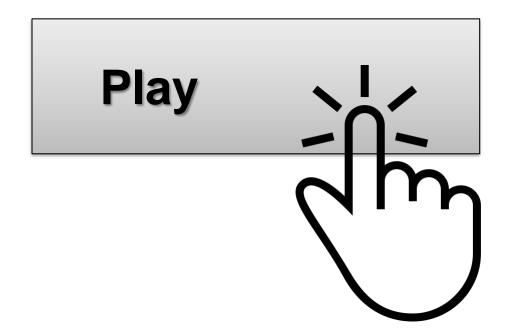


Helge Rhodin

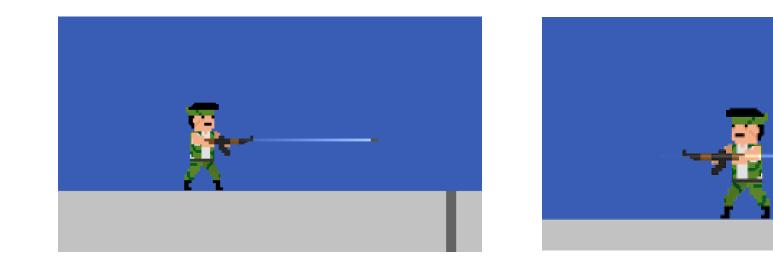
Motivation: Object selection

• Point inside object boundary?



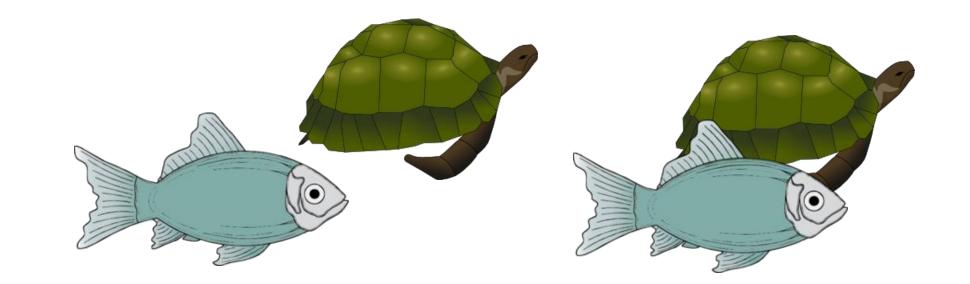
Motivation: Bullet trajectories

• Line-object or point-object intersection?



Motivation: Collision

Prevent object penetration



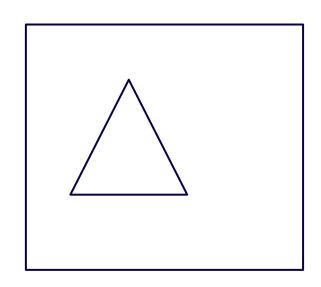
Collision Configurations?

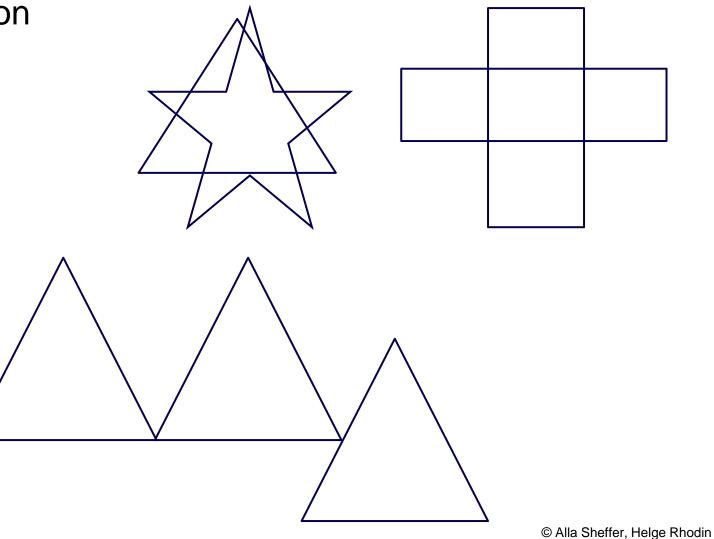
To detect collisions between polygons it is enough to test if their edges intersect

- A. True
- B. False

Collision Configurations?

