Helge Rhodin

CPSC 427 Video Game Programming

Physical Simulation

Overview

1. Recap AI & Debugging

2. Equation of Motion

- Ordinary Differentiable Equations (ODE)
- Solving ODEs

3. Collision and Reaction Forces

Recap: Al

Two-player games

www.npr.org

Our options

We have a win for any move they make. Original position in purple is an X win.

Implementation?

Alpha Beta Tree

Debugging

- There will be bugs...
- Strategies for Fixing?
- Anticipate
- Reproduce
 - Things get terribly difficult if randomness is involved!
- Localize
- Use proper debugging tools

Logistics: New TA-Team assignment for M2

Tim: 1, 6, 8 Grace: 4, 5, 7 Dave: 3, 11, 12 Andrew: 2, 9, 10

Logistics: Team Project Presentation

- Quick summary of game idea
- Showcase early results
- What was easy?
- What was more difficult than imagined?
- We will have this on the Thursday after every milestone This Thursday 5 pm! 4 minutes per team

Logistics: Cross-play

- Test other team's games
- Give feedback
- Have fun
- After M2 and subsequent milestones
- Trial run on Thursday, ~6pm (after team presentations)

Logistics: Guest lectures

- 1h lecture by a domain expert
- Every Tuesday 5-6 pm during March
- Attendance mandatory (counts to course participation)

Optional one:

- Raytracing & RTX
- vote for time (morning time slot) on piazza

Logistics: Exam slot?

- Final cross-play session
- Industry jury
- Awards
- 19th, 7pm, Attendance mandatory

Physics

Learning goals:

- Connect your theoretical math knowledge to applications
- Properly simulate object motion and their interaction in your game

Simulation Basics

Simulation loop...

- 1. Equations of Motion
 - sum forces & torques
 - solve for accelerations: $\vec{F} = ma$
- 2. Numerical integration
 - update positions, velocities
- 3. Collision detection
- 4. Collision resolution

Basic Particle Simulation (first try)

© Alla Sheffer, Helge Rhodin

Basic Particle Forces

• Gravity

$$F = \begin{bmatrix} 0\\ -mg \end{bmatrix}$$

Viscous damping

F = -bv

 $b \qquad \longleftrightarrow x$ $m \qquad \longleftarrow F$ k

• Spring & dampers F = -kx - bv

Gravity direction?

Assuming a flat earth:

$$F = \begin{bmatrix} 0\\ -mg \end{bmatrix}$$

Assuming a spherical earth:

 $F = -mg \begin{bmatrix} a \\ b \end{bmatrix}$

How to compute the vector (a,b) and g?

Newton's law of universal gravitation $F = G \frac{m_1 m_2}{r^2}$

© Alla Sheffer, Helge Rhodin

Multiple forces?

Forces add up (and cancel):

 $F = -mg_1 \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} -mg_2 \begin{bmatrix} a_2 \\ b_2 \end{bmatrix}$

- This holds for all types of forces!
- Notation you might see:

$$F = \sum_{i} F_{i} = \sum F_{i} = \sum F$$

 $\vec{F} = F$

Newtonian Physics as First-Order ODE

Motion of one particle

 $\frac{\partial}{\partial t} \begin{bmatrix} \vec{x} \\ \vec{y} \end{bmatrix}$

 General form a function of t, f, and it's derivatives - Higher-order ODE: $f^{(k)}(t) = G[t, f(t), f'(t), f''(t), \cdots, f^{(k-1)}]$

Second-order ODE

$$\vec{F} = m \frac{\partial^2 x}{\partial t^2} = \frac{\partial v}{\partial t}$$
acceleration

- Equivalent first-order ODE:

First-order ODE
$$\frac{\partial}{\partial t} \begin{bmatrix} \vec{x} \\ \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{v} \\ \vec{F}/m \end{bmatrix}$$
velocity
 $= \frac{\partial x}{\partial t}$ $\frac{\partial}{\partial t} \begin{pmatrix} f_0(t) \\ f_1(t) \\ \vdots \\ f_{k-1}(t) \end{pmatrix} = \begin{pmatrix} f_0(t) \\ f_1(t) \\ \vdots \\ G[t, f_0(t), f_1(t), \cdots, f_{(k-1)}(t)] \end{pmatrix}$

Higher-order ODEs can be turned into a first-order ODE with additional variables and equations!

Context: ODE vs. PDE

A differential equation is an equation that relates one or more functions and their derivatives.

An ordinary differential equation (ODE) is a differential equation containing one or more functions of <u>one variable</u> and the derivatives of those functions.

Equations coupling together derivatives of functions in <u>more than one</u> variable are known as partial differential equations (PDEs)

Basic Particle Simulation: Small Problem...

