CPSC 427
Video Game Programming

Rendering and Transformations

© Alla Sheffer, Helge Rhodin

Today

« ECS summary
« 2D Transformations
« Some graphics

* Your pitches

© Alla Sheffer, Helge Rhodin

Map + Dense Array (example)

—

Entity IDs (keys) 1 5 (10 | 12 | 13

map:
Array indices N |
0/ 12 13

— entities array
(component values)

Reqistry for
one component

components array
(component values)

05/ 03| 0 |03]-0.1

—

Iterate over all velocity components that belong to an entity with a position
for(Entity entity : registry<\elocity>.entities) // using the key array
if (map<Position>.has(entity)) // using the map
map<Position>.get (entity) += registry<\elocity>.get (entity); // using the map

© Alla Sheffer, Helge Rhodin

Faster iteration via entity and component array

Accessing the velocity map (map<Velocity>) is an unnecessary indirection

for(Entity entity : entities<\elocity>)
it (map<Position>.has (entity))
map< Position >.get(entity) += map<Velocity>.get (entity);

We can access the velocity components in linear fashion
for(int vi = O; vi < entities<Velocity>.size(); vit++)
Entity entity : entities<\elocity>[vi];
pi = map<Position>.get (entity);
if (pi)
components< Position >[pi]+= components< Velocity >[vi];

4 © Alla Sheffer, Helge Rhodin

Self study: Used by Sy || E—

The Sparse I\/Iap https://github.com/skypjack/entt

— e
o 9O o QL
w _ £ @® > e
o Q =S —_— O - > qv]
S22 %2 2 S 85 o
X X X X X = 0O > =
? 3 8 3 3 33 5T 3
Mario 1 1111
Goombal 2 1
Luigi 3 2 Issues?
Goomba2 4 2

l J | J

I I
Sparse array (ID -> dense index) Dense component arrays

Concept: Sparse array + dense array
Implementation: std:vector<Entity> entities; std:vector<unsigned int> indices;
5 SthECtOr<C0mpOnentS> CompOnentS, © Alla Sheffer, Helge Rhodin

https://github.com/skypjack/entt

Deletion of components

When we “delete” an entity we must delete corresponding
components to.

Different approaches to this,
Fill deleted components in arrays with the last entities data
Extra care must be taken when managing indices
Mark spots in arrays as rewritable
Big systems will suffer from poor memory management

© Alla Sheffer, Helge Rhodin

Lifetime of entities

- Each Entity is typically just a unigue identifier to its
components

- Store Entities in a big static array in the Entity Manager
— Or store the largest entity id and monitor removed entities

Entities

© Alla Sheffer, Helge Rhodin

How Does a System Find its Entities?

Extension/Optimization:
« Each system has a list of entity IDs it is interested in
« Systems register their bitsets/bitmaps with the Entity Manager
 Whenever an Entity is added...
— Evaluate which systems are interested & update their ID lists

© Alla Sheffer, Helge Rhodin

CPSC 427
Video Game Programming

Transformations

Helge Rhodin

© Alla Sheffer, Helge Rhodin

Modeling Transformations

Scaling

Translation

Reflection

Rotation

Shear

© Alla Sheffer, Helge Rhodin

Linear transformations

* Rotations, scaling, shearing
« Can be expressed as 2x2 matrix (for 2D points)

BRI (2

cos(0)

e Or arotation

cos) —sinb
sinf cosf

Rotation angle 6, cos, and sin

© Alla Sheffer, Helge Rhodin

Affine transformations

« Linear transformations + translations
« Can be expressed as 2x2 matrix + 2 vector
« E.g. scale+ translation:

MEEHNES

© Alla Sheffer, Helge Rhodin

Modeling Transformation

Adding third coordinate

] (XY (2 0 0)(x) (t
X' 2 0)x T, | 0 2 0 ,
= + —_ = : +

V' 0 2y t, y y)
1) (0 0 1J1) (0,

2 0 t) (x)

