour as a smaller FSM

• Can be data-driven (loaded from a file, not hard coded)

• JSON?!

• Can easily be constructed by non-programmers

• Can be used for goal based programming

© Alla Sheffer, Helge Rhodin

Strategy

© Alla Sheffer, Helge Rhodin

Strategy

• Given current state, determine BEST next move

• Short term: best among immediate options

• Long term: what brings something closest to a goal

• How?

• Search for path to best outcome

• Across states/state parameters

© Alla Sheffer, Helge Rhodin

Pathfinding

• How do I get from point A to point B?

© Alla Sheffer, Helge Rhodin

DFS: Depth First Search

Explore each path on the

frontier until its end (or until a

goal is found) before

considering any other path.

Shaded nodes

represent the end of

paths on the frontier

© Alla Sheffer, Helge Rhodin

Breadth-first search (BFS)

• Explore all paths of

length L on the frontier,

before looking at path

of length L + 1

© Alla Sheffer, Helge Rhodin

Breadth-first

49 https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

© Alla Sheffer, Helge Rhodin

When to use BFS vs. DFS?

• The search graph has cycles or is infinite

• We need the shortest path to a solution

• There are only solutions at great depth

• There are some solutions at shallow depth

• No way the search graph will fit into memory

DFS

BFS

BFS

BFS

DFS

© Alla Sheffer, Helge Rhodin

Search with Costs

Want to find the solution that
minimizes cost

()),cost(,,cost
1

10
=

−=
k

i

iik nnnn

Def.: The cost of a path is the

sum of the costs of its arcs

© Alla Sheffer, Helge Rhodin

• Lowest-cost-first search finds the path with the

lowest cost to a goal node

• At each stage, it selects the path with the lowest cost

on the frontier.

• The frontier is implemented as a priority queue

ordered by path cost.

Lowest-Cost-First Search (LCFS)

52

© Alla Sheffer, Helge Rhodin

Use of search

• Use search to determine next state (next state on shortest path to
goal/best outcome)

• Measures:

• Evaluate goal/best outcome

• Evaluate distance (shortest path in what metric?)

Problems:

• Cost of full search (at every step) can be prohibitive

• Search in adversarial environment

• Player will try to outsmart you

© Alla Sheffer, Helge Rhodin

• Blind search algorithms do not take goal into account until they reach it

• We often have estimates of distance/cost from node n to a goal node

• Estimate = search heuristic

• a scoring function h(x)

Heuristic Search

54

© Alla Sheffer, Helge Rhodin

• Best First: always choose the path on the frontier with the smallest h
value

• Frontier = priority queue ordered by h

• Once reach goal can discard most unexplored paths…

• Why?

• Worst case: still explore all/most space

• Best case: very efficient

• Greedy: (only) expand path whose last node seems closest to the goal

• Get solution that is locally best

Best First Search (BestFS)

© Alla Sheffer, Helge Rhodin

A* search

56 https://en.wikipedia.org/wiki/A*_search_algorithm