- Segment/Segment Intersection
 - Point on Segment
- Polygon inside polygon





Inside Test?

- How to test if one poly is inside another?
- Use inside test for point(s)
- How?
 - Convex Polygon
 - Same side WRT to line (all sides)
 - Non-Convex
 - Subdivide= triangulate
 - How?
 - Shoot rays (beware of corners and special cases)

Resources

http://www.realtimerendering.com/intersections.html

© Alla Sheffer, Helge Rhodin

Curves

Mathematical representations:

- Explicit functions:
- Parametric functions
- Implicit functions

Explicit functions

- y = f(x)
- E.g. y = a x + b
- Single y value for each x
- Useful for?
 - Terrain
 - "height field" geometry

Parametric Functions

- 2D: x and y are functions of a parameter value t
- 3D: x, y, and z are functions of a parameter value t

$$C(t) := \begin{pmatrix} P_y^0 \\ P_x^0 \end{pmatrix} t + \begin{pmatrix} P_y^1 \\ P_x^1 \end{pmatrix} (1-t)$$

$$C(t) := \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$

Circle (arc)

Line (segment)

• Depends on parameter range t1 < t < t2

Implicit Function

• Curve (2D) or Surface (3D) defined by zero set (roots) of function

• E.g:

$$S(x, y): x^2 + y^2 - 1 = 0$$

$$S(x, y, z): x^2 + y^2 + z^2 - 1 = 0$$

Lines & Segments

Find the line through $P_0 = (x_0^1, y_0^1)$ and $P_1 = (x_1^1, y_1^1)$

- Parametric $G_1(t), t \in (-\infty, -\infty)$
- Implicit Ax+By+C=0
 - Solve 2 equations in 2 unknowns (set $A^2+B^2=1$)

Implicit Line

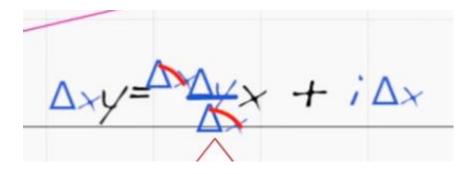
Explicit: y = m x + b Implicit: Ax + By + C = 0

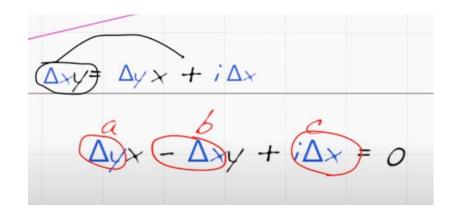
$$y = \frac{dy}{dx x + b}$$

$$dx y = \frac{dy x + dx b}{dx y + dx y + dx b}$$

=>A = dy, B = -dx, C = dx b

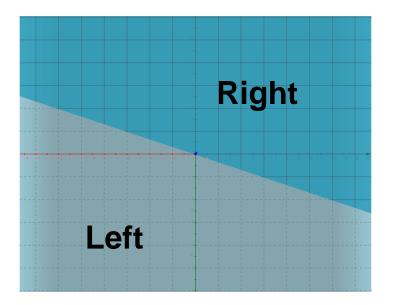
Example y = -1/3 x + 0 dx = -3, dy = 1, A = 1, B = 3, C = 0 $\Rightarrow 1 x + 3 y = 0$

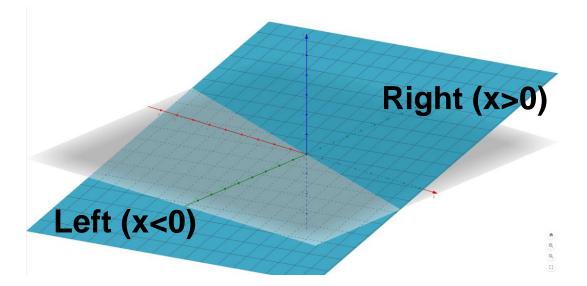




Implicit Line – left or right?

