
© Alla Sheffer, Helge Rhodin

CPSC 427

Video Game Programming

Helge Rhodin

AI Reloaded

1

© Alla Sheffer, Helge Rhodin

Overview

1. Recap Behaviour trees

2. Shortest path and other search algorithms

3. Debugging (if time permits, likely next time)

2

© Alla Sheffer, Helge Rhodin

Milestone 1

• Due on Friday

• Update the development plan based on proposal feedback

• Submit an individual progress & feedback report

• on Canvas

• Like the readme in the assignment

• It should summarise your own contribution to the milestone

• Did you go beyond a basic implementation?

• Which of your features need an explanation?

• Did you do more than expected/compared to your teammates?

• Any issues with teamwork?

3

What is this????

react early: try to resolve internally, contact us if stuck

© Alla Sheffer, Helge Rhodin

Tutorial Wednesday (tomorrow)

4-5 pm: implementation details

• Behaviour trees

• Advanced ECS

• Advanced OpenGL

5-6 pm: team-TA meetings

4

© Alla Sheffer, Helge Rhodin

Recap: Finite State Machine (FSM)

© Alla Sheffer, Helge Rhodin

Finite State Machines: States + Transitions

© Alla Sheffer, Helge Rhodin

FSM Example: Pac-Man Ghosts

Wander Maze

Chase Pac-Man

Return to Base

Flee Pac-Man

P
a
c

-M
a
n

 L
o

s
t

P
a
c

-M
a
n

 S
e
e
n

G
h

o
s
t A

tta
c

k
e
d

Pac-Man

Eats

Power

Pellet

© Alla Sheffer, Helge Rhodin

Behaviour Trees

• flow of decision making of an AI agent

• tree structured

• Each frame:

• Visit nodes from root to leaves

• depth-first order

• check currently running node

• succeeds or fails:

• return to parent node and evaluate its Success/Failure

• the parent may call new branches in sequence or return Success/Failure

• continues running: recursively return Running till root (usually)

• Upon failure, return to the root of the behaviour tree! Start again!

© Alla Sheffer, Helge Rhodin

Schematic examples

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2

21339/Behavior_trees_for_AI_How_they_work.php

© Alla Sheffer, Helge Rhodin

Types

Decorator

Composite

Composite

Composite

Leaf

© Alla Sheffer, Helge Rhodin

Behaviour Tree Elements

Leaf node

• A custom function, does the actual work

• Returns Running/Success/Failure

Decorator node

• has a single child

• Passes on Running/Success/Failure from child

• may invert Success/Failure

Composite node

• has one or more children

• returns ‘Running’ until children stopped running
11

© Alla Sheffer, Helge Rhodin

Useful Composites

Sequence

• execute all children in order

• Success if all children succeed (= AND)

Selector

• execute all children in order

• return Success if any child succeeded (= OR)

Random Selectors / Sequences

• Randomized order of above composites

12

© Alla Sheffer, Helge Rhodin

Useful Decorators

Inverter

• Negates success/failure

Succeeder

• always returns success

Repeater

• Repeat child N times

Repeat Until Fail

• Repeat until child fails

13

return “Success”;

?

N

© Alla Sheffer, Helge Rhodin

Leaf Nodes

Functionality

• init(…)

• Called by parent to initialize

• Sets state to Running

• Not called gain before returning
Success/Failure

• process()

• Called every frame/tick the node is
running

• Does internal processing, interacts with
the world

• Returns Running/Success/Failure

Example: Walk to goal location

• Sets goal position for
path finding

• Computes shortest path

• Sets character velocity

• Returns
- success: Reached destination
- failure: No path found
- running: En route15

© Alla Sheffer, Helge Rhodin

Early exit?

• All parents of the currently
running leaf node are
running too

• A node early in the tree can
return Success/Failure

• Terminates children implicitly

• Trying again?

• Re-initialize children with new
parameters to init(…)

Example

• upon alarm

• abort sleeping

• init running node

• try to sleep if alarm is off

• init sleeping node

16

Running

Running

Running

© Alla Sheffer, Helge Rhodin

Strategy

• Given current state, determine BEST next move

• Short term: best among immediate options

• Long term: what brings something closest to a goal

• How?

• Search for path to best outcome

• Across states/state parameters

© Alla Sheffer, Helge Rhodin

Pathfinding

• How do I get from point A to point B?

© Alla Sheffer, Helge Rhodin

DFS: Depth First Search

Explore each path on the

frontier until its end (or until a

goal is found) before

considering any other path.

