Helge Rhodin

CPSC 427

Video Game Programming

The spaceship may
decelerate here to ensure
it enters the orbit if it is
moving too fast

Physical Simulation

Accelerate here to
escape from the
gravity of the star.

Once the spaceship arrives the
star, the UFO would approach
it and try to chase it away.

Accelerate here
to escape from

: g el e gravity of
Press ENTER v : . ly . the star.

to launch the
spaceship
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Overview
1. Recap Al & Debugging

2. Equation of Motion

* Ordinary Differentiable Equations (ODE)
« Solving ODEs

3. Collision and Reaction Forces
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Recap: Al
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Two-player games

WWw.npr.org
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Our options :ﬁz

X WINS

We have a win for any move they make.
Original position in purple is an X win.
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Implementation?

Yay! | wrote a program that
never loses at tic-tac-toe!

Ok, but why are the "if"s In case the user
nested more than four wants to play again
times? The user can only
L move five times in a game

THEJENKINSCOMIC

© Alla Sheffer, Helge Rhodin



Alpha Beta Tree

Max o == 10
Min

Max

Min
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Debugging
 There will be bugs...

» Strategies for Fixing?
Anticipate

Reproduce

* Things get terribly difficult if randomness is involved!
Localize

Use proper debugging tools
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Logistics: New TA-Team assignment for M2

Tim: 1,6, 8
Grace: 4,5, 7
Dave: 3, 11, 12
Andrew: 2, 9, 10
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Logistics: Team Project Presentation

 Quick summary of game idea
 Showcase early results

« What was easy?
 What was more difficult than imagined?

 We will have this on the Thursday after every milestone
This Thursday 5 pm!
4 minutes per team
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Logistics: Cross-play

Test other team’s games
Give feedback
Have fun

After M2 and subsequent milestones
Trial run on Thursday, ~6pm (after team presentations)
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Logistics: Guest lectures

 1h lecture by a domain expert
 Every Tuesday 5-6 pm during March
« Attendance mandatory (counts to course participation)

Optional one:

 Raytracing & RTX
e vote for time (morning time slot) on piazza

© Alla Sheffer, Helge Rhodin



13

Logistics: Exam slot?

* Final cross-play session
* [ndustry jury
 Awards

« 19, 7pm, Attendance mandatory
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Physics

Learning goals:

Connect your theoretical math
knowledge to applications

Properly simulate object
motion and their interaction in
your game

9

4

Q

5
/
L
v

Press ENTER
to launch the
spaceship
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Simulation Basics

Simulation loop...

1.

Equations of Motion
* sum forces & torques

—

* solve for accelerations: F = ma
Numerical integration

* update positions, velocities
Collision detection

Collision resolution
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Basic Particle Simulation (first try)

Forces only F = ma

i v
acceleration = —
ot

Vi = 0(t;) + (F(ty)/m)d,
Pi+1 = p(ti) + v(tiyq)d;
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Basic Particle Forces

* Gravity
F= g
— s
§ b
\ —
. . N |
* Viscous damping N m F
_ NAAA/
F = —bv N\
Nk
N
N

* Spring & dampers
F=—-kx —bv
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Gravity direction?

Assuming a flat earth:

0
= [—mg]
Assuming a spherical earth:
a
F=—mg|,]

How to compute the vector (a,b) and g ?

Newton's law of universal gravitation

mnmim
F = Grupe

pd Press ENTER
to launch the
spaceship

Q
g

/

|

v

Y
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Multiple forces?

Forces add up (and cancel):

F = =mgy[},] -ma. ;]

Once the s
star, the Ul

* This holds for all types of & Ve
forces! R

 Notation you might see:

— | l; g anch the
F — F e‘ spaceship

b9

v
B
[
|
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Newtonian Physics as First-Order ODE

* Motion of one particle * General form afunction of t, f, and it's derivatives
— Hi heMDE:
Second-order ODE | . ° o -
. 02 / accelgratlon f( )(t) — G[ta f(t)a f (t)a f (t), T 7f( a )]
F=m 0t2 ~ o — Equivalent first-order ODE:
fo(t) fo(t)
First-order ODE veIOC|ty i ( f?(t) \ / ff(t) \
ot : - :
at[ ] [F/m] \ s )\ Gl folt). fu(t) Sy (1))

Higher-order ODEs can be turned into a first-order ODE with additional variables and equations!
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Context: ODE vs. PDE

A differential equation Is an equation that relates one or
more functions and their derivatives.

