
AN ORDERING METHOD FOR THE DIRECT SOLUTION OF
SADDLE-POINT MATRICES∗

R. BRIDSON†

Abstract. An ordering method and accompanying factorization for the direct solution of saddle-
point matrices is presented. A simple constraint on ordering together with an assumption on the
rank of parts of the matrix are sufficient to guarantee the existence of the LDLT factorization, sta-
bility concerns aside. In fact, D may be taken to be a diagonal matrix with ±1 along the diagonal,
and be fully determined prior to factorization, giving rise to a “signed Cholesky” factorization. A
modified minimum-degree-like algorithm which incorporates this constraint is demonstrated, along
with a simple algorithm to modify an existing fill-reducing ordering to respect the constraint. While
a stability analysis is lacking, numerical experiments indicate that this is generally sufficient to avoid
the need for numerical pivoting during factorization, with clear benefits for performance possible.
For example, a highly efficient Cholesky factorization routine, based on separate symbolic and nu-
merical phases and possibly exploiting supernodes, can be easily adapted to this more general class
of matrices.

Key words. saddle-point matrices, KKT systems, symmetric indefinite matrices, direct solvers,
LDLT factorization, minimum degree ordering

AMS subject classifications. 65F05

1. Introduction. Many applications in scientific computing require the solution
of large linear systems of equations involving symmetric indefinite sparse matrices of
a special 2× 2 block structure:

K =
(

A BT

B −C

)
(1.1)

Here the matrix K is partitioned into a symmetric positive semi-definite A, a possibly
rectangular B and its transpose, and the negative of a symmetric positive semi-definite
C which is often simply zero. I assume without loss of generality that the dimension
of C is less than or equal to the dimension of A. Matrices of this type, sometimes
termed saddle-point, KKT or equilibrium matrices, arise naturally in constrained
optimization, mixed FEM discretizations, incompressible fluid flow and constrained
dynamics to name just a few areas. See the article of Benzi et al. [3] for an excellent
review of these problems and existing solution techniques, both direct and iterative.
Fully exploiting the special structure of such matrices in direct solvers remains an
open problem.

Codes that handle general indefinite matrices can naturally be used for saddle-
point problems. However, they typically either rely on some form of numerical
pivoting—which poses problems for avoiding fill-in—or need to modify the matrix
being factorized to avoid breakdown—making the factorization only approximate, ne-
cessitating some kind of iteration and raising the possibility of slow convergence in
ill-conditioned cases.

In the special case of a symmetric quasidefinite matrix, i.e. where A and C are
both positive definite, Vanderbei [15] shows that in fact the LDLT factorization exists
for any ordering, and Gill et al. [9] provide a stability analysis indicating that B

∗This work was supported in part by the Natural Sciences and Engineering Research Council of
Canada.

†Dept. Computer Science, The University of British Columbia, Vancouver B.C. V6T 1Z4, Canada,
rbridson@cs.ubc.ca

1

2 R. BRIDSON

should not be too large compared to A and C and that both A and C should be
well-conditioned. Under these restrictions, the full matrix may be ordered to reduce
fill-in without concern over indefiniteness, using standard algorithms designed for fill-
reduction of SPD matrices. However, this doesn’t apply in the common case where
C is singular (often just zero).

Another special case of practical interest is the class of F-matrices, where each
column of B has exactly two nonzero entries which sum to zero, and C = 0. These
arise, for example, in Stokes flow problems. For this class, Tůma [14] demonstrated
that a fill-reducing ordering of the entire matrix can be efficiently modified to guaran-
tee the existence of the LDLT factorization, apparently without greatly compromising
the quality of the ordering. De Niet and Wubs [11] tackle the same class of matrices
with a different approach, first ordering the A-part of the matrix (though basing fill
on the structure of A + BT B), then carefully interleaving the remaining nodes into
this ordering in a way that guarantees existence of the factorization. De Niet and
Wubs further prove that the factorization of a well-scaled F-matrix is stable for any
ordering where it exists. Unfortunately, neither of these have yet been adapted to
fully general B (and in the latter case, may have serious difficulties if B has a dense
row, making A + BT B dense).

