
© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Physical Simulation

1

© Alla Sheffer, Helge Rhodin

Overview

1. Recap AI & Debugging

2. Equation of Motion

• Ordinary Differentiable Equations (ODE)

• Solving ODEs

3. Collision and Reaction Forces

2

© Alla Sheffer, Helge Rhodin

Recap: AI

3

© Alla Sheffer, Helge Rhodin

Two-player games

4

www.npr.org

© Alla Sheffer, Helge Rhodin

Our options

We have a win for any move they make.
Original position in purple is an X win.

© Alla Sheffer, Helge Rhodin

Implementation?

6

© Alla Sheffer, Helge Rhodin

Alpha Beta Tree

10 2 12 2 7

10 12 7

10 7

10Max

Max

Min

Min

 = 10

 =7

 > !

© Alla Sheffer, Helge Rhodin

Debugging

• There will be bugs…

• Strategies for Fixing?

• Anticipate

• Reproduce

• Things get terribly difficult if randomness is involved!

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Logistics: New TA-Team assignment for M2

Tim: 1, 6, 8

Grace: 4, 5, 7

Dave: 3, 11, 12

Andrew: 2, 9, 10

9

© Alla Sheffer, Helge Rhodin

Logistics: Team Project Presentation

• Quick summary of game idea

• Showcase early results

• What was easy?

• What was more difficult than imagined?

• We will have this on the Thursday after every milestone
This Thursday 5 pm!
4 minutes per team

10

© Alla Sheffer, Helge Rhodin

Logistics: Cross-play

• Test other team’s games

• Give feedback

• Have fun

• After M2 and subsequent milestones

• Trial run on Thursday, ~6pm (after team presentations)

11

© Alla Sheffer, Helge Rhodin

Logistics: Guest lectures

• 1h lecture by a domain expert

• Every Tuesday 5-6 pm during March

• Attendance mandatory (counts to course participation)

Optional one:

• Raytracing & RTX

• vote for time (morning time slot) on piazza

12

© Alla Sheffer, Helge Rhodin

Logistics: Exam slot?

• Final cross-play session

• Industry jury

• Awards

• 19th, 7pm, Attendance mandatory

13

© Alla Sheffer, Helge Rhodin

Physics

Learning goals:

• Connect your theoretical math
knowledge to applications

• Properly simulate object
motion and their interaction in
your game

14

© Alla Sheffer, Helge Rhodin

Simulation Basics

Simulation loop…

1. Equations of Motion

• sum forces & torques

• solve for accelerations: 𝑭 = 𝒎𝒂

2. Numerical integration

• update positions, velocities

3. Collision detection

4. Collision resolution

© Alla Sheffer, Helge Rhodin

Basic Particle Simulation (first try)

Forces only 𝑭 = 𝒎𝒂

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗 𝒕𝒊 + (𝑭(𝒕𝒊)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗(𝒕𝒊+𝟏)𝒅𝒕

acceleration =
𝜕𝑣

𝜕𝑡

© Alla Sheffer, Helge Rhodin

Basic Particle Forces

• Gravity

𝐹 =
0

−𝑚𝑔

• Viscous damping

𝐹 = −𝑏𝑣

• Spring & dampers

𝐹 = −𝑘𝑥 − 𝑏𝑣

© Alla Sheffer, Helge Rhodin

Gravity direction?

Assuming a flat earth:

Assuming a spherical earth:

18

𝐹 =
0

−𝑚𝑔

𝐹 = −𝑚𝑔
𝑎
𝑏

How to compute the vector (a,b) and g ?

Newton's law of universal gravitation

© Alla Sheffer, Helge Rhodin

Multiple forces?

Forces add up (and cancel):

• This holds for all types of
forces!

• Notation you might see:

19

𝐹 = −𝑚𝑔1
𝑎1
𝑏1

−𝑚𝑔2
𝑎2
𝑏2

© Alla Sheffer, Helge Rhodin

Newtonian Physics as First-Order ODE

• Motion of one particle

Second-order ODE

റ𝐹 = 𝑚
𝜕2𝑥

𝜕𝑡2

First-order ODE

𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣
റ𝐹/𝑚

• General form

– Higher-order ODE:

– Equivalent first-order ODE:

acceleration

=
𝜕𝑣

𝜕𝑡

Higher-order ODEs can be turned into a first-order ODE with additional variables and equations!

velocity

=
𝜕𝑥

𝜕𝑡

a function of t, f, and it’s derivatives

© Alla Sheffer, Helge Rhodin

Context: ODE vs. PDE

A differential equation is an equation that relates one or
more functions and their derivatives.