Shaded nodes

represent the end of

paths on the frontier

© Alla Sheffer, Helge Rhodin

Breadth-first search (BFS)

• Explore all paths of

length L on the frontier,

before looking at path

of length L + 1

© Alla Sheffer, Helge Rhodin

Breadth-first

21 https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Project pitch Team 4

© Alla Sheffer, Helge Rhodin

When to use BFS vs. DFS?

• The search graph has cycles or is infinite

• We need the shortest path to a solution

• There are only solutions at great depth

• There are some solutions at shallow depth

• No way the search graph will fit into memory

DFS

BFS

BFS

BFS

DFS

© Alla Sheffer, Helge Rhodin

Search with Costs

Want to find the solution that
minimizes cost

()),cost(,,cost
1

10
=

−=
k

i

iik nnnn

Def.: The cost of a path is the

sum of the costs of its arcs

© Alla Sheffer, Helge Rhodin

Example: Tower Defence

Normal unit motion cost:

• Street: cost 1

• Other: cost infinity

Boss unit: which shortcuts will it take?

• Street: cost 1

• Dirt road: cost 5

• Grass: cost 50

• Purple stuff: cost infinity

Slide 24

© Alla Sheffer, Helge Rhodin

• Lowest-cost-first search finds the path with the

lowest cost to a goal node

• At each stage, it selects the path with the lowest cost

on the frontier.

• The frontier is implemented as a priority queue

ordered by path cost.

Lowest-Cost-First Search (LCFS)

25

© Alla Sheffer, Helge Rhodin

Use of search

• Use search to determine next state (next state on shortest path to
goal/best outcome)

• Measures:

• Evaluate goal/best outcome

• Evaluate distance (shortest path in what metric?)

Problems:

• Cost of full search (at every step) can be prohibitive

• Search in adversarial environment

• Player will try to outsmart you

© Alla Sheffer, Helge Rhodin

• Blind search algorithms do not take goal into account until they reach it

• We often have estimates of distance/cost from node n to a goal node

• Estimate = search heuristic

• a scoring function h(x)

Heuristic Search

27

© Alla Sheffer, Helge Rhodin

• Best First: always choose the path on the frontier with the smallest h
value

• Frontier = priority queue ordered by h

• Once reach goal can discard most unexplored paths…

• Why?

• Worst case: still explore all/most space

• Best case: very efficient

• Greedy: (only) expand path whose last node seems closest to the goal

• Get solution that is locally best

Best First Search (BestFS)

© Alla Sheffer, Helge Rhodin

A* search

29 https://en.wikipedia.org/wiki/A*_search_algorithm

© Alla Sheffer, Helge Rhodin

• A* search takes into account both

• c(p) = cost of path p to current node

• h(p) = heuristic value at node p (estimated “remaining”

path cost)

• Let f(p) = c(p) + h(p).

• f(p) is an estimate of the cost of a path from the start to a

goal via p.

A* Search

c(p) h(p)

f(p)A* always chooses the path on the frontier with the lowest

estimated distance from the start to a goal node constrained to

go via that path.

© Alla Sheffer, Helge Rhodin

A* implementation

• 1. Initialize open and closed lists.

• Put starting node on open list.

• 2. While open list is not empty:

• Find node with smallest f on the list, call it q

• Pop q off of open list

• Find q’s “successors”, and set their parent nodes to q

© Alla Sheffer, Helge Rhodin

A* implementation

• 1. Initialize open, closed lists. Put starting node on open list.

• 2. While open list is not empty:

• Find node with smallest f on the list, call it q

• Pop q off of open list

• Find q’s “successors”, and set their parent nodes to q

• For each successor:

• If successor is the goal, done!

• c(successor) = c(q) + d(q,successor)

h(successor) = D(goal, successor)

• If successor already exists in open list with lower

f = c + h, skip it

• If successor already exists in closed list with

lower f, skip it

• Otherwise, add successor to open list

© Alla Sheffer, Helge Rhodin

A* implementation

• 1. Initialize open, closed lists. Put starting node on open list.

• 2. While open list is not empty:

• Find node with smallest f on the list, call it q

• Pop q off of open list

• Find q’s “successors”, and set their parent nodes to q

• For each successor:

• If successor is the goal, done!