This paper demonstrates a simple constraint on orderings for saddle-point matri-
ces where A is definite and B has full rank, sufficient to guarantee the existence of the
LDLT factorization. I demonstrate how a minimum-degree-like ordering algorithm
can easily be modified to respect this constraint, generating high quality fill-reducing
orderings which avoid the need for numerical pivoting. As an alternative approach,
I demonstrate how an arbitrary ordering can be post-processed to respect the con-
straint. Finally, once such fill-reducing orderings are available, near-Cholesky-like
efficiency is possible for the direct solver; I present timings with a proof-of-concept
code for a range of test matrices. While I do not have a stability analysis for the
method, it appears in practice that at worst one step of residual refinement is re-
quired to attain full accuracy.

2. Preliminaries. For the rest of the paper I will restrict the class of matrices
to those where A is definite and B has full row rank. This is a sufficient condition for
the existence of the LDLT factorization of the unpermuted matrix, and is frequently
met in applications. While the proof-of-concept code that has been developed for this
project may and often does work if these restrictions on rank are slightly relaxed, the
underlying theory suggests it may fail if these assumptions are broken. For numerical
stability of the method further conditions are no doubt needed on A, B and C;
however, a precise understanding of stability is left for future work, perhaps in the
vein of Gill et al.’s analysis of the quasidefinite case [9]. I conjecture that if A and the
negative Schur complement C+BT A−1B are not ill-conditioned and are of comparable
magnitudes, then the factorization (with the orderings presented in this paper) will
be stable.

I assume the reader is familiar with the graph-theoretic approach to sparse matrix
ordering, for example as outlined in Davis’ recent book [7]. I will refer to the nodes
in the graph of the matrix corresponding to diagonal entries of A as A-nodes, and the
remaining nodes as C-nodes.

It is clear that if all of the A-nodes are ordered before the C-nodes, the block
structure of the matrix is preserved and, under our full rank assumptions, the LDLT

ORDERING FOR SADDLE-POINT MATRICES 3

factorization of the (possibly permuted) K must exist:

K =
(

A BT

B −C

)
=

(
L11 0
L21 L22

) (
D11 0
0 D22

) (
LT

11 LT
21

0 LT
22

)
In particular,

L11D11L
T
11 = A

is the LDLT form of the Cholesky factorization of the positive definite A (so D11 has
a positive diagonal), the off-diagonal block is

L21 = BL−T
11 D−1

11 ,

and

L22D22L
T
22 = −C −BA−1BT

is the LDLT form of the Cholesky factorization of the negative definite Schur com-
plement (so D22 has a negative diagonal).

One well-known problem with this approach is that while fill-in may effectively be
avoided in L11 and perhaps even L21, the Schur complement will often be fully dense,
giving catastrophic fill-in no matter how the C-nodes are ordered. Unfortunately,
unlike in the SPD case, a fill-reducing ordering of the entire matrix may destroy the
existence of the factorization—for example, if a C-node with a zero diagonal entry
is ordered first. A balance must be struck between A-nodes preceding C-nodes and
interleaving the two types where helpful for avoiding fill-in.

I will make use of two other results. The first is the inverse of saddle-point
matrices satisfying the rank conditions:(

A BT

B −C

)−1

=
(

A−1 −A−1BT S−1BA−1 A−1BT S−1

S−1BA−1 −S−1

)
(2.1)

where the negative Schur complement S is given by:

S = C + BA−1BT (2.2)

Observe that since C is positive semi-definite, A is positive definite, and B has full
row rank, this matrix S must be positive definite.