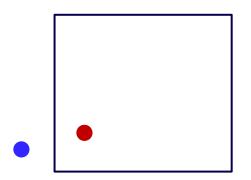
Implicit line in 2D <-> Explicit plane in 3D 0.1 x + 0.3 y = 0 <-> f(x,y) = 0.1 x + 0.3 y





Point vs Line (Ray)

- Point $P=(P_x, P_y)$
- Use implicit equation to determine coincidence & side
 - Implicit A x + B y + C = 0
 - Solve 2 equations in 2 unknowns (third equation: set $A^2+B^2=1$)
 - On: $A P_x + B P_y + C = 0$
 - Use same orientation to get consistent left/right orientation for inside test for lines defining CONVEX polygon
 - Same sign implies inside
 - Eg. ALL $AP_x + BP_y + C < 0$



Recap: Inside Test?

- How to test if one poly is inside another?
- Use inside test for point(s)
- How?
 - Convex Polygon
 - Same side WRT to line equation (all sides)
 - Non-Convex
 - Subdivide=triangulate
 - How?
 - Shoot rays (beware of corners and special cases)
 - Other ways?

Self-study:

Winding number algorithm

Point in polygon?

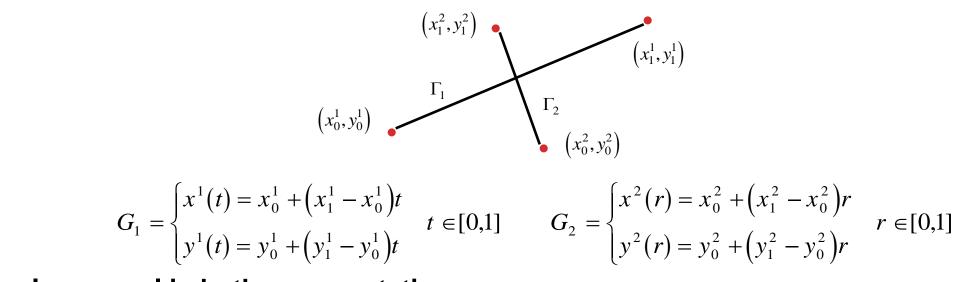
- If the winding number is nonzero
- How to compute the winding number?
- http://geomalgorithms.com/a03-_inclusion.html

Winding number:

- the number of times that curve travels counterclockwise around the point
- negative if clockwise

18

Line-Line Intersection



Intersection: x & y values equal in both representations two linear equations in two unknowns (r,t)

$$x_0^1 + (x_1^1 - x_0^1)t = x_0^2 + (x_1^2 - x_0^2)r$$

$$y_0^1 + (y_1^1 - y_0^1)t = y_0^2 + (y_1^2 - y_0^2)r$$

Question: What is the meaning if the solution gives r,t < 0 or r,t > 1?

© Alla Sheffer, Helge Rhodin

Question: What is the meaning of r,t < 0 or r,t > 1?

- A. They still collide
- B. They do not collide
- C. They may or may not collide need more testing

Efficiency

- Naïve implementation
 - Test each moving object against ALL other objects at each step
 - Horribly expensive
- How to speed up?

