Helge Rhodin

Game Balancing

Recap: Keyframe animation & mesh creation

© Alla Sheffer, Helge Rhodin

Smooth curve

Smooth curve

Hermite Cubic Basis

Four cubic polynomials that satisfy the conditions

$$h_{00}(t) = t^{2}(2t-3) + 1 \qquad h_{01}(t) = -t^{2}(2t-3)$$
$$h_{10}(t) = t(t-1)^{2} \qquad h_{11}(t) = t^{2}(t-1)$$

Derivative of h00

 $6\left(-1+t\right)t$

Helge Rhodin

Game Balancing

Resources on Balancing

<u>https://gamebalanceconcepts.wordpress.com/2010/07/07/le</u> <u>vel-1-intro-to-game-balance/</u>

by lan Schreiber

Fun to play?

https://www.androidauthority.com/level-design-mobile-games-developersmake-games-fun-661877/

© Alla Sheffer, Helge Rhodin

What does balanced mean?

- Is chess balanced
- Settlers of Catan?
- Is Tetris balanced?
- Is your game balanced?

© Alla Sheffer, Helge Rhodin

Game Theory

A mathematical concept

• Used for trading, road design, ...

Terminology

- **Dominant strategy**: one path that is stronger than all others
- Fairness: equal chances to win
- Nash equilibrium: each player's strategy is optimal when considering the decisions of other players

Interested?

Kevin Leyton-Brown

Important Considerations

- Determinism vs. randomness
- Solvability
 - Has a best/dominant strategy
 - Is this desirable?
 - Can you solve a non-deterministic game?
- Intransitive games
 - simultaneous choice between opponents, e.g. Rock-Paper-Scissors
- Symmetric
 - same chances
- Game and meta game

Numeric quantities

• Values?

Relationships

- Linear relations
- Exponential relations
- Triangular relationship
 - 1, 3, 6, 10, 15, 21, 28, ...
 - The difference increases linearly
- Periodic relations

Interactions between relationships

- 2*x* item A + 1*x* item B = 5*x* item C
- attack speed * damage = damage / second
- Buff: 2x health or +100 health
 - what is better?
- Progression:
 - XP -> level up -> new skill -> ?

Indirect relationships

Value of a piece

- It is not possible to get a knight for 3 pawns
- But one can 'trade' pieces
- A currency

How to determine?

© Alla Sheffer, Helge Rhodin

Breakout

- List all relevant quantities in your game
- List their relations:
- Type: e.g., linear
- Quantitatively: e.g., +5 gold per round, 1 gold = 100 silver
- Investigate interactions between relations
- What is your game's currency?
 - Gold, life, ...?

How to quantify difficulty?

- Player vs. enemy strength
- Likelihood of winning
- Required skill
 - Knowledge of the game
 - Reaction
 - Precision
 - Tactics

-> Estimate player strength in relationskill level: beginner, intermediate, pro?-> requires user studies!

How to quantify uncertainty?

- Probability over discrete events, e.g., Bernoulli distribution
- Variance for continuous variables

Self study: Gambler's Fallacy Hot-Hand fallacy

Randomness

- How to compute with probabilities?
- Distributions instead of single values
- Expectation instead of a certain value

Do you have randomness in your game

- Where?
 - Level, damage, AI, ???
- What kind?
 - Independent, correlated, uniform, normal distribution?

- Random or pseudo-random?
 - Save a player from being unlucky!

Balancing example

- 10 enemies per level
- One tower does 1 damage / sec
- One tower costs 2 gold
- It takes enemies 10 seconds to pass

- How much gold should the player start with?
- Enemy health increases: 11,12,14,17,21,...
- How much gold should the player get in round 2?
- How much gold should each eliminated enemy give?
 G Alla Sheffer, Helge

Asymptotic analysis?

- Linear * linear?
- Linear + linear?
- *Linear* + *exponential*?
- Linear * exponential?

Formally, given functions f(x) and g(x), we define a binary relation

$$f(x)\sim g(x)\quad ({
m as}\ x
ightarrow\infty)$$

if and only if (de Bruijn 1981, §1.4)

$$\lim_{x o\infty}rac{f(x)}{g(x)}=1.$$

Demo

Numerical Methods - Optimization

- Iterative optimizers
- Single variable?
- Multiple variables?
- Gradient descent?

Difficulties:

- Placement of towers changes the time damage is dealt
- Path of enemies can be hindered to increase time
- Measure during playtest

cross-play

- Some enemies are resistant to fire/magic/...?
 - kind of a periodic feature

M4 updated requirement

User study

Carefully balance one aspect of your game (e.g., movement-speed, health points, strength, bonus,...).

- Report on the theoretical analysis
- Change log with testing

Breakout II

- Sketch progression
 - Quantities over time
 - Interactions between quantities
- Use pen & paper, plotting tool, or python
- Start balancing your game

Counter Measures

Transitive Mechanics

- Repair costs
- Consumables (food, potions, ...)

https://www.optimizely.com/optimization-glossary/ab-testing/

© Alla Sheffer, Helge Rhodin

A/B Testing

Testing two variants of your game (with and w/o a feature)

- randomized participants (same pool)
- with respect to a measurable objective (e.g., clicks on website)

Related to

- two-sample hypothesis testing
- Clinical tests, e.g., testing of a COVID-19 vaccine
- Placebo effect

Next week:

Tuesday: Guest lecture

- By Skybox
- On multithreading and optimization

Thursday:

Team presentation

• 30 min

Cross-play

• 50 min be there!

Next next week ():

Tuesday:

Guest lecture

- By Dinos (Charm Games)
 - Virtual Reality

Thursday:

- Lecture
 - Articulated motion and inverse kinematics