
© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

Debugging and Simulation

1

© Alla Sheffer, Helge Rhodin

Overview

1. Recap AI

2. Debugging

3. Simulation

2

© Alla Sheffer, Helge Rhodin

• Lowest-cost-first search finds the path with the

lowest cost to a goal node

• At each stage, it selects the path with the lowest cost

on the frontier.

• The frontier is implemented as a priority queue

ordered by path cost.

Lowest-Cost-First Search (LCFS)

3

© Alla Sheffer, Helge Rhodin

Use of search

• Use search to determine next state (next state on shortest path to
goal/best outcome)

• Measures:

• Evaluate goal/best outcome

• Evaluate distance (shortest path in what metric?)

Problems:

• Cost of full search (at every step) can be prohibitive

• Search in adversarial environment

• Player will try to outsmart you

© Alla Sheffer, Helge Rhodin

• Blind search algorithms do not take goal into account until they reach it

• We often have estimates of distance/cost from node n to a goal node

• Estimate = search heuristic

• a scoring function h(x)

Heuristic Search

5

© Alla Sheffer, Helge Rhodin

• Best First: always choose the path on the frontier with the smallest h
value

• Frontier = priority queue ordered by h

• Once reach goal can discard most unexplored paths…

• Why?

• Worst case: still explore all/most space

• Best case: very efficient

• Greedy: (only) expand path whose last node seems closest to the goal

• Get solution that is locally best

Best First Search (BestFS)

© Alla Sheffer, Helge Rhodin

A* search

7 https://en.wikipedia.org/wiki/A*_search_algorithm

© Alla Sheffer, Helge Rhodin

• A* search takes into account both

• c(p) = cost of path p to current node

• h(p) = heuristic value at node p (estimated “remaining”

path cost)

• Let f(p) = c(p) + h(p).

• f(p) is an estimate of the cost of a path from the start to a

goal via p.

A* Search

c(p) h(p)

f(p)A* always chooses the path on the frontier with the lowest

estimated distance from the start to a goal node constrained to

go via that path.

© Alla Sheffer, Helge Rhodin

A* search

Key idea: H is a heuristic, and not the real distance:

h(p,q) = |(p.x – q.x)| + |(p.y – q.y)|

- Manhattan distance

h(p,q) = sqrt((p.x – q.x)^2 + (p.y – q.y)^2)

- Euclidean distance

Conditions:

• a heuristic function is admissible if it never overestimates the

cost of reaching the goal

• a heuristic function is said to be consistent, or monotone, if its

estimate is always less than or equal to the estimated distance

from any neighbouring vertex to the goal, plus the cost of

reaching that neighbour

https://en.wikipedia.org/wiki/Taxicab_geometry

https://en.wikipedia.org/wiki/Heuristic_function
https://en.wikipedia.org/wiki/Heuristic_function

© Alla Sheffer, Helge Rhodin

Two-player games

10

www.npr.org

© Alla Sheffer, Helge Rhodin

Min-Max Trees

• Adversarial planning in a turn-taking environment

• Algorithm seeks to maximize our success F

• Adversary seeks to minimize F

• Key idea: at each step algorithm selects move that minimizes highest
(estimated) value of F adversary can reach

• Assume the opponent does what looks best

© Alla Sheffer, Helge Rhodin

Example
(from uliana.lecturer.pens.ac.id/Kecerdasan%20Buatan/ppt/Game%20Playing/gametrees.ppt)

We are playing X, and it is now our turn.

© Alla Sheffer, Helge Rhodin

Our options:

Number = position after each legal move

© Alla Sheffer, Helge Rhodin

Opponent options

Here we are looking at all of the opponent responses
to the first possible move we could make.

© Alla Sheffer, Helge Rhodin

Our options

We have a win for any move they make.
Original position in purple is an X win.

© Alla Sheffer, Helge Rhodin

Summary of the Analysis

So which move should we make? ;-)

© Alla Sheffer, Helge Rhodin

Implementation?

17

© Alla Sheffer, Helge Rhodin

MinMax algorithm

• Traverse “game tree”:

• Enumerate all possible moves at each node.