Forces only $\vec{F} = ma$

$$d_t = t_{i+1} - t_i$$

$$\vec{v}_{i+1} = \vec{v}(t_i) + (\vec{f}(t_i)/m)d_t$$

$$\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}(t_{i+1})d_t$$

Equations of motion describe state (equilibrium)

Use: get values at time t_{i+1} from values at time t_i

Ordinary Differential Equations

$$\frac{\partial}{\partial t}\vec{X}(t) = f(\vec{X}(t), t)$$

Given that $\vec{X}_0 = \vec{X}(t_0)$
Compute $\vec{X}(t)$ for $t > t_0$
 $\Delta \vec{X}(t) = f(\vec{X}(t), t)\Delta t$

- Simulation:
 - path through state-space
 - driven by vector field

Gravitational field

25 https://www.euclideanspace.com/maths/geometry/space/fields/index.htm

Water Vortex (assignment?)

ODE Numerical Integration: Explicit (Forward) Euler

$$\frac{\partial}{\partial t} \vec{X}(t) = f(\vec{X}(t), t)$$

Given that $\vec{X}_0 = \vec{X}(t_0)$
Compute $\vec{X}(t)$ for $t > t_0$

$$\Delta t = t_i - t_{i-1}$$
$$\Delta \vec{X}(t_{i-1}) = \Delta t f(\vec{X}(t_{i-1}), t_{i-1})$$
$$\vec{X}_i = \vec{X}_{i-1} + \Delta t f(\vec{X}_{i-1}, t_{i-1})$$

Explicit Euler Problems

- Solution spirals out
 - Even with small time steps
 - Although smaller time steps
 are still better

Definition: Explicit

- Closed-form/analytic solution
- no iterative solve required

Explicit Euler Problems

Can lead to instabilities

Midpoint Method

- **1.** $\frac{1}{2}$ Euler step
- **2.** evaluate f_m at \vec{X}_m
- **3.** full step using f_m

Trapezoid Method

- **1.** full Euler step get \overline{X}_a
- **2.** evaluate $f_t \text{ at } \vec{X}_a$
- **3.** full step using $f_t \text{ get } \overrightarrow{X}_b$ **4.** average \overrightarrow{X}_a and \overrightarrow{X}_b

Midpoint & Trapezoid Method

- Not exactly the same
 - But same order of accuracy

Explicit Euler: Code

void takeStep(ParticleSystem* ps, float h)

velocities = ps->getStateVelocities() positions = ps->getStatePositions() forces = ps->getForces(positions, velocities) masses = ps->getMasses() accelerations = forces / masses newPositions = positions + h*velocities newVelocities = velocities + h*accelerations ps->setStatePositions(newPositions) ps->setStateVelocities(newVelocities)

Midpoint Method: Code

void takeStep(ParticleSystem* ps, float h)

velocities = ps->getStateVelocities() positions = ps->getStatePositions() forces = ps->getForces(positions, velocities) masses = ps->getMasses() accelerations = forces / masses midPositions = positions + 0.5*h*velocities midVelocities = velocities + 0.5*h*accelerations midForces = ps->getForces(midPositions, midVelocities) midAccelerations = midForces / masses newPositions = positions + h*midVelocities newVelocities = velocities + h*midAccelerations ps->setStatePositions(newPositions) ps->setStateVelocities(newVelocities)

Implicit (Backward) Euler:

Use forces at destination

Solve system of equations $\frac{\partial}{\partial t} \begin{bmatrix} \vec{x} \\ \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{v} \\ \Sigma \vec{F}/m \end{bmatrix}$

$$x_{n+1} = x_n + h v_{n+1}$$
$$v_{n+1} = v_n + h \left(\frac{F_{n+1}}{m}\right)$$

• Types of forces:

$$Gravity$$
$$F = \begin{bmatrix} 0\\ -mg \end{bmatrix}$$

Viscous damping

F = -bv

Spring & dampers

F = -kx - bv

Implicit (Backward) Euler:

• Use forces at destination + derivative at the destination

Solve system of equations $\frac{\partial}{\partial t} \begin{bmatrix} \vec{x} \\ \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{v} \\ \Sigma \vec{F}/m \end{bmatrix}$

$$x_{n+1} = x_n + h v_{n+1}$$
$$v_{n+1} = v_n + h \left(\frac{F_{n+1}}{m}\right)$$

Example: Spring Force F = -kx

$$x_{n+1} = x_n + h v_{n+1}$$
$$v_{n+1} = v_n + h \left(\frac{-k x_{n+1}}{m}\right)$$

Analytic or iterative solve?

Forward vs Backward

$$\overrightarrow{X}_{n+1} \qquad \overrightarrow{X}_{n+1} = \overrightarrow{X}_n + \Delta t f(\overrightarrow{X}_n)$$

$$\overrightarrow{X}_{n+1} \qquad \overrightarrow{X}_{n+1} = \overrightarrow{X}_n + \Delta t f(\overrightarrow{X}_{n+1})$$

Could one apply the Trapezoid Method?

