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CPSC 427

Video Game Programming

Helge Rhodin

Physical Simulation
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Overview

1. Recap AI & Debugging

2. Equation of Motion

• Ordinary Differentiable Equations (ODE)

• Solving ODEs

3. Collision and Reaction Forces
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Recap: AI
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Two-player games
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www.npr.org



© Alla Sheffer, Helge Rhodin

Our options

We have a win for any move they make. 
Original position in purple is an X win.
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Implementation?
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Debugging

• There will be bugs…

• Strategies for Fixing?

• Anticipate

• Reproduce

• Things get terribly difficult if randomness is involved!

• Localize

• Use proper debugging tools
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Logistics: New TA-Team assignment for M2

Tim: 1, 6, 8

Grace: 4, 5, 7

Dave: 3, 11, 12

Andrew: 2, 9, 10

9
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Logistics: Team Project Presentation

• Quick summary of game idea

• Showcase early results

• What was easy?

• What was more difficult than imagined?

• We will have this on the Thursday after every milestone
This Thursday 5 pm!
4 minutes per team
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Logistics: Cross-play

• Test other team’s games

• Give feedback

• Have fun

• After M2 and subsequent milestones

• Trial run on Thursday, ~6pm (after team presentations)
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Logistics: Guest lectures

• 1h lecture by a domain expert

• Every Tuesday 5-6 pm during March

• Attendance mandatory (counts to course participation)

Optional one:

• Raytracing & RTX

• vote for time (morning time slot) on piazza
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Logistics: Exam slot?

• Final cross-play session

• Industry jury

• Awards

• 19th, 7pm, Attendance mandatory
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Physics

Learning goals:

• Connect your theoretical math
knowledge to applications

• Properly simulate object 
motion and their interaction in 
your game

14
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Simulation Basics

Simulation loop…

1. Equations of Motion

• sum forces & torques

• solve for accelerations: 𝑭 = 𝒎𝒂

2. Numerical integration

• update positions, velocities

3. Collision detection

4. Collision resolution
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Basic Particle Simulation (first try)

Forces only  𝑭 = 𝒎𝒂

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗 𝒕𝒊 + (𝑭(𝒕𝒊)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗(𝒕𝒊+𝟏)𝒅𝒕

acceleration = 
𝜕𝑣

𝜕𝑡
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Basic Particle Forces 

• Gravity

𝐹 =
0

−𝑚𝑔

• Viscous damping

𝐹 = −𝑏𝑣

• Spring & dampers

𝐹 = −𝑘𝑥 − 𝑏𝑣
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Gravity direction?

Assuming a flat earth:

Assuming a spherical earth:

18

𝐹 =
0

−𝑚𝑔

𝐹 = −𝑚𝑔
𝑎
𝑏

How to compute the vector (a,b) and g ?

Newton's law of universal gravitation
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Multiple forces?

Forces add up (and cancel):

• This holds for all types of
forces!

• Notation you might see:
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𝐹 = −𝑚𝑔1
𝑎1
𝑏1

−𝑚𝑔2
𝑎2
𝑏2
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Newtonian Physics as First-Order ODE

• Motion of one particle

Second-order ODE

റ𝐹 = 𝑚
𝜕2𝑥

𝜕𝑡2

First-order ODE

𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣
റ𝐹/𝑚

• General form

– Higher-order ODE:

– Equivalent first-order ODE:

acceleration

= 
𝜕𝑣

𝜕𝑡

Higher-order ODEs can be turned into a first-order ODE with additional variables and equations!

velocity

= 
𝜕𝑥

𝜕𝑡

a function of t, f, and it’s derivatives
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Context: ODE vs. PDE

A differential equation is an equation that relates one or 
more functions and their derivatives.

An ordinary differential equation (ODE) is a differential 
equation containing one or more functions of 
one variable and the derivatives of those functions.

Equations coupling together derivatives of functions in 
more than one variable are known as partial differential 
equations (PDEs)

21
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Basic Particle Simulation:  Small Problem…

Forces only  𝑭 = 𝒎𝒂

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗 𝒕𝒊 + (𝒇(𝒕𝒊)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗(𝒕𝒊+𝟏)𝒅𝒕

Equations of motion describe state (equilibrium)

Use: get values at time 𝒕𝒊+𝟏from values at time 𝒕𝒊
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Ordinary Differential Equations

𝜕

𝜕𝑡
റ𝑋(𝑡) = 𝑓( റ𝑋 𝑡 , 𝑡)

Given that റ𝑋0 = റ𝑋 𝑡0

Compute റ𝑋 𝑡 for t > 𝑡0

∆ റ𝑋(𝑡) = 𝑓( റ𝑋 𝑡 , 𝑡)∆𝑡

• Simulation: 

• path through state-space

• driven by vector field
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Gravitational field

25 https://www.euclideanspace.com/maths/geometry/space/fields/index.htm
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Water Vortex (assignment?)