=10 2 |y

\O 0 1) kZ/

Affine transformation are now linear
* one 3x3 matrix can express: 2D rotation, scale, shear, and translation

© Alla Sheffer, Helge Rhodin

Self study: Homogeneous coordinates

« Homogeneous coordinates are defined as vectors, with equivalence

) () ()

« Can also represent projective equations
« 3x3 homogeneous matrix becomes 4x4

2 0 0

tx
0t
1 0
0 1

x!
y!
z!
1

=N =

0 2
0 0
0 0

© Alla Sheffer, Helge Rhodin

15

CPSC 427
Video Game Programming

Rendering basics

© Alla Sheffer, Helge Rhodin

16

What is rendering?

Generating an image from a (3D) scene

Let’s think how!

© Alla Sheffer, Helge Rhodin

17

Scene

« A coordinate frame

* Objects
 Their materials
« (Lights)

« (Camera)

© Alla Sheffer, Helge Rhodin

18

Object

Most common:
« surface representation

© Alla Sheffer, Helge Rhodin

19

Image

A grid of color values

L

© Alla Sheffer, Helge Rhodin

20

Virtual Camera

Perspective projection (P)

Virtual camera registered in the real world
(using marker-based motion capture)

© Alla Sheffer, Helge Rhodin

Rendering?

 Simulating light transport
 How to simulate light efficiently?

Image

Camera / Light Source

Scene Object

© Alla Sheffer, Helge Rhodin

Rendering — ‘Light’ Tracing

* simulate physical light transport from a source
to the camera

» the paths of photons Image

Camera / BLight Source
% | First reflection

* shoot rays from the light source | Q
» random direction |

« compute first intersection
e continue towards the camera

Scene Object

« used for indirect illumination: ‘photon mapping’

© Alla Sheffer, Helge Rhodin

Rendering — Ray Tracing

Start rays from the camera (opposes physics, an optimization)
* View rays: trace from every pixel to the first occlude

« Shadow ray: test light visibility

Image
Camera / 8 Light Source
Wy

ViewRay / -, . .
/ NN N\\AT LI D\ /
Qi IAauUuuvy m\ay

Scene Object

23

Nvidia RTX does ray tracing

© Alla Sheffer, Helge Rhodin

Problems of ray tracing

* the collision detection Is costly
e ray-object intersection
* nobjects
 krays
* naive: O(n*k) complexity

© Alla Sheffer, Helge Rhodin

Rendering — Splatting

Approximate scene with spheres
» sort spheres back-to front

* project each sphere
« simple equation

EE

 O(n) for n spheres

Camera

Many spheres needed!
Shadows?

25

@/

Image

Scene

© Alla Sheffer, Helge Rhodin

Rendering — Rasterization

Approximate objects with triangles

1. Project each corner/vertex
 projection of triangle stays a triangle Image
Y g

SEN

U

o O(n) for n vertices Triang|e mesh

2. Fill pixels enclosed by triangle
* e.d., scan-line algorithm

VN

<

Rasterizing a Triangle

 Determine pixels enclosed by the triangle
* Interpolate vertex properties linearly

'Y K ° a o ° ° o< ‘ € \o ° o 20000048
p— =T . \ — Fragments
o o o Q i o Qo 1 .
Vertices b (for every pixel; color or
il IRl ol [Pl B Sl ol N IRl WP o] e attributes to compute color:
p [t M R R My Mol It Y] el 1 texture coordinate, direction, ...)
o o o o o o Q o o o o Q

27 © Alla Sheffer, Helge Rhodin

28

Self study:
Interpolation with barycentric coordinates

* linear combination of vertex properties
* e.g., color, texture coordinate, surface normal/direction

* Wweights are proportional to the areas .

spanned by the sides to query point P

© www.scratchapixel.com

P=uA+vE+wC

© Alla Sheffer, Helge Rhodin