• The children of each node are the positions that result from making each
move. A leaf is a position that is won or drawn for some side.

• Assume that we pick the best move for us, and the opponent picks the best
move for him (causes most damage to us)

• Pick the move that maximizes the minimum amount of success for our side.

© Alla Sheffer, Helge Rhodin

MinMax Algorithm

• Tic-Tac-Toe: three forms of success: Win, Tie, Lose.

• If you have a move that leads to a Win make it.

• If you have no such move, then make the move that gives the tie.

• If not even this exists, then it doesn’t matter what you do.

© Alla Sheffer, Helge Rhodin

Extensions

• Challenges: In practice

• Trees too deep/large to explore (exponential complexity)

• Opponent not always makes the ‘best’ choice

• Randomness

• Solution - Heuristics

• Rate nodes based on local information.

• For example, in Chess “rate” a position by examining difference in number of
pieces

© Alla Sheffer, Helge Rhodin

Heuristics in MinMax

• Strategy that will let us cut off the game tree at fixed depth (layer)

• Apply heuristic scoring to bottom layer

• instead of just Win, Loss, Tie, we have a score.

• For “our” level of the tree we want the move that yields the node
(position) with highest score. For a “them” level “they” want the child
with the lowest score.

© Alla Sheffer, Helge Rhodin

Self stuy: Pseudocode

int Minimax(Board b, boolean myTurn, int depth) {

if (depth==0)

return b.Evaluate(); // Heuristic

for(each possible move i)

value[i] = Minimax(b.move(i), !myTurn,

depth-1);

if (myTurn)

return array_max(value);

else

return array_min(value);

}

Note: we don’t use an explicit tree structure.
However, the pattern of recursive calls forms a tree on the call stack.

© Alla Sheffer, Helge Rhodin

Real Minimax Example

10 2 12 16 2 7 -5 -80

10 16 7 -5

10 -5

10Max

Max

Min

Min

Evaluation function applied to the leaves!

© Alla Sheffer, Helge Rhodin

Alpha Beta Pruning

Idea: Track “window” of expectations.

Use two variables

•  – Best score so far at a max node: increases

• At a child min node:

• Parent wants max. To affect the parent’s current , our  cannot drop below .

• If  ever gets less:

• Stop searching further subtrees of that child. They do not matter!

•  – Best score so far at a min node: decreases

• At a child max node.

• Parent wants min. To affect the parent’s current , our  cannot get above the parent’s .

• If  gets bigger than :

• Stop searching further subtrees of that child. They do not matter!

Start with an infinite window ( = -,  = )

© Alla Sheffer, Helge Rhodin

10 2 12

10 12

10

Alpha Beta Example I

Max

Max

Min

Min

 =10

 = 12

 > !

© Alla Sheffer, Helge Rhodin

Alpha Beta Example II

10 2 12 2 7

10 12 7

10 7

10Max

Max

Min

Min

 = 10

 =7

 > !

© Alla Sheffer, Helge Rhodin

Self stuy: Pseudo Code

int AlphaBeta(Board b, boolean myTurn, int depth, int alpha, int beta) {

if (depth==0)

return b.Evaluate(); // Heuristic

if (myTurn) {

for(each possible move i && alpha < beta)

alpha = max(alpha,AlphaBeta(b.move(i),!myTurn,depth-1,alpha,beta));

return alpha;

}

else {

for(each possible move i && alpha < beta)

beta = min(beta,AlphaBeta(b.move(i), !myTurn, depth-1,alpha,beta));

return beta;

}

}

© Alla Sheffer, Helge Rhodin

Debugging

29

© Alla Sheffer, Helge Rhodin

Debugging

• There will be bugs…

• Strategies for Fixing?

© Alla Sheffer, Helge Rhodin

Debugging

• There will be bugs…

• Strategies for Fixing?

• Anticipate

• Reproduce

• Things get terribly difficult if randomness is involved!

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging:Strategies for Fixing?

• Anticipate I

• Unit tests

• Logging

• Explicit tests for “what can go wrong” (assert)

• Anything that can go wrong will go wrong… at the worst possible time

• State/play saving and loading speeds up debugging

• Visual testing (early)

• Avoid randomness (use seed for rnd)

• Reproduce

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging: Strategies for Fixing?