26
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ODE Numerical Integration: 

Explicit (Forward) Euler

𝜕

𝜕𝑡
റ𝑋(𝑡) = 𝑓( റ𝑋 𝑡 , 𝑡)

Given that റ𝑋0 = റ𝑋 𝑡0

Compute റ𝑋 𝑡 for t > t0

∆𝑡 = t𝑖 − t𝑖−1

∆ റ𝑋 t𝑖−1 = ∆𝑡 𝑓( റ𝑋 t𝑖−1 , t𝑖−1)

റ𝑋𝑖 = റ𝑋𝑖−1 + ∆𝑡 𝑓( റ𝑋𝑖−1, t𝑖−1)

𝒇(𝑿 𝒕 , 𝒕)

∆𝒕 𝒇(𝑿 𝒕 , 𝒕)

𝑿 𝒕

𝑿 𝒕 + ∆𝒕
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Explicit Euler Problems

• Solution spirals out

• Even with small time steps

• Although smaller time steps 

are still better

Definition: Explicit

• Closed-form/analytic solution

• no iterative solve required
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Explicit Euler Problems

• Can lead to instabilities



© Alla Sheffer, Helge Rhodin

Midpoint Method

1. ½ Euler step

2. evaluate fm at 𝑿𝒎

3. full step using fm

𝒇𝒎

𝑿 𝒕

𝑿 𝒕 + ∆𝒕 𝒇𝒎

½ (∆𝒕 𝒇 𝑿 𝒕 , 𝒕 )

𝑿𝒎 = 𝑿 𝒕 +½ ∆𝑿(𝒕)

𝒇(𝑿 𝒕 , 𝒕)
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Trapezoid Method

𝒇𝒕

𝑿 𝒕

𝑿𝒂 = 𝑿 + ∆𝑿(𝒕)

∆𝒕 𝒇(𝑿 𝒕 , 𝒕)

𝑿𝒃 = 𝑿 𝒕 + ∆𝒕 𝒇𝒕

½𝑿𝒂 + ½𝑿𝒃

1. full Euler step get 𝑿𝒂

2. evaluate ft at 𝑿𝒂

3. full step using ft get 𝑿𝒃

4. average 𝑿𝒂 and 𝑿𝒃

𝒇(𝑿 𝒕 , 𝒕)
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Midpoint & Trapezoid Method

𝑻𝒓𝒂𝒑𝒆𝒛𝒐𝒊𝒅𝒎𝒆𝒕𝒉𝒐𝒅

• Not exactly the same

– But same order of accuracy

𝑴𝒊𝒅𝒑𝒐𝒊𝒏𝒕 𝒎𝒆𝒕𝒉𝒐𝒅

𝑿 𝒕



© Alla Sheffer, Helge Rhodin

Explicit Euler: Code
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Midpoint Method: Code

𝒇𝒎

𝑿 𝒕

𝑿 𝒕 + ∆𝒕 𝒇𝒎

½ (∆𝒕 𝒇 𝑿 𝒕 , 𝒕 )

𝑿𝒎 = 𝑿 𝒕 +½ ∆𝑿(𝒕)
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• Types of forces:

• Gravity

𝐹 =
0

−𝑚𝑔

• Viscous damping

𝐹 = −𝑏𝑣

• Spring & dampers

𝐹 = −𝑘𝑥 − 𝑏𝑣

• Use forces at destination

Implicit (Backward) Euler: 

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
𝑭𝒏+𝟏
𝒎

Solve system of equations
𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣

𝛴 റ𝐹/𝑚
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• Use forces at destination + 

derivative at the destination

Implicit (Backward) Euler: 

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
𝑭𝒏+𝟏
𝒎

Solve system of equations
𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣

𝛴 റ𝐹/𝑚

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏+𝟏

𝒎

Example: Spring Force

𝐹 = −𝑘𝑥

Analytic or iterative solve?
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Forward vs Backward

Backward Euler

Forward Euler

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏
𝒎

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏+𝟏

𝒎

Could one apply the Trapezoid Method?
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Proxy Forces (= fake forces)

• Behavior forces: [“Boids”, Craig Reynolds, 

SIGGRAPH 1987]

• flocking birds, schooling fish, etc. 

• Attract to goal location (like gravity)

• E.g., waypoint determined by shortest path search

• Repulsion if close

• Align orientation to neighbors

• Center to neighbors

• Forces add up!
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Proxy Forces

• Fluids
[“Curl Noise for Procedural Fluid Flow” R. Bridson, J. Hourihan, M. Nordenstam, 

Proc. SIGGRAPH 2007]

• Many small particles

• One can add artificial forces to 

– approximate complex

phenomena

– artistic desires

– Improve usability

(e.g., bias spacecraft to desired

trajectory?)
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Particles: 

Newtonian Physics as First-Order ODE

• Motion of many particles?