An ordinary differential equation (ODE) is a differential
equation containing one or more functions of
one variable and the derivatives of those functions.

Equations coupling together derivatives of functions in
more than one variable are known as partial differential
equations (PDEs)

21

© Alla Sheffer, Helge Rhodin

Basic Particle Simulation: Small Problem…

Forces only 𝑭 = 𝒎𝒂

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗 𝒕𝒊 + (𝒇(𝒕𝒊)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗(𝒕𝒊+𝟏)𝒅𝒕

Equations of motion describe state (equilibrium)

Use: get values at time 𝒕𝒊+𝟏from values at time 𝒕𝒊

© Alla Sheffer, Helge Rhodin

Ordinary Differential Equations

𝜕

𝜕𝑡
റ𝑋(𝑡) = 𝑓(റ𝑋 𝑡 , 𝑡)

Given that റ𝑋0 = റ𝑋 𝑡0

Compute റ𝑋 𝑡 for t > 𝑡0

∆ റ𝑋(𝑡) = 𝑓(റ𝑋 𝑡 , 𝑡)∆𝑡

• Simulation:

• path through state-space

• driven by vector field

© Alla Sheffer, Helge Rhodin

Gravitational field

25 https://www.euclideanspace.com/maths/geometry/space/fields/index.htm

© Alla Sheffer, Helge Rhodin

Water Vortex (assignment?)

26

© Alla Sheffer, Helge Rhodin

ODE Numerical Integration:

Explicit (Forward) Euler

𝜕

𝜕𝑡
റ𝑋(𝑡) = 𝑓(റ𝑋 𝑡 , 𝑡)

Given that റ𝑋0 = റ𝑋 𝑡0

Compute റ𝑋 𝑡 for t > t0

∆𝑡 = t𝑖 − t𝑖−1

∆ റ𝑋 t𝑖−1 = ∆𝑡 𝑓(റ𝑋 t𝑖−1 , t𝑖−1)

റ𝑋𝑖 = റ𝑋𝑖−1 + ∆𝑡 𝑓(റ𝑋𝑖−1, t𝑖−1)

𝒇(𝑿 𝒕 , 𝒕)

∆𝒕 𝒇(𝑿 𝒕 , 𝒕)

𝑿 𝒕

𝑿 𝒕 + ∆𝒕

© Alla Sheffer, Helge Rhodin

Explicit Euler Problems

• Solution spirals out

• Even with small time steps

• Although smaller time steps

are still better

Definition: Explicit

• Closed-form/analytic solution

• no iterative solve required

© Alla Sheffer, Helge Rhodin

Explicit Euler Problems

• Can lead to instabilities

© Alla Sheffer, Helge Rhodin

Midpoint Method

1. ½ Euler step

2. evaluate fm at 𝑿𝒎

3. full step using fm

𝒇𝒎

𝑿 𝒕

𝑿 𝒕 + ∆𝒕 𝒇𝒎

½ (∆𝒕 𝒇 𝑿 𝒕 , 𝒕)

𝑿𝒎 = 𝑿 𝒕 +½ ∆𝑿(𝒕)

𝒇(𝑿 𝒕 , 𝒕)

© Alla Sheffer, Helge Rhodin

Trapezoid Method

𝒇𝒕

𝑿 𝒕

𝑿𝒂 = 𝑿 + ∆𝑿(𝒕)

∆𝒕 𝒇(𝑿 𝒕 , 𝒕)

𝑿𝒃 = 𝑿 𝒕 + ∆𝒕 𝒇𝒕

½𝑿𝒂 + ½𝑿𝒃

1. full Euler step get 𝑿𝒂

2. evaluate ft at 𝑿𝒂

3. full step using ft get 𝑿𝒃

4. average 𝑿𝒂 and 𝑿𝒃

𝒇(𝑿 𝒕 , 𝒕)