• Anticipate II: your compiler (with –Wall enabled) is your friend

• “This enables all the warnings about constructions that some
users consider questionable, and that are easy to avoid”

• Reproduce

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

• Strategies for Fixing?

• Anticipate

• Reproduce

• When does it happen?

• Logging + unit tests

• Record/load gameplay

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

• Strategies for Fixing?

• Anticipate

• Reproduce

• Localize

• In time: version control

• In place: logging

• Divide and Conquer

• Minimal trigger input

• Don’t guess; measure

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

• Strategies for Fixing?

• Anticipate

• Reproduce

• Localize

• Use proper debugging tools

• Run with debug settings on

• Run within a debugger

• Set breakpoints

• Examine internal state

• Learn debugger options

© Alla Sheffer, Helge Rhodin

Demo

37

© Alla Sheffer, Helge Rhodin

Debugging (From Waterloo ECE 155)

More (Human Factor) Strategies

• Take a Break/Sleep on it

• Code Review

• Look through code

• Walk someone through the code

© Alla Sheffer, Helge Rhodin

Debugging

More (Human Factor) Strategies

• Question assumptions

• Minimize randomness

• Use same seed

• Check boundary conditions

• Disrupt parallel computations

© Alla Sheffer, Helge Rhodin

Debugging (From Waterloo ECE 155)

More Strategies

• Know your enemy: Types of bugs

• Standard bug (reproducible)

• Sporadic (need to chase – right input combo)

• Heisenbug

• Memory (not initialized or stepped on)

• Parallel execution

• Optimization

© Alla Sheffer, Helge Rhodin

Hard Bugs (cheat sheet)

• Bug occurs in Release but not Debug

• Uninitialized data or optimization issue

• Bug disappears when changing something innocuous

• Timing or memory overwrite problem

• Intermittent problems

• Record as much info when it does happen

• Unexplainable behavior

• Retry, Rebuild, Reboot, Reinstall

• Internal compiler errors (not likely)

• Full rebuild, divide and conquer, try other machines

• Suspect it’s not your code (not likely)

• Check for patches, updates, or reported bugs

© Alla Sheffer, Helge Rhodin

Physics

43

© Alla Sheffer, Helge Rhodin

Physics-Based Simulation

• Movement governed by forces

• Simple

• Independent particles

• Complex

• Correct collisions, stacking, sliding 3D rigid bodies

• Many many simulators!

• PhysX (Unity, Unreal), Bullet, Open Dynamics Engine,

MuJoCo, Havok, Box2D, Chipmunk, OpenSim, RBDL,

Simulink (MATLAB), ADAMS, SD/FAST, DART etc…

© Alla Sheffer, Helge Rhodin

Examples

• Particle systems

• Fire, water, smoke, pebbles

• Rigid-body simulation

• Blocks, robots, humans

• Continuum systems

• Deformable solids

• Fluids, cloth, hair

• Group movement

• Flocks, crowds

© Alla Sheffer, Helge Rhodin

Simulation Basics

Simulation loop…

1. Equations of Motion

• sum forces & torques

• solve for accelerations: 𝑭 = 𝒎𝒂

2. Numerical integration

• update positions, velocities

3. Collision detection

4. Collision resolution

© Alla Sheffer, Helge Rhodin

Basic Particle Simulation (first try)

Forces only 𝑭 = 𝒎𝒂

𝒅𝒕 = 𝒕𝒊+𝟏 − 𝒕𝒊

𝒗𝒊+𝟏 = 𝒗 𝒕𝒊 + (𝑭(𝒕𝒊)/𝒎)𝒅𝒕
𝒑𝒊+𝟏 = 𝒑 𝒕𝒊 + 𝒗(𝒕𝒊+𝟏)𝒅𝒕

© Alla Sheffer, Helge Rhodin

Proxy Forces

• Behavior forces:

flocking birds, schooling fish, etc.
[“Boids”, Craig Reynolds, SIGGRAPH 1987]