𝜕

𝜕𝑡

𝑥1
𝑣1
𝑥2
𝑣2
⋮
𝑥𝑛
𝑣𝑛

=

𝑣1

𝐹1/𝑚1

𝑣2

𝐹2/𝑚2

⋮
𝑣𝑛

𝐹𝑛/𝑚𝑛

• Interaction of particles?
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Simulation Basics

Simulation loop…

1. Equations of Motion

2. Numerical integration

3. Collision detection

4. Collision resolution
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Collisions

• Collision detection

• Broad phase: AABBs,  bounding spheres

• Narrow phase: detailed checks

• Collision response

• Collision impulses

• Constraint forces: resting, sliding, hinges, ….
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Basic Particle Simulation (first try)

Forces only  𝑭 = 𝒎𝒂

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗 𝒕𝒊 + (𝑭(𝒕𝒊)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗(𝒕𝒊+𝟏)𝒅𝒕
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Particle-Plane Collisions

• Apply an ‘impulse’ of magnitude j

• Inversely proportional to mass of particle

• In direction of normal

𝒗− 𝒗+

ෝ𝒏 𝒋 = 𝟏 + 𝝐 𝒗−◦ ෝ𝒏 𝒎

റ𝒋 = 𝒋 ෝ𝒏

𝒗+ =
റ𝒋

𝒎
+ 𝒗−

Impulse in physics: Integral of F over time

In games: an instantaneous step change

(not physically possible), i.e., the force 

applied over one time step of the simulation

What is the

effect of 𝝐 ?
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Why use ‘Impulse’?

• Integrates with the physics solver

• How to integrate damping?

45
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Particle-Particle Collisions (radius=0)

• Particle-particle frictionless elastic impulse response

• Momentum is preserved

𝒎𝟏𝒗𝟏
− +𝒎𝟐𝒗𝟐

− = 𝒎𝟏𝒗𝟏
+ +𝒎𝟐𝒗𝟐

+

• Kinetic energy is preserved

½ 𝒎𝟏𝒗𝟏
−𝟐 + ½ 𝒎𝟐𝒗𝟐

−𝟐 = ½ 𝒎𝟏𝒗𝟏
+𝟐 + ½ 𝒎𝟐𝒗𝟐

+𝟐

𝒎𝟏

𝒎𝟐

𝒎𝟏

𝒎𝟐

𝒗𝟏
−

𝒗𝟐
− 𝒗𝟏

+

𝒗𝟐
+

Before After

• Velocity is preserved 

in tangential direction

𝒕◦𝒗𝟏
− = 𝒕◦𝒗𝟏

+ , 𝒕 ◦𝒗𝟐
−= 𝐭◦𝒗𝟐

+
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Particle-Particle Collisions (radius >0)

𝒗𝟏
−

𝒑𝟐: 𝒙𝟐, 𝒚𝟐

𝒑𝟏: 𝒙𝟏, 𝒚𝟏

𝒗𝟐
−

𝒎𝟐

𝒎𝟏

• What we know…

• Particle centers

• Initial velocities

• Particle Masses

• What we can calculate…

• Contact normal

• Contact tangent
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• Impulse direction

reflected across 

tangent

• Impulse magnitude 

proportional to 

mass of other 

particle

Particle-Particle Collisions (radius >0)

𝒗𝟏
−

𝒗𝟐
−

𝒗𝟏
+

𝒗𝟐
+

𝒎𝟐

𝒎𝟏
𝒎𝟐 < 𝒎1

𝒑𝟐: 𝒙𝟐, 𝒚𝟐

𝒑𝟏: 𝒙𝟏, 𝒚𝟏
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Particle-Particle Collisions (radius >0)

𝒗𝟏
+ = 𝒗𝟏

− −
𝟐𝒎𝟐

𝒎𝟏 +𝒎𝟐

𝒗𝟏
− − 𝒗𝟐

− ∙ 𝒑𝟏 − 𝒑𝟐
𝒑𝟏 − 𝒑𝟐

𝟐
𝒑𝟏 − 𝒑𝟐

𝒗𝟐
+ = 𝒗𝟐

− −
𝟐𝒎𝟏

𝒎𝟏 +𝒎𝟐

𝒗𝟐
− − 𝒗𝟏

− ∙ 𝒑𝟐 − 𝒑𝟏
𝒑𝟐 − 𝒑𝟏

𝟐
𝒑𝟐 − 𝒑𝟏

• More formally…

• This is in terms of velocity, what would the 

corresponding impulse be?
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Rigid Body Dynamics 

(rotational motion of objects?)

• From particles to rigid bodies…

Rigid body

𝒔𝒕𝒂𝒕𝒆 =

𝒙 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

𝒗 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚
𝑹 𝒓𝒐𝒕𝒂𝒕𝒊𝒐𝒏𝒎𝒂𝒕𝒓𝒊𝒙 𝟑𝒙𝟑
𝒘 𝒂𝒏𝒈𝒖𝒍𝒂𝒓 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

ℝ𝟏𝟐 in 3D

Particle

𝒔𝒕𝒂𝒕𝒆 = ൝
𝒙 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

𝒗 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

ℝ𝟒 in 2D

ℝ𝟔 in 3D