Forward Euler

$$x_{n+1} = x_n + h v_n$$
$$v_{n+1} = v_n + h \left(\frac{-k x_n}{m}\right)$$

Backward Euler

$$x_{n+1} = x_n + h v_{n+1}$$
$$v_{n+1} = v_n + h \left(\frac{-k x_{n+1}}{m}\right)$$

© Alla Sheffer, Helge Rhodin

Proxy Forces (= fake forces)

- Behavior forces: ["Boids", Craig Reynolds, SIGGRAPH 1987]
- flocking birds, schooling fish, etc.
- Attract to goal location (like gravity)
 - E.g., waypoint determined by shortest path search
- Repulsion if close
- Align orientation to neighbors
- Center to neighbors
- Forces add up!

Proxy Forces

Fluids

["Curl Noise for Procedural Fluid Flow" R. Bridson, J. Hourihan, M. Nordenstam, Proc. SIGGRAPH 2007]

- Many small particles
- One can add artificial forces to
 - approximate complex phenomena
 - artistic desires
 - Improve usability (e.g., bias spacecraft to desired trajectory?)

Particles: Newtonian Physics as First-Order ODE

UBC

Motion of many particles?

$$\frac{\partial}{\partial t} \begin{bmatrix} \overline{x_1} \\ \overline{v_1} \\ \overline{x_2} \\ \overline{v_2} \\ \overline{v_2} \\ \vdots \\ \overline{x_n} \\ \overline{v_n} \end{bmatrix} = \begin{bmatrix} \overline{v_1} \\ \overline{F_1}/m_1 \\ \overline{v_2} \\ \overline{F_2}/m_2 \\ \vdots \\ \overline{v_n} \\ \overline{F_n}/m_n \end{bmatrix}$$

Interaction of particles?

Simulation Basics

Simulation loop...

- 1. Equations of Motion
- 2. Numerical integration
- 3. Collision detection
- 4. Collision resolution

Collisions

- Collision detection
 - Broad phase: AABBs, bounding spheres
 - Narrow phase: detailed checks
- Collision response
 - Collision impulses
 - Constraint forces: resting, sliding, hinges,

Basic Particle Simulation (first try)

Forces only $\vec{F} = ma$

$$d_t = t_{i+1} - t_i$$

$$\vec{v}_{i+1} = \vec{v}(t_i) + (\vec{F}(t_i)/m)d_t$$

$$\vec{p}_{i+1} = \vec{p}(t_i) + \vec{v}(t_{i+1})d_t$$

Particle-Plane Collisions

- Apply an 'impulse' of magnitude j
 - Inversely proportional to mass of particle
- In direction of normal

Impulse in physics: Integral of F over time In games: an instantaneous step change (not physically possible), i.e., the force applied over one time step of the simulation

Why use 'Impulse'?

- Integrates with the physics solver
- How to integrate damping?

Particle-Particle Collisions (radius=0)

Particle-particle frictionless elastic impulse response

 $m_1v_1^- + m_2v_2^- = m_1v_1^+ + m_2v_2^+$

Kinetic energy is preserved

$$\frac{1}{2}m_1v_1^{-2} + \frac{1}{2}m_2v_2^{-2} = \frac{1}{2}m_1v_1^{+2} + \frac{1}{2}m_2v_2^{+2}$$

 Velocity is preserved in tangential direction

$$t \circ v_1^- = t \circ v_1^+$$
, $t \circ v_2^- = t \circ v_2^+$

© Alla Sheffer, Helge Rhodin

Particle-Particle Collisions (radius >0)

- What we know...
 - Particle centers
 - Initial velocities
 - Particle Masses
- What we can calculate...
 - Contact normal
 - Contact tangent

Particle-Particle Collisions (radius >0)

- Impulse direction reflected across tangent
- Impulse magnitude proportional to mass of other particle

© Alla Sheffer, Helge Rhodin

Particle-Particle Collisions (radius >0)

More formally...

$$egin{aligned} &v_1^+ = v_1^- - rac{2m_2}{m_1 + m_2} rac{\langle v_1^- - v_2^-
angle \cdot \langle p_1 - p_2
angle}{\|p_1 - p_2\|^2} \langle p_1 - p_2
angle \ &v_2^+ = v_2^- - rac{2m_1}{m_1 + m_2} rac{\langle v_2^- - v_1^-
angle \cdot \langle p_2 - p_1
angle}{\|p_2 - p_1\|^2} \langle p_2 - p_1
angle \end{aligned}$$

• This is in terms of velocity, what would the corresponding impulse be?

Rigid Body Dynamics (rotational motion of objects?)

• From particles to rigid bodies...

 $state = \begin{cases} \vec{x} \text{ position} \\ \vec{v} \text{ velocity} \end{cases}$

 \mathbb{R}^4 in 2D \mathbb{R}^6 in 3D

Particle

$$state = \begin{cases} \vec{x} \text{ position} \\ \vec{v} \text{ velocity} \\ R \text{ rotation matrix } 3x3 \\ \vec{w} \text{ angular velocity} \end{cases}$$

 \mathbb{R}^{12} in 3D