• Fluids
[“Curl Noise for Procedural Fluid Flow”

R. Bridson, J. Hourihan, M. Nordenstam,

Proc. SIGGRAPH 2007]

© Alla Sheffer, Helge Rhodin

Particle-Plane Collisions

• Apply an impulse of magnitude j

• Inversely proportional to mass of particle

• In direction of normal

𝒗− 𝒗+

ෝ𝒏 𝒋 = 𝟏 + 𝝐 𝒎

റ𝒋 = 𝒋 ෝ𝒏

𝒗+ =
റ𝒋

𝒎
+ 𝒗−

© Alla Sheffer, Helge Rhodin

Particle-Particle Collisions (radius=0)

• Particle-particle frictionless elastic impulse response

• Momentum is preserved

𝒎𝟏𝒗𝟏
− +𝒎𝟐𝒗𝟐

− = 𝒎𝟏𝒗𝟏
+ +𝒎𝟐𝒗𝟐

+

• Kinetic energy is preserved

½ 𝒎𝟏𝒗𝟏
−𝟐

+ ½ 𝒎𝟐𝒗𝟐
−𝟐

= ½ 𝒎𝟏𝒗𝟏
+𝟐

+ ½ 𝒎𝟐𝒗𝟐
+𝟐

𝒎𝟏

𝒎𝟐

𝒎𝟏

𝒎𝟐

𝒗𝟏
−

𝒗𝟐
− 𝒗𝟏

+

𝒗𝟐
+

Before After

© Alla Sheffer, Helge Rhodin

Particle-Particle Collisions (radius >0)

𝒗𝟏
−

𝒑𝟐: 𝒙𝟐, 𝒚𝟐

𝒑𝟏: 𝒙𝟏, 𝒚𝟏

𝒗𝟐
−

𝒎𝟐

𝒎𝟏

• What we know…

• Particle centers

• Initial velocities

• Particle Masses

• What we can calculate…

• Contact normal

• Contact tangent

© Alla Sheffer, Helge Rhodin

• Impulse direction

reflected across

tangent

• Impulse magnitude

proportional to

mass of other

particle

Particle-Particle Collisions (radius >0)

𝒗𝟏
−

𝒗𝟐
−

𝒗𝟏
+

𝒗𝟐
+

𝒎𝟐

𝒎𝟏
𝒎𝟐 < 𝒎1

𝒑𝟐: 𝒙𝟐, 𝒚𝟐

𝒑𝟏: 𝒙𝟏, 𝒚𝟏

© Alla Sheffer, Helge Rhodin

Particle-Particle Collisions (radius >0)

𝒗𝟏
+ = 𝒗𝟏

− −
𝟐𝒎𝟐

𝒎𝟏 +𝒎𝟐

𝒗𝟏
− − 𝒗𝟐

− ∙ 𝒑𝟏 − 𝒑𝟐
𝒑𝟏 − 𝒑𝟐

𝟐
𝒑𝟏 − 𝒑𝟐

𝒗𝟐
+ = 𝒗𝟐

− −
𝟐𝒎𝟏

𝒎𝟏 +𝒎𝟐

𝒗𝟐
− − 𝒗𝟏

− ∙ 𝒑𝟐 − 𝒑𝟏
𝒑𝟐 − 𝒑𝟏

𝟐
𝒑𝟐 − 𝒑𝟏

• More formally…

© Alla Sheffer, Helge Rhodin

Rigid Body Dynamics

• From particles to rigid bodies…

Rigid body

𝒔𝒕𝒂𝒕𝒆 =

𝒙 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

𝒗 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚
𝒒, 𝑹 𝒓𝒐𝒕𝒂𝒕𝒊𝒐𝒏𝒎𝒂𝒕𝒓𝒊𝒙 𝟑𝒙𝟑

𝒘 𝒂𝒏𝒈𝒖𝒍𝒂𝒓 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

ℝ𝟏𝟐 in 3D

Particle

𝒔𝒕𝒂𝒕𝒆 = ൝
𝒙 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

𝒗 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

ℝ𝟒 in 2D

ℝ𝟔 in 3D