Efficiency

- Naïve implementation
 - Test each moving object against ALL other objects at each step
 - Horribly expensive
- Speed up
 - Bounding Volumes
 - Hierarchies

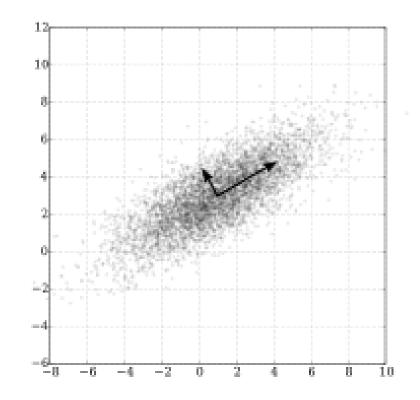
Bounding volumes

- Axis aligned bounding box (AABB)
 - + Trivial to compute
 - + Quick to evaluate
 - - May be too big...
- Tight bounding box
 - - Harder to compute: Principal Component Analysis (PCA)
 - - Slightly slower to evaluate
 - Compact

Principle Component Analysis (PCA)

Derive the directions of maximum variance

$$\mathbf{w}_{(1)} = \underset{\|\mathbf{w}\|=1}{\operatorname{arg max}} \left\{ \sum_{i} \left(\mathbf{x}_{(i)} \cdot \mathbf{w} \right)^2 \right\}$$



Wikipedia

Bounding volumes

- Bounding circle
 - A range of efficient (non-trivial) methods

- Convex hull
 - *Gift wrapping* & *other methods*...

Bounding Volume Intersection

- Axis aligned bounding box (AABB)
 - A.LO<=B.HI && A.HI>=B.LO (for both X and Y) lower higher
- Circles

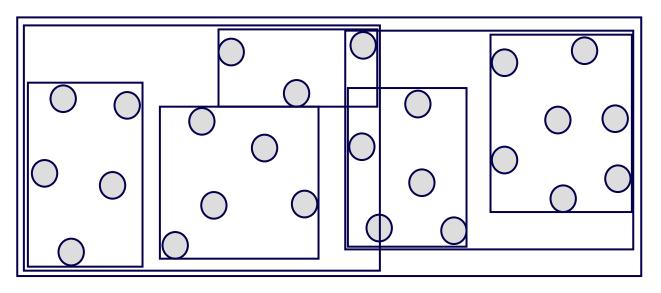
Moving objects

- Sweep test intersections against before/after segment
 - Avoid "jumping through" objects
 - How to do efficiently?
- Boxes?
- Spheres?

Hierarchical Bounding Volumes

Bound Bounding Volumes:

• Use (hierarchical) bounding volumes for groups of objects

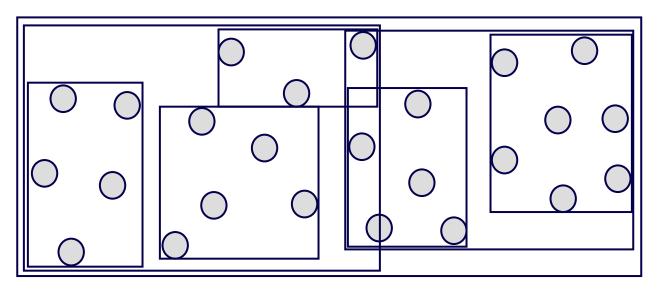


- How to group boxes?
 - Closest
 - Most jointly compact (how?)

Hierarchical Bounding Volumes

Bound Bounding Volumes:

• Use (hierarchical) bounding volumes for groups of objects



- Challenge: dynamic data...
 - Need to update hierarchy efficiently

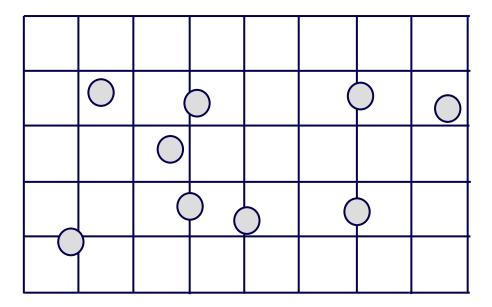
Spatial Subdivision DATA STRUCTURES

- Subdivide space (bounding box of the "world")
- Hierarchical
 - Subdivide each sub-space (or only non-empty sub-spaces)
- Lots of methods
 - Grid, Octree, k-D tree, (BSP tree)

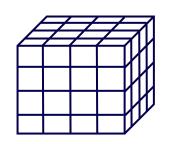
Regular Grid

Subdivide space into rectangular grid:

- Associate every object with the cell(s) that it overlaps with
- Test collisions only if cells overlap



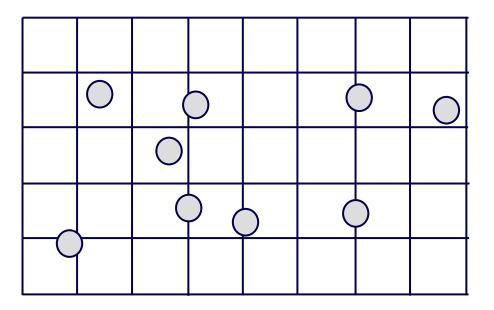
In 3D: regular grid of cubes (voxels):



Creating a Regular Grid

Steps:

- Find bounding box of scene
- Choose grid resolution in x, y, z
- Insert objects
- Objects that overlap multiple cells get referenced by all cells they overlap



Regular Grid Discussion

Advantages?

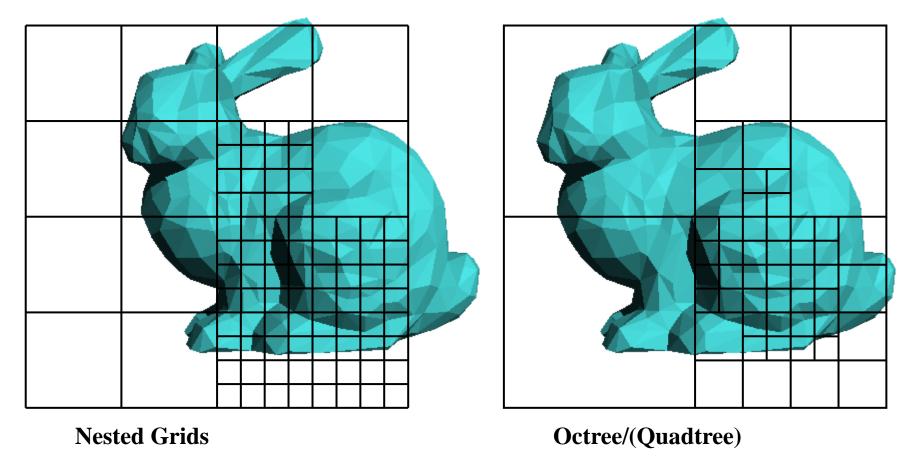
- Easy to construct
- Easy to traverse

Disadvantages?

- May be only sparsely filled
- Geometry may still be clumped

Adaptive Grids

 Subdivide until each cell contains no more than n elements, or maximum depth d is reached



• This slide is curtsey of Fredo Durand at MIT

© Alla Sheffer, Helge Rhodin

Physics

Physics-Based Simulation

- Movement governed by forces
- Simple
 - Independent particles
- Complex
 - Correct collisions, stacking, sliding 3D rigid bodies
- Many many simulators!
 - PhysX (Unity, Unreal), Bullet, Open Dynamics Engine, MuJoCo, Havok, Box2D, Chipmunk, OpenSim, RBDL, Simulink (MATLAB), ADAMS, SD/FAST, DART etc...

Examples

- Particle systems
 - Fire, water, smoke, pebbles
- Rigid-body simulation
 - Blocks, robots, humans
- Continuum systems
 - Deformable solids
 - Fluids, cloth, hair
- Group movement
 - Flocks, crowds

Simulation Basics

Simulation loop...

