
© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Advanced OpenGL

1

© Alla Sheffer, Helge Rhodin

Coordinate transformations

2

World
Coordinates

Camera
Coordinates

Window
Coordinates

Pixel-wise
attributes*

*usually multiple fragments for every pixel (fragment != pixel)

© Alla Sheffer, Helge Rhodin

Recap: GLSL Vertex shader

The OpenGL Shading Language (GLSL)

• Syntax similar to the C programming language

• Build-in vector operations

• functionality as the GLM library our assignment template uses

3

uniform mat3 transform;

uniform mat3 projection;

in vec3 in_pos;

void main() {

// Transforming The Vertex

vec3 out_pos = projection * transform * vec3(in_pos.xy, 1.0);

gl_Position = vec4(out_pos.xy, in_pos.z, 1.0);

}

world

-> camera
object

-> world

vertex-specific input position

mandatory to set

© Alla Sheffer, Helge Rhodin

Recap: From local object to camera coordinates

4

World

coordinates

x

y

transform

world -> cameraobject -> world

projection projection * transform

World

coordinates

x

y

object -> camera

Camera

coordinates

x

y

Camera

coordinates

x

y

© Alla Sheffer, Helge Rhodin

Variable Types

Uniform

• same for all vertices

Out/In (varying)

• computed per vertex, automatically interpolated for fragments

In (attribute)

• values per vertex

• available only in Vertex Shader

© Alla Sheffer, Helge Rhodin

Setting (Vertex) Shader Variables

Uniform variable
mat3 projection_2D{ { sx, 0.f, 0.f },{ 0.f, sy, 0.f },{ tx, ty, 1.f } }; // affine transformation as introduced in the prev. lecture

GLint projection_uloc = glGetUniformLocation(texmesh.effect.program, "projection");

glUniformMatrix3fv(projection_uloc, 1, GL_FALSE, (float*)&projection);

In variable (attribute for every vertex)
// assuming vbo contains vertex position information already

GLint vpositionLoc = glGetAttribLocation(program, “in_position");

glEnableVertexAttribArray(vpositionLoc);

glVertexAttribPointer(vpositionLoc, 3, GL_FLOAT, GL_FALSE, sizeof(vec3), (void*)0);

© Alla Sheffer, Helge Rhodin

Salmon Vertex shader

7

#version 330
// Input attributes
in vec3 in_position;
in vec3 in_color;

out vec3 vcolor;
out vec2 vpos;

// Application data
uniform mat3 transform;
uniform mat3 projection;

void main() {
vpos = in_position.xy; // local coordinated before transform
vcolor = in_color;
vec3 pos = projection * transform * vec3(in_position.xy, 1.0);
gl_Position = vec4(pos.xy, in_position.z, 1.0);

}

as before

pass on color and position

in object coordinates

© Alla Sheffer, Helge Rhodin

Recap: Fragment shader examples

• simulates materials and lights

• can read from textures

8

Diffuse Specular Directional

© Alla Sheffer, Helge Rhodin

Coordinate transformations

9

World
Coordinates

Camera
Coordinates

Window
Coordinates

Pixel-wise
attributes*

*usually multiple fragments for every pixel (fragment != pixel)

© Alla Sheffer, Helge Rhodin

(Hidden) Vertex Post-Processing

• Viewport transform: camera coordinates to screen/window coordinates

• set with glViewport(0, 0, w, h);

• Clipping: Removing invisible geometry (outside view frame)

object -> camera camera -> screen

x

y

Screen

coordinates

Camera

coordinates

x

y
Camera

coordinates

x

y

© Alla Sheffer, Helge Rhodin

SPRITES: Faking 2D Geometry

• Creating geometry is hard

• Creating texture is “easy”

• In 2D it is hard to see the difference

• SPRITE:

• Use basic geometry (rectangle = 2 triangles)

• Texture the geometry (transparent background)

• Use blending (more later) for color effects

© Alla Sheffer, Helge Rhodin

Sprite basics

A textured quad looks like fine-grained 2D geometry

12

Transparent with alpha = 0

e.g., color_RGBA = {1,1,1,0}

Proper occlusion despite

simple geometry

© Alla Sheffer, Helge Rhodin

SPRITES: Creation

Create Quad Vertex Buffer

vec3 vertices[] = { v0, v1, v2, v3 };

glGenBuffers(1, &vbo);

glBindBuffer(GL_ARRAY_BUFFER, vbo);

glBufferData(GL_ARRAY_BUFFER, vertices_size, vertices,

GL_STATIC_DRAW);