© Alla Sheffer, Helge Rhodin

Midpoint & Trapezoid Method

𝑻𝒓𝒂𝒑𝒆𝒛𝒐𝒊𝒅𝒎𝒆𝒕𝒉𝒐𝒅

• Not exactly the same

– But same order of accuracy

𝑴𝒊𝒅𝒑𝒐𝒊𝒏𝒕 𝒎𝒆𝒕𝒉𝒐𝒅

𝑿 𝒕

© Alla Sheffer, Helge Rhodin

Explicit Euler: Code

© Alla Sheffer, Helge Rhodin

Midpoint Method: Code

𝒇𝒎

𝑿 𝒕

𝑿 𝒕 + ∆𝒕 𝒇𝒎

½ (∆𝒕 𝒇 𝑿 𝒕 , 𝒕)

𝑿𝒎 = 𝑿 𝒕 +½ ∆𝑿(𝒕)

© Alla Sheffer, Helge Rhodin

• Types of forces:

• Gravity

𝐹 =
0

−𝑚𝑔

• Viscous damping

𝐹 = −𝑏𝑣

• Spring & dampers

𝐹 = −𝑘𝑥 − 𝑏𝑣

• Use forces at destination

Implicit (Backward) Euler:

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
𝑭𝒏+𝟏
𝒎

Solve system of equations
𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣

𝛴 റ𝐹/𝑚

© Alla Sheffer, Helge Rhodin

• Use forces at destination +

derivative at the destination

Implicit (Backward) Euler:

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
𝑭𝒏+𝟏
𝒎

Solve system of equations
𝜕

𝜕𝑡
റ𝑥
റ𝑣
=

റ𝑣

𝛴 റ𝐹/𝑚

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏+𝟏

𝒎

Example: Spring Force

𝐹 = −𝑘𝑥

Analytic or iterative solve?

© Alla Sheffer, Helge Rhodin

Forward vs Backward

Backward Euler

Forward Euler

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏
𝒎

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒉 𝒗𝒏+𝟏

𝒗𝒏+𝟏 = 𝒗𝒏 + 𝒉
−𝒌 𝒙𝒏+𝟏

𝒎

Could one apply the Trapezoid Method?

© Alla Sheffer, Helge Rhodin

Proxy Forces (= fake forces)

• Behavior forces: [“Boids”, Craig Reynolds,

SIGGRAPH 1987]

• flocking birds, schooling fish, etc.

• Attract to goal location (like gravity)

• E.g., waypoint determined by shortest path search

• Repulsion if close

• Align orientation to neighbors

• Center to neighbors

• Forces add up!

© Alla Sheffer, Helge Rhodin

Proxy Forces

• Fluids
[“Curl Noise for Procedural Fluid Flow” R. Bridson, J. Hourihan, M. Nordenstam,

Proc. SIGGRAPH 2007]

• Many small particles

• One can add artificial forces to

– approximate complex

phenomena

– artistic desires

– Improve usability

(e.g., bias spacecraft to desired

trajectory?)

© Alla Sheffer, Helge Rhodin

Particles:

Newtonian Physics as First-Order ODE

• Motion of many particles?

𝜕

𝜕𝑡

𝑥1
𝑣1
𝑥2
𝑣2
⋮
𝑥𝑛
𝑣𝑛

=

𝑣1

𝐹1/𝑚1

𝑣2

𝐹2/𝑚2

⋮
𝑣𝑛

𝐹𝑛/𝑚𝑛

• Interaction of particles?

© Alla Sheffer, Helge Rhodin

Simulation Basics

Simulation loop…

1. Equations of Motion

2. Numerical integration

3. Collision detection

4. Collision resolution

© Alla Sheffer, Helge Rhodin

Collisions

• Collision detection

• Broad phase: AABBs, bounding spheres

• Narrow phase: detailed checks

• Collision response

• Collision impulses

• Constraint forces: resting, sliding, hinges, ….

© Alla Sheffer, Helge Rhodin

Basic Particle Simulation (first try)

Forces only 𝑭 = 𝒎𝒂

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗 𝒕𝒊 + (𝑭(𝒕𝒊)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗(𝒕𝒊+𝟏)𝒅𝒕

© Alla Sheffer, Helge Rhodin

Particle-Plane Collisions

• Apply an ‘impulse’ of magnitude j

• Inversely proportional to mass of particle

• In direction of normal

𝒗− 𝒗+

ෝ𝒏 𝒋 = 𝟏 + 𝝐 𝒗−◦ ෝ𝒏 𝒎

റ𝒋 = 𝒋 ෝ𝒏

𝒗+ =
റ𝒋

𝒎
+ 𝒗−

Impulse in physics: Integral of F over time

In games: an instantaneous step change

(not physically possible), i.e., the force

applied over one time step of the simulation

What is the

effect of 𝝐 ?