- 1. Equations of Motion
 - sum forces & torques
 - solve for accelerations: $\vec{F} = ma$
- 2. Numerical integration
 - update positions, velocities
- 3. Collision detection
- 4. Collision resolution

Basic Particle Simulation (first try)

Forces only $\vec{F} = ma$

$$d_t = t_{i+1} - t_i$$

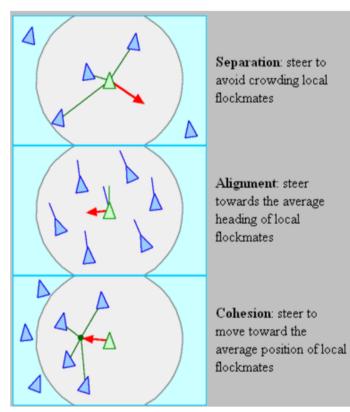
$$\vec{v}_{i+1} = \vec{v}(t_i) + (\vec{F}(t_i)/m)d_t$$

$$\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}(t_{i+1})d_t$$

Proxy Forces

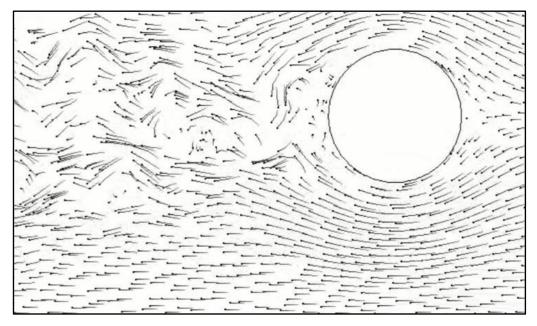
• Behavior forces:

flocking birds, schooling fish, etc. ["Boids", Craig Reynolds, SIGGRAPH 1987]



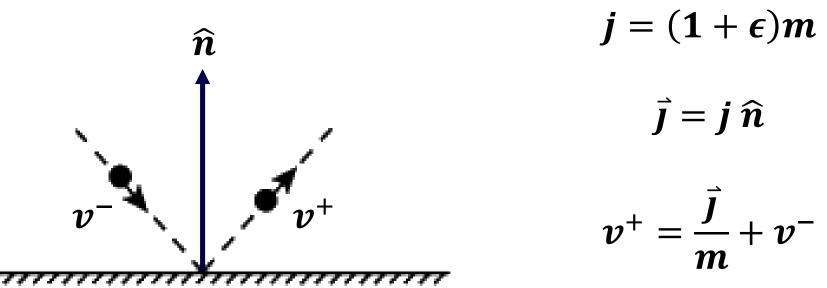
• Fluids

["Curl Noise for Procedural Fluid Flow" R. Bridson, J. Hourihan, M. Nordenstam, Proc. SIGGRAPH 2007]



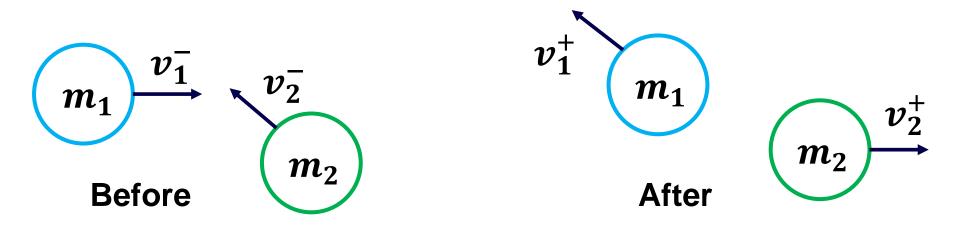
Particle-Plane Collisions

- More formally...
 - Apply an impulse of magnitude j
 - · Inversely proportional to mass of particle
 - In direction of normal



Particle-Particle Collisions (radius=0)