An ordinary differential equation (ODE) Is a differential
eguation containing one or more functions of

one variable

Equations cou

and the derivatives of those functions.

nling together derivatives of functions in

more than one variable are known as partial differential

equations (P

DES)
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Basic Particle Simulation: Small Problem...

Forces only F = ma

di=ti,1 —

Virr = 0(t) + (F(t)/m)d,
ﬁi+1 — ﬁ(ti) + v(ti+1)dt

Equations of motion describe state (equilibrium)

Use: get values at time t;,{from values at time t;
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Ordinary Differential Equations

Jd - R
5 X0 = FE©,)
Given that X, = X(t,)
Compute for t > t,
AX(t) = f(X(t), t)At

« Simulation:
« path through state-space
 driven by vector field
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Gravitational field
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Accelerate here to
escape from the
gravity of the star.
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Press ENTER
to launch the
spaceship
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Water Vortex (assignment?)
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ODE Numerical Integration:
Explicit (Forward) Euler

Jd - -
aX(t):f(X(t)»t) G e G = G- 3

Given that X, = X(t,) —— e W W % 4
V&, o

Compute X(t) for t > t,

1
At =t; —t;_4 l
~

AX(ti—1) = At f(X(tim1), tioq) NN ARG

—_—

Xi=Xi_1 + At f(X;_q,t-1)
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Explicit Euler Problems

 Solution spirals out S e — “_
« Even with small time steps / L e = N

+ Although smaller timesteps J/ / « & « = %
are still better

/

l
Definition: Explicit \
 Closed-form/analytic solution Q‘. NN~ i
* no iterative solve required \ \ c'

© Alla Sheffer, Helge Rhodin



Explicit Euler Problems

NNNVN LAY
NNV
SN\ N\N I /e

~ 27| W~
272771 AN
7771 1T VARNN
/771 1T YNAN
8



Midpoint Method

1. 2 Euler step /7777 1V VNN NN

- S/ 0 VN NN\
2. evaluate f_, at X,, s L FED D N N NN
3. full step using f, A S A T T i

Y (At f(X(E), 1)) F
r 7,777
t ) S S
xo / /S
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Trapezoid Method

1. full Euler step get X,

4. average X, and X,

> B = = = =P

_ 777 /7001 1V VN NN\
. A4 : N NN\
3. full step using f, get X, — ./X 4V N NN NN

o
\
A\
t
$

[
!
r
f

' N  J W W W W W

‘\“\‘\:Q: Atf(X(t) t) ;;
\ A 1 r /' //’//

"/
"/ /

L/ 7

| /S /S
lWxw /7 / /7
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Midpoint & Trapezoid Method

* Not exactly the same

— But same order of accuracy 55555 5 i t §§§§§
77 7 /7 8 VY NN

o Y N N NN

o~ o~ &« & & ¥ + ¥y NN N N TN

:: : : : Trapezoid method :

— X L 5 IV A Al

NN\ Nt r 2SS
=\t r 2,777

-\ 1@t ;S

NN\ Nxew /7 / /7
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Explicit Euler: Code

— “~
~~
NN
NN N
NN N

/77t
AAA7 I

- W N N N

»

void takeStep(ParticleSystem™ ps, float h)

{

velocities = ps->getStateVelocities()
positions = ps->getStatePositions()

forces = ps->getForces(positions, velocities)
masses = ps->getMasses()

accelerations = forces / masses
newPositions = positions + h*velocities
newVelocities = velocities + h*accelerations
ps->setStatePositions(newPositions)

ps->setStateVelocities(newVelocities)
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Midpoint Method: Code

void takeStep(ParticleSystem* ps, float h)

{
velocities = ps->getStateVelocities()
f i % t é E § Q positions = ps->getStatePositions()
R N N N NN forces = ps->getForces(positions, velocities)
4 0V N N NN masses = ps->getMasses()
M G G S accelerations = forces / masses
q midPositions = positions + 0.5*h*velocities
< P = — — — midVelocities = velocities + 0.5*h*accelerations
= midForces = ps->getForces(midPositions, midVelocities)
15 (At f (Y(t), t)) E midAccelerations = midForces / masses
newPositions = positions + h*midVelocities
t vt 2 2 /7 newVelocities = velocities + h*midAccelerations

ps->setStatePositions(newPositions)

\ /! /7 /7
\ X (t) / / / / / ps->setStateVelocities(newVelocities)

} © Alla Sheffer, Helge Rhodin
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Implicit (Backward) Euler:

Use forces at destination + Types of forces:
* Gravity
Solve system of equations F = [ 0 ]
Jdrx] [ v —myg
EL?] - [Zﬁ/m] « Viscous damping
F =—bv
ot = hvﬁil » Spring & dampers
v"+1=v"+h(m) F=—kx — bv
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Implicit (Backward) Euler:

Use forces at destination +
derivative at the destination

Solve system of equations

%[gl B [Z’ ﬁﬁ/m]

Xn+1 =Xp +h v;Jl'+1
vn+1 — vn + h( ;;:1)

Example: Spring Force
F=—kx

Analytic or iterative solve?
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Forward vs Backward

n+1 — fn + At f(jin)

»<|
3
n
<]

Forward Euler
n+1 — Xn + At f(Xn+1) Xn+1 = Xn + h (/2%

(—kxn)
Un_|_1 =vn+h

Backward Euler

Xn+1 = Xp + h vy

Could one apply the Trapezoid Method? (—
vn_l_l —_ ’Un + h
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Proxy Forces (= fake forces)

« Behavior forces: [“Boids”, Craig Reynolds, 4 | |
SIGGRAPH 1987] | % ‘ Sep'aration:'steerto
avoid crowding local
> . A

 flocking birds, schooling fish, etc. flockmates

« Attract to goal location (like gravity) h \l>
: Alignment: steer
 E.g., waypoint determined by shortest path search \> ‘_h h towards the average

heading of local

 Repulsion if close ‘ }3 \> flockmates

« Align orientation to neighbors N

« Center to neighbors Claliafion: Sthet b
move toward the

A - average position of local

flockmates

« Forces add up! 4
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Proxy Forces

* Fluids

[“Curl Noise for Procedural Fluid Flow” R. Bridson, J. Hourihan, M. Nordenstam,

Proc. SIGGRAPH 2007]

- Many small particles

« One can add artificial forces to

— approximate complex
phenomena

— artistic desires

— Improve usability
(e.g., bias spacecraft to desired
trajectory?)
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Particles:
Newtonian Physics as First-Order ODE

Motion of many particles?

o 'ﬁVT
vy Fi/my

o|%2| | P

Py v, | = Fz/mz Interaction of particles?
Xn Un
U _Fn/mn_
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Simulation Basics

Simulation loop...
1. Equations of Motion
2. Numerical integration
3. Collision detection
4. Collision resolution
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Collisions

« Collision detection
 Broad phase: AABBs, bounding spheres

 Narrow phase: detailed checks
« Collision response
* Collision impulses
« Constraint forces: resting, sliding, hinges, ....
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Basic Particle Simulation (first try)

Forces only F = ma

de =11 — ¢
vy = v(ty) + (F(t;)/m)d,
Piv1 = P(t;) + v(tip1)d,;
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Particle-Plane Collisions

* Apply an ‘impulse’ of magnitude |

Impulse in physics: Integral of F over time

* Inversely proportional to mass of particle In games: an instantaneous step change

 In direction of normal

(not physically possible), i.e., the force
applied over one time step of the simulation

jqurE)Q

j=jn What is the
effect of € ?
vt =2y
m
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Why use ‘Impulse’?

* Integrates with the physics solver

« How to integrate damping?

25
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Particle-Particle Collisions (radius=0)

« Particle-particle frictionless elastic impulse response

_ +
vy _ U1
[
+
( ) V3
Before After
« Momentum is preserved * Velocity is preserved
_ _ In tangential direction
myvy + myv; = myvy + myvj J
tevy =t-vy, t cv;=tev]

« Kinetic energy Is preserved

2 2 2 2
— 2 _ + +
% lel + % mz vz — 1/2 mlvl + % mz vz © Alla Sheffer, Helge Rhodin



Particle-Particle Collisions (radius >0)

« What we know...

 Particle centers v5

- Initial velocities \
3 P2: (Xz,_)’z)

 Particle Masses \

« What we can calculate...
e Contact normal P1:
* Contact tangent
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Particle-Particle Collisions (radius >0)

* Impulse direction 72
reflected across N
tangent vz
* Impulse magnitude \ \‘ P2: (X2,¥2)
proportional to v\\
mass of other m,
particle p1: '
U1

mo <m1
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Particle-Particle Collisions (radius >0)

More formally...

This is in terms of velocity, what would the
corresponding impulse be?
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Rigid Body Dynamics

(rotational motion of objects?)

* From particles to rigid bodies... ‘ I
Particle Rigid body
X position (% position

state = {_. loci > olocit
v velocity state = { Y vetoct _y _
R rotation matrix 3x3

R* in 2D KW angular velocity
R® in 3D

R1Z2 in 3D
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