© Alla Sheffer, Helge Rhodin

Why use ‘Impulse’?

• Integrates with the physics solver

• How to integrate damping?

45

© Alla Sheffer, Helge Rhodin

Particle-Particle Collisions (radius=0)

• Particle-particle frictionless elastic impulse response

• Momentum is preserved

𝒎𝟏𝒗𝟏
− +𝒎𝟐𝒗𝟐

− = 𝒎𝟏𝒗𝟏
+ +𝒎𝟐𝒗𝟐

+

• Kinetic energy is preserved

½ 𝒎𝟏𝒗𝟏
−𝟐 + ½ 𝒎𝟐𝒗𝟐

−𝟐 = ½ 𝒎𝟏𝒗𝟏
+𝟐 + ½ 𝒎𝟐𝒗𝟐

+𝟐

𝒎𝟏

𝒎𝟐

𝒎𝟏

𝒎𝟐

𝒗𝟏
−

𝒗𝟐
− 𝒗𝟏

+

𝒗𝟐
+

Before After

• Velocity is preserved

in tangential direction

𝒕◦𝒗𝟏
− = 𝒕◦𝒗𝟏

+ , 𝒕 ◦𝒗𝟐
−= 𝐭◦𝒗𝟐

+

© Alla Sheffer, Helge Rhodin

Particle-Particle Collisions (radius >0)

𝒗𝟏
−

𝒑𝟐: 𝒙𝟐, 𝒚𝟐

𝒑𝟏: 𝒙𝟏, 𝒚𝟏

𝒗𝟐
−

𝒎𝟐

𝒎𝟏

• What we know…

• Particle centers

• Initial velocities

• Particle Masses

• What we can calculate…

• Contact normal

• Contact tangent

© Alla Sheffer, Helge Rhodin

• Impulse direction

reflected across

tangent

• Impulse magnitude

proportional to

mass of other

particle

Particle-Particle Collisions (radius >0)

𝒗𝟏
−

𝒗𝟐
−

𝒗𝟏
+

𝒗𝟐
+

𝒎𝟐

𝒎𝟏
𝒎𝟐 < 𝒎1

𝒑𝟐: 𝒙𝟐, 𝒚𝟐

𝒑𝟏: 𝒙𝟏, 𝒚𝟏

© Alla Sheffer, Helge Rhodin

Particle-Particle Collisions (radius >0)

𝒗𝟏
+ = 𝒗𝟏

− −
𝟐𝒎𝟐

𝒎𝟏 +𝒎𝟐

𝒗𝟏
− − 𝒗𝟐

− ∙ 𝒑𝟏 − 𝒑𝟐
𝒑𝟏 − 𝒑𝟐

𝟐
𝒑𝟏 − 𝒑𝟐

𝒗𝟐
+ = 𝒗𝟐

− −
𝟐𝒎𝟏

𝒎𝟏 +𝒎𝟐

𝒗𝟐
− − 𝒗𝟏

− ∙ 𝒑𝟐 − 𝒑𝟏
𝒑𝟐 − 𝒑𝟏

𝟐
𝒑𝟐 − 𝒑𝟏

• More formally…

• This is in terms of velocity, what would the

corresponding impulse be?

© Alla Sheffer, Helge Rhodin

Rigid Body Dynamics

(rotational motion of objects?)

• From particles to rigid bodies…

Rigid body

𝒔𝒕𝒂𝒕𝒆 =

𝒙 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

𝒗 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚
𝑹 𝒓𝒐𝒕𝒂𝒕𝒊𝒐𝒏𝒎𝒂𝒕𝒓𝒊𝒙 𝟑𝒙𝟑
𝒘 𝒂𝒏𝒈𝒖𝒍𝒂𝒓 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

ℝ𝟏𝟐 in 3D

Particle

𝒔𝒕𝒂𝒕𝒆 = ൝
𝒙 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

𝒗 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

ℝ𝟒 in 2D

ℝ𝟔 in 3D