Counter-clockwise winding (CCW)OpenGL initialization (once):

© Alla Sheffer, Helge Rhodin

SPRITES: Creation

Load Texture

Create Quad Index Buffer

uint16_t indices[] = { 0, 1, 2, 1, 3, 2 };

Gluint ibo;

glGenBuffers(1, &ibo);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,ibo);

glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices_size, indices,

GL_STATIC_DRAW);

Gluint tex_id;

glGenTextures(1, &tex_id);

glBindTexture(GL_TEXTURE_2D, tex_id);

glTexImage2D(GL_TEXTURE_2D, GL_RGBA, width, height, .., tex_data);

OpenGL initialization (once):

© Alla Sheffer, Helge Rhodin

SPRITES: Rendering

Enable Alpha Blending

glBindVertexArray(vao);

glBindBuffer(GL_ARRAY_BUFFER, vbo);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ibo);

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

// Alpha Channel Interpolation

// RGB_o = RGB_src * ALPHA_src + RGB_dst * (1 – ALPHA_src)

Bind Buffers

OpenGL rendering (every frame):

© Alla Sheffer, Helge Rhodin

SPRITES: Rendering

Bind Texture

Draw

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_2D, texmesh.texture.texture_id);

glDrawElements(GL_TRIANGLES, 6, ..); // 6 is the number of indices

© Alla Sheffer, Helge Rhodin

Color and Texture Mapping

• How to map from a 2D texture to a 3D object that is
projected onto a 2D scene?

17

© Alla Sheffer, Helge Rhodin

Scan Conversion/Rasterization

• Convert continuous 2D geometry to discrete

• Raster display – discrete grid of elements

• Terminology

• Screen Space: Discrete 2D Cartesian coordinate system of the
screen pixels

© Alla Sheffer, Helge Rhodin

Scan Conversion

© Alla Sheffer, Helge Rhodin

Self study:

Interpolation with barycentric coordinates

• linear combination of vertex properties

• e.g., color, texture coordinate, surface normal/direction, …

• weights are proportional to the areas
spanned by the sides to query point P

20

© Alla Sheffer, Helge Rhodin

Texture mapping

s

t

(s0,t0)

(s1,t1)

(s2,t2)

© Alla Sheffer, Helge Rhodin

s

t

Texture mapping

(s0,t0)

(s1,t1)

(s2,t2)

© Alla Sheffer, Helge Rhodin

s

t

Texture mapping

(s0,t0)

(s1,t1)

(s2,t2)

© Alla Sheffer, Helge Rhodin

Blending:

• Fragments -> Pixels

• Draw from farthest to nearest

• No blending – replace previous color

• Blending: combine new & old values with some arithmetic operations

• Achieve transparency effects

Frame Buffer : video memory on graphics board that holds
resulting image & used to display it

Blending

© Alla Sheffer, Helge Rhodin

Remove occluded geometry

• Parts that are hidden behind other geometry

• For 2D (view parallel) shapes – use depth order

• draw objects back to front

• sort objects: furthest object first, closest object last

Depth Test / Hidden Surface Removal

© Alla Sheffer, Helge Rhodin

Self study: Alternative to ordering

Depth buffer with transparent sprites

• Fragment shader writes depth to the depth buffer

• discard fragment if depth larger than current depth buffer (occluded)

• alleviates the ordering of objects

• Issue, depth buffer written for fragments with alpha = 0

• Solution:
explicitly discard fragments
with alpha < 0.5

• note, texture sample interpolation
leads to non-binary values
even if texture is either 0 or 1.

26

#version 330

in vec2 texCoord;

out vec4 outColor;

uniform sampler2D theTexture;

void main() {

vec4 texel = texture(theTexture, texCoord);

if(texel.a < 0.5)

discard;

outColor = texel;

}

© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Advanced OpenGL

27

© Alla Sheffer, Helge Rhodin

• Deferred shading (a form of screen-space rendering)

• or water effects

Motivation

29

First rendering pass Second pass

Input

Second passFirst pass

© Alla Sheffer, Helge Rhodin

Shaders - GLSL

• Each stage is expected to produce a certain output:

– Vertex Shader Output: Vertex clip-space position

– Fragment Shader Output: Pixel color

• Input data comes from:

– Attributes: Geometry or previous stage’s output

– Uniforms: Variables, Arrays, Textures, ..