• g(successor) = g(q) + d(q,successor)

h(successor) = d(goal, successor)

• If successor already exists in open list with lower f, skip it

• If successor already exists in closed list with lower f, skip it

• Otherwise, add successor to open list

• Put q on closed list

© Alla Sheffer, Helge Rhodin

A* search

Key idea: H is a heuristic, and not the real distance:

h(p,q) = |(p.x – q.x)| + |(p.y – q.y)|

- Manhattan distance

h(p,q) = sqrt((p.x – q.x)^2 + (p.y – q.y)^2)

- Euclidean distance

Conditions:

• a heuristic function is admissible if it never overestimates the

cost of reaching the goal

• a heuristic function is said to be consistent, or monotone, if its

estimate is always less than or equal to the estimated distance

from any neighbouring vertex to the goal, plus the cost of

reaching that neighbour

https://en.wikipedia.org/wiki/Taxicab_geometry

https://en.wikipedia.org/wiki/Heuristic_function
https://en.wikipedia.org/wiki/Heuristic_function

© Alla Sheffer, Helge Rhodin

Two-player games

35

www.npr.org

© Alla Sheffer, Helge Rhodin

Min-Max Trees

• Adversarial planning in a turn-taking environment

• Algorithm seeks to maximize our success F

• Adversary seeks to minimize F

• Key idea: at each step algorithm selects move that minimizes highest
(estimated) value of F adversary can reach

• Assume the opponent does what looks best

© Alla Sheffer, Helge Rhodin

Example
(from uliana.lecturer.pens.ac.id/Kecerdasan%20Buatan/ppt/Game%20Playing/gametrees.ppt)

We are playing X, and it is now our turn.

© Alla Sheffer, Helge Rhodin

Our options:

Number = position after each legal move

© Alla Sheffer, Helge Rhodin

Opponent options

Here we are looking at all of the opponent responses
to the first possible move we could make.

© Alla Sheffer, Helge Rhodin

Opponent options

Opponent options after our second
possibility. Not good again…

© Alla Sheffer, Helge Rhodin

Opponent options

© Alla Sheffer, Helge Rhodin

Opponent options => Our options

Now they don’t have a way to win on their next move. So
now we have to consider our responses to
their responses.

© Alla Sheffer, Helge Rhodin

Our options

We have a win for any move they make.
Original position in purple is an X win.

© Alla Sheffer, Helge Rhodin

Other options

They win again if we take our fifth move.

© Alla Sheffer, Helge Rhodin

Summary of the Analysis

So which move should we make? ;-)

© Alla Sheffer, Helge Rhodin

MinMax algorithm

• Traverse “game tree”:

• Enumerate all possible moves at each node.

• The children of each node are the positions that result from making each
move. A leaf is a position that is won or drawn for some side.

• Assume that we pick the best move for us, and the opponent picks the best
move for him (causes most damage to us)

• Pick the move that maximizes the minimum amount of success for our side.

© Alla Sheffer, Helge Rhodin

MinMax Algorithm

• Tic-Tac-Toe: three forms of success: Win, Tie, Lose.

• If you have a move that leads to a Win make it.

• If you have no such move, then make the move that gives the tie.

• If not even this exists, then it doesn’t matter what you do.

© Alla Sheffer, Helge Rhodin

Extensions

• Challenges: In practice

• Trees too deep/large to explore

• Opponent not always makes the ‘best’ choice

• Randomness

• Solution - Heuristics

• Rate nodes based on local information.

• For example, in Chess “rate” a position by examining difference in number of
pieces

© Alla Sheffer, Helge Rhodin

Heuristics in MinMax

• Strategy that will let us cut off the game tree at fixed depth (layer)

• Apply heuristic scoring to bottom layer

• instead of just Win, Loss, Tie, we have a score.

• For “our” level of the tree we want the move that yields the node
(position) with highest score. For a “them” level “they” want the child
with the lowest score.

© Alla Sheffer, Helge Rhodin

Self stuy: Pseudocode

int Minimax(Board b, boolean myTurn, int depth) {

if (depth==0)

return b.Evaluate(); // Heuristic

for(each possible move i)

value[i] = Minimax(b.move(i), !myTurn,

depth-1);

if (myTurn)

return array_max(value);

else

return array_min(value);

}

Note: we don’t use an explicit tree structure.
However, the pattern of recursive calls forms a tree on the call stack.

© Alla Sheffer, Helge Rhodin

Real Minimax Example

10 2 12 16 2 7 -5 -80

10 16 7 -5

10 -5

10Max

Max

Min

Min

Evaluation function applied to the leaves!

© Alla Sheffer, Helge Rhodin

Alpha Beta Pruning

Idea: Track “window” of expectations.

Use two variables

• – Best score so far at a max node: increases

• At a child min node:

• Parent wants max. To affect the parent’s current , our cannot drop below .

