
© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Rendering and Transformations

1

© Alla Sheffer, Helge Rhodin

Today

• ECS summary

• 2D Transformations

• Some graphics

• Your pitches

2

© Alla Sheffer, Helge Rhodin

Map + Dense Array (example)

3

1 135
map:

Entity IDs (keys) 10 12

for(Entity entity : registry<Velocity>.entities) // using the key array

if (map<Position>.has(entity)) // using the map

map<Position>.get(entity)+= registry<Velocity>.get(entity); // using the map

Iterate over all velocity components that belong to an entity with a position

Registry for

one component 5 10 121 13
entities array

(component values)

Array indices
0 1 2 3 4

0.5
components array

(component values)
0.3 0.30 -0.1

© Alla Sheffer, Helge Rhodin

Faster iteration via entity and component array

4

for(Entity entity : entities<Velocity>)

if (map<Position>.has(entity))

map< Position >.get(entity)+= map<Velocity>.get(entity);

for(int vi = 0; vi < entities<Velocity>.size(); vi++)

Entity entity : entities<Velocity>[vi];

pi = map<Position>.get(entity);

if (pi)

components< Position >[pi]+= components< Velocity >[vi];

Accessing the velocity map (map<Velocity>) is an unnecessary indirection

We can access the velocity components in linear fashion

© Alla Sheffer, Helge Rhodin

Self study:

The Sparse Map

5

Mario

Luigi

Goomba1

Goomba2

In
d
e
x
 P

o
s

In
d
e
x
 V

e
l

In
d
e
x
 J

u
m

p

In
d
e
x
 P

la
y
e
r

1

In
d
e
x
 S

q
u
is

h

Issues?

1

2

ID

2

2

1

1

Concept: Sparse array + dense array

Implementation: std:vector<Entity> entities; std:vector<unsigned int> indices;

std:vector<Components> components;

P
o
s
it
io

n

V
e
lo

c
it
y

J
u
m

p
s

P
la

y
e
r

S
q
u
is

h
a
b
le

3

4

Sparse array (ID -> dense index) Dense component arrays

Used by

https://github.com/skypjack/entt

https://github.com/skypjack/entt

© Alla Sheffer, Helge Rhodin

Deletion of components

• When we “delete” an entity we must delete corresponding

components to.

• Different approaches to this,

– Fill deleted components in arrays with the last entities data

 Extra care must be taken when managing indices

– Mark spots in arrays as rewritable

 Big systems will suffer from poor memory management

6

© Alla Sheffer, Helge Rhodin

Lifetime of entities

• Each Entity is typically just a unique identifier to its

components

• Store Entities in a big static array in the Entity Manager

– Or store the largest entity id and monitor removed entities

ID 2

Entities

ID 9

7

© Alla Sheffer, Helge Rhodin

How Does a System Find its Entities?

Extension/Optimization:

• Each system has a list of entity IDs it is interested in

• Systems register their bitsets/bitmaps with the Entity Manager

• Whenever an Entity is added…

– Evaluate which systems are interested & update their ID lists

8

© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Transformations

9

© Alla Sheffer, Helge Rhodin

Modeling Transformations

© Alla Sheffer, Helge Rhodin

• Rotations, scaling, shearing

• Can be expressed as 2x2 matrix (for 2D points)

• E.g.

• or a rotation

Linear transformations

=

y

x

y

x

20

02

'

'

https://en.wikipedia.org/wiki/Trigonometric_functions

Rotation angle θ, cos, and sin

© Alla Sheffer, Helge Rhodin

• Linear transformations + translations

• Can be expressed as 2x2 matrix + 2 vector

• E.g. scale+ translation:

Affine transformations

+

=

y

x

T

T

y

x

y

x

20

02

'

'

+

=

0100

020

002

'

'

'

y

x

t

t

z

y

x

z

y

x

© Alla Sheffer, Helge Rhodin

Adding third coordinate

Affine transformation are now linear

• one 3x3 matrix can express: 2D rotation, scale, shear, and translation

Modeling Transformation

+

=

y

x

T

T

y

x

y

x

20

02

'

'

+

=

0100

020

002

'

'

'

y

x

t

t

z

y

x

z

y

x

+

=

0100

020

002

'

'

'

y

x

t

t

z

y

x

z

y

x

+

=

0100

020

002

'

'

'

y

x

t

t

z

y

x

z

y

x

+

=

0100

020

002

'

'

'

y

x

t

t

z

y

x

z

y

x

+

=

0100

020

002

'

'

'

y

x

t

t

z

y

x

z

y

x

+

=

0100

020

002

'

'

'

y

x

t

t

z

y

x

z

y

x

© Alla Sheffer, Helge Rhodin

• Homogeneous coordinates are defined as vectors, with equivalence

• Can also represent projective equations

• 3x3 homogeneous matrix becomes 4x4

Self study: Homogeneous coordinates

© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Rendering basics

15

© Alla Sheffer, Helge Rhodin

What is rendering?

Generating an image from a (3D) scene

Let’s think how!

16

© Alla Sheffer, Helge Rhodin

Scene

• A coordinate frame

• Objects

• Their materials

• (Lights)

• (Camera)

17

© Alla Sheffer, Helge Rhodin

Object

Most common:

• surface representation

18

© Alla Sheffer, Helge Rhodin

Image

A grid of color values

19

© Alla Sheffer, Helge Rhodin

Virtual Camera

20

Virtual camera registered in the real world

(using marker-based motion capture)

© Alla Sheffer, Helge Rhodin

Rendering?

• Simulating light transport

• How to simulate light efficiently?

21

© Alla Sheffer, Helge Rhodin

Rendering – ‘Light’ Tracing

• simulate physical light transport from a source
to the camera

• the paths of photons

• shoot rays from the light source

• random direction

• compute first intersection

• continue towards the camera

• used for indirect illumination: ‘photon mapping’
22

© Alla Sheffer, Helge Rhodin

Rendering – Ray Tracing

23

Start rays from the camera (opposes physics, an optimization)

• View rays: trace from every pixel to the first occlude

• Shadow ray: test light visibility

Nvidia RTX does ray tracing

© Alla Sheffer, Helge Rhodin

Problems of ray tracing

• the collision detection is costly

• ray-object intersection

• n objects

• k rays

• naïve: O(n*k) complexity

24

© Alla Sheffer, Helge Rhodin

Rendering – Splatting

25

Approximate scene with spheres

• sort spheres back-to front

• project each sphere

• simple equation

• O(n) for n spheres

Many spheres needed!

Shadows?

© Alla Sheffer, Helge Rhodin

Rendering – Rasterization

26

Approximate objects with triangles

1. Project each corner/vertex

• projection of triangle stays a triangle

• O(n) for n vertices

2. Fill pixels enclosed by triangle

• e.g., scan-line algorithm

© Alla Sheffer, Helge Rhodin

Rasterizing a Triangle

27

Vertices

Fragments

(for every pixel; color or

attributes to compute color:

texture coordinate, direction, …)

• Determine pixels enclosed by the triangle

• Interpolate vertex properties linearly

© Alla Sheffer, Helge Rhodin

Self study:

Interpolation with barycentric coordinates

• linear combination of vertex properties

• e.g., color, texture coordinate, surface normal/direction

• weights are proportional to the areas
spanned by the sides to query point P

28