• Extensive built-in library

• Stages have to have matching input/outputs

© Alla Sheffer, Helge Rhodin

Let’s start from resources

• Reside in GPU memory

• Standard lifecycle (glGen* glBind* glDelete*)

• Require to be bound to be used glBind* (State-machine OpenGL)

• Different types:

- Buffers

- Textures (& Samplers)

- Shaders

- Framebuffers

- ..

© Alla Sheffer, Helge Rhodin

Geometry

• Explicit representation as a set of vertices organized in primitives

• Vertices and indices are contained in Buffers

• Submitted through Vertex Array Objects (VAO)

• VAOs are containers for:

- Vertex Data (VBOs)

- Index Data (IBOs)

- Format (glVertexAttribPointer)

© Alla Sheffer, Helge Rhodin

Textures & Samplers

• Conceptually similar to 2D (or 3D) buffers

• Used(sampled) by Shader Samplers

• Filtering options set by the application

• Binding done through Texture Units

• Sampler(Shader): Bound to texture units using glUniform1i()

• Textures(App): Bound to to texture units using glActiveTexture()

© Alla Sheffer, Helge Rhodin

Framebuffers

• The output of the rendering pipeline is written to Texture(s)

• Framebuffers are containers for such Textures

• They allow for two types of attachment

• Color(s): Fragment shader outputs

• Depth/Stencil: Depth buffer

• Framebuffer 0 (default) writes to the window’s buffer

• Contained Textures can be reused in later stages (Render to Texture)

© Alla Sheffer, Helge Rhodin

A few advanced examples

• Blending

Sprite Sheets

• Render to Texture

• Post-processing Effects: Bloom

© Alla Sheffer, Helge Rhodin

Blending

• Controls how pixel color is blended into the FBO’s Color Attachment

• Control on factors and operation of the equation

• RGB and Alpha are controllabe separately

Cloud (source) on top of grid (dest)

© Alla Sheffer, Helge Rhodin

Blending: Example Presets

• Additive Blending

• Alpha Blending

© Alla Sheffer, Helge Rhodin

Sprite Sheets

• Compact (and fast) approach for 2D animations

• Every frame only a region of the original Texture is rendered

• Texture Coordinates are updated as clock ticks

• Does not require dynamic VBOs
Time

Animation

type

© Alla Sheffer, Helge Rhodin

Sprite Sheets: Example

© Alla Sheffer, Helge Rhodin

Render To Texture

• Building block of any multipass pipeline

• Just putting two concepts together..

• - First Pass: Pixel colors are written to the FBO’s Color Attachment

• - Second Pass: The same Texture can be bound and used by

Samplers

© Alla Sheffer, Helge Rhodin

Post-processing: Bloom

• Fullscreen Effect to highlight bright areas of the picture

• Post-processing: Operates on Images after the scene has been

rendered

• High level overview:

• 1. Render scene to texture

• 2. Extract bright regions by thresholding

• 3. Gaussian blur pass on the bright regions

• 4. Combine original texture and highlights texture with additive

blending

© Alla Sheffer, Helge Rhodin

Post-processing: Bloom

BlurThreshold

Sum

© Alla Sheffer, Helge Rhodin

Post-processing: Bloom

© Alla Sheffer, Helge Rhodin

Self study:

Post-processing: Bloom

As many details have been skipped, here are a couple of hints:

• A fullscreen effect is achieved by rendering a textured quad with the same dimensions as

the screen. No need for any camera or projection matrix as you already know that you

want the vertices to correspond to the corners of the screen.

• Thresholding bright areas can be achieved in the fragment shader with something as

simple as: return Intensity > Threshold ? Color : 0.0;
• Where Intensity is some function of the pixel’s RGB values. You can start from max

component, average, or explore other color space.

• Regarding Gaussian Blur (or Bloom altogether) there are lots of online resources of

various quality.

• A suggested place to start for tutorials is https://learnopengl.com.

• The standard reference book for real-time rendering is “Real-Time Rendering”

(http://www.realtimerendering.com/)

https://learnopengl.com/
http://www.realtimerendering.com/

© Alla Sheffer, Helge Rhodin

Shaders: Example (A1)

© Alla Sheffer, Helge Rhodin

Shaders - GLSL: Example

© Alla Sheffer, Helge Rhodin

Framebuffers: Example