• If ever gets less:

• Stop searching further subtrees of that child. They do not matter!

• – Best score so far at a min node: decreases

• At a child max node.

• Parent wants min. To affect the parent’s current , our cannot get above the parent’s .

• If gets bigger than :

• Stop searching further subtrees of that child. They do not matter!

Start with an infinite window (= -, =)

© Alla Sheffer, Helge Rhodin

10 2 12

10 12

10

Alpha Beta Example I

Max

Max

Min

Min

 =10

 = 12

 > !

© Alla Sheffer, Helge Rhodin

Alpha Beta Example II

10 2 12 2 7

10 12 7

10 7

10Max

Max

Min

Min

 = 10

 =7

 > !

© Alla Sheffer, Helge Rhodin

Self stuy: Pseudo Code

int AlphaBeta(Board b, boolean myTurn, int depth, int alpha, int beta) {

if (depth==0)

return b.Evaluate(); // Heuristic

if (myTurn) {

for(each possible move i && alpha < beta)

alpha = max(alpha,AlphaBeta(b.move(i),!myTurn,depth-1,alpha,beta));

return alpha;

}

else {

for(each possible move i && alpha < beta)

beta = min(beta,AlphaBeta(b.move(i), !myTurn, depth-1,alpha,beta));

return beta;

}

}

© Alla Sheffer, Helge Rhodin

Debugging

57

© Alla Sheffer, Helge Rhodin

Debugging

• There will be bugs…

• Strategies for Fixing?

© Alla Sheffer, Helge Rhodin

Debugging

• There will be bugs…

• Strategies for Fixing?

• Anticipate

• Reproduce

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging:Strategies for Fixing?

• Anticipate I

• Unit tests

• Logging

• Explicit tests for “what can go wrong” (assert)

• Anything that can go wrong will go wrong… at the worst possible time

• State/play saving and loading speeds up debugging

• Visual testing (early)

• Avoid randomness (use seed for rnd)

• Reproduce

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging: Strategies for Fixing?

• Anticipate II: your compiler (with –Wall enabled) is your friend

• “This enables all the warnings about constructions that some
users consider questionable, and that are easy to avoid”

• Reproduce

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

• Strategies for Fixing?

• Anticipate

• Reproduce

• When does it happen?

• Logging + unit tests

• Record/load gameplay

• Localize

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

• Strategies for Fixing?

• Anticipate

• Reproduce

• Localize

• In time: version control

• In place: logging

• Divide and Conquer

• Minimal trigger input

• Don’t guess; measure

• Use proper debugging tools

© Alla Sheffer, Helge Rhodin

Debugging

• Strategies for Fixing?

• Anticipate

• Reproduce

• Localize

• Use proper debugging tools

• Run with debug settings on

• Run within a debugger

• Set breakpoints

• Examine internal state

• Learn debugger options

© Alla Sheffer, Helge Rhodin

Debugging

(From Waterloo ECE 155, Zarnett & Lam)

• Strategies for Fixing?

• Scientific method.

• Observe a failure.

• Invent a hypothesis.

• 3 Make predictions.

• 4 Test the predictions using experiments and observations.

• Correct? Refine the hypothesis.

• Wrong? Try again with a new hypothesis.

• Repeat

© Alla Sheffer, Helge Rhodin

Debugging (From Waterloo ECE 155)

More (Human Factor) Strategies

• Take a Break/Sleep on it

• Code Review

• Look through code

• Walk someone through the code

© Alla Sheffer, Helge Rhodin

Debugging

More (Human Factor) Strategies

• Question assumptions

• Minimize randomness

• Use same seed

• Check boundary conditions

• Disrupt parallel computations

© Alla Sheffer, Helge Rhodin

Debugging (From Waterloo ECE 155)

More Strategies

• Know your enemy: Types of bugs

• Standard bug (reproducible)

• Sporadic (need to chase – right input combo)

• Heisenbug

• Memory (not initialized or stepped on)

• Parallel execution

• Optimization

© Alla Sheffer, Helge Rhodin

Hard Bugs (cheat sheet)

• Bug occurs in Release but not Debug

• Uninitialized data or optimization issue

• Bug disappears when changing something innocuous

• Timing or memory overwrite problem

• Intermittent problems

• Record as much info when it does happen

• Unexplainable behavior

• Retry, Rebuild, Reboot, Reinstall

• Internal compiler errors (not likely)

• Full rebuild, divide and conquer, try other machines

• Suspect it’s not your code (not likely)

• Check for patches, updates, or reported bugs