Particle-particle frictionless elastic impulse response



Momentum is preserved

$$m_1v_1^- + m_2v_2^- = m_1v_1^+ + m_2v_2^+$$

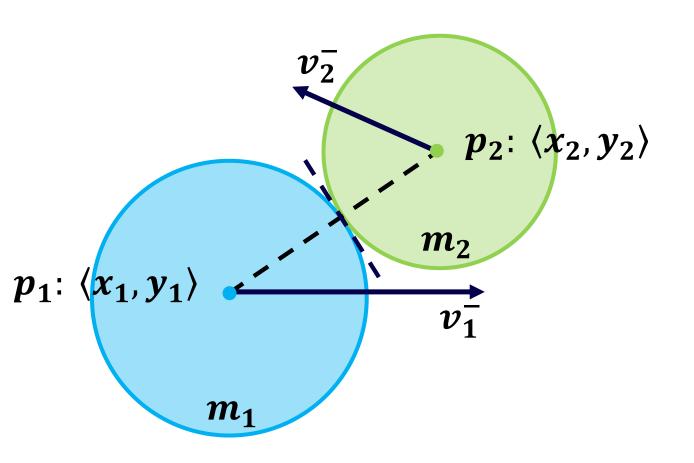
Kinetic energy is preserved

$$\frac{1}{2}m_1v_1^{-2} + \frac{1}{2}m_2v_2^{-2} = \frac{1}{2}m_1v_1^{+2} + \frac{1}{2}m_2v_2^{+2}$$

© Alla Sheffer, Helge Rhodin

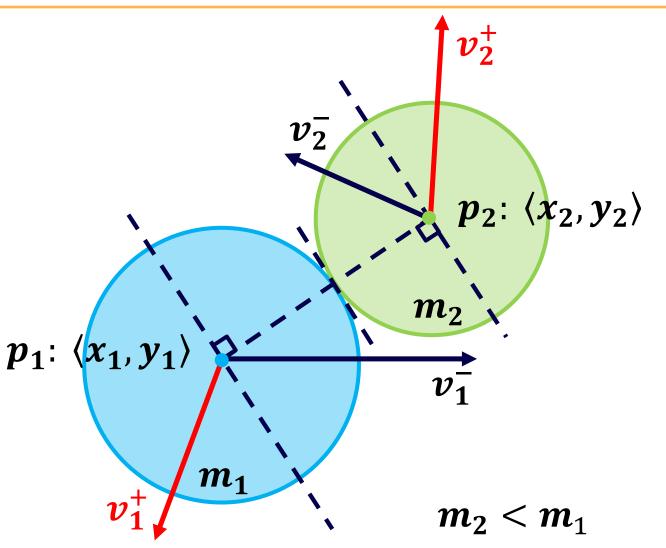
Particle-Particle Collisions (radius >0)

- What we know...
 - Particle centers
 - Initial velocities
 - Particle Masses
- What we can calculate...
 - Contact normal
 - Contact tangent



Particle-Particle Collisions (radius >0)

- Impulse direction reflected across tangent
- Impulse magnitude proportional to mass of other particle



© Alla Sheffer, Helge Rhodin

Particle-Particle Collisions (radius >0)

• More formally...

$$v_1^+ = v_1^- - rac{2m_2}{m_1 + m_2} rac{\langle v_1^- - v_2^-
angle \cdot \langle p_1 - p_2
angle}{\|p_1 - p_2\|^2} \langle p_1 - p_2
angle$$

$$v_2^+ = v_2^- - rac{2m_1}{m_1 + m_2} rac{\langle v_2^- - v_1^-
angle \cdot \langle p_2 - p_1
angle}{\|p_2 - p_1\|^2} \langle p_2 - p_1
angle$$

Self Study: Rigid Body Dynamics

• From particles to rigid bodies...

Particle

Rigid body

$$state = \begin{cases} \vec{x} \text{ position} \\ \vec{v} \text{ velocity} \end{cases} \qquad state = \begin{cases} \vec{x} \text{ position} \\ \vec{v} \text{ velocity} \\ q, R \text{ rotation matrix } 3x3 \\ \vec{w} \text{ angular velocity} \\ \mathbb{R}^6 \text{ in 3D} \end{cases}$$
$$\mathbb{R}^{12} \text{ in 3D}$$

Self Study: Rigid Body Dynamics

• From particles to rigid bodies...

Newton's equations of motion $\Sigma \vec{F} = m \vec{a}$

 $\begin{bmatrix} m & & \\ & m & \\ & & m \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} = \begin{bmatrix} \Sigma \vec{F} \end{bmatrix}$

 $M\vec{a}=\Sigma\vec{F}$