The second result is the calculation of row i of the L factor and entry i along the
diagonal of D, for a permuted K, assuming the factorization of the first i − 1 rows
exists. Letting K̂ be the first (i − 1) × (i − 1) principal submatrix of K and ki♦ be
the first i− 1 entries of row i,(

K̂ kT
i♦

ki♦ kii

)
=

(
L̂ 0
li♦ 1

) (
D̂ 0
0 dii

) (
L̂T lTi♦
0 1

)
. (2.3)

Note this takes L to have unit diagonal; later I will show it may be attractive to
rescale this L to L|D|−1/2 and similarly rescale D to get |D| = I. Equating terms in
the matrix equation above, row i of the L factor is:

li♦ = ki♦L̂−T D̂−1 (2.4)

4 R. BRIDSON

and the i’th pivot on the diagonal of D is:

dii = kii − li♦D̂lTi♦

= kii − ki♦K̂−1kT
i♦

(2.5)

In particular, notice that dii does not depend on the ordering of the previous i − 1
nodes: the scalar ki♦K̂−1kT

i♦ is invariant under permutations. For the factorization to
proceed, it is sufficient for dii to be nonzero: this paper provides a sufficient constraint
on orderings to guarantee this. For stability, dii should further be well bounded away
from zero and li♦ shouldn’t grow too large; I do not address these issues in the present
paper.

3. The Ordering Constraint. The proposed constraint is that any C-node can
only be ordered after all its A-node neighbours in the graph of K have been ordered.
In other words, an ordering should respect the partial ordering implied by the directed
graph of B.

Note that the first node to be eliminated under this constraint must be an A-node,
with pivot d11 = A11 > 0. If a C-node were to come first, it would have to have no
A-node neighbours due to the constraint: this would imply a zero row in B, violating
the full rank assumption.

Assuming the first i−1 steps of factorization have succeeded, proceed inductively
to the i’th pivot dii = kii − ki♦K̂−1kT

i♦. Partition the previous nodes into A- and
C-subsets so the i’th principal submatrix appears as:

(
K̂ kT

i♦
ki♦ kii

)
=

 Â B̂T uT

B̂ −Ĉ vT

u v kii

 (3.1)

Observe that Â is a principal submatrix of the positive definite matrix A, thus is
positive definite itself—and in fact, Â is at least as well conditioned as A. Also
observe that the ordering constraint implies that all nonzeros in the rows of B for
previously ordered C-nodes must appear in B̂: otherwise there would be a C-node
ordered before i with an A-node neighbour ordered at i or later. Since B is assumed
to have full row rank, B̂ also has full row rank: B̂ is a subset of the rows of B with
possibly some fully zero columns missing. Again B̂ is at least as well conditioned as
B. Therefore this partitioning shows that K̂ satisfies our rank condition, and has an
inverse expressed as in equation (2.1).

Case 1: node i is an A-node. Due to the ordering constraint, i must not have
any previously ordered C-neighbours. Therefore v = 0 in equation (3.1). Using the
form of the inverse in equation (2.1), the pivot is:

dii = kii − (u 0)
(

Â B̂T

B̂ −Ĉ

)−1 (
uT

0

)
= kii − u(Â−1 − Â−1B̂T Ŝ−1B̂A−1)uT

= (kii − uÂ−1uT) + uÂ−1B̂T Ŝ−1B̂A−1uT

(3.2)

Note that (
Â uT

u kii

)

ORDERING FOR SADDLE-POINT MATRICES 5

is also a principal submatrix of the positive definite A and hence is positive definite,
thus its final pivot is positive: kii − uÂ−1uT > 0, i.e. the first term of dii is positive.
Also recall that the negative Schur complement S here is positive definite, implying
the other term is positive too. Therefore dii > 0. In fact, it’s bounded away from
zero at least as well as the pivots of A alone are, and including C-nodes earlier in the
ordering can only further stabilize it.

Case 2: node i is a C-node. In this case, simply join the i’th row and column to
the other C-node parts of the partition in equation (3.1). This i×i matrix also satisfies
the rank condition, following the same argument as above, and thus has inverse as
expressed in equation (2.1). The i’th pivot is well known to be the reciprocal of the
(i, i) entry of the inverse of the i × i principal submatrix, which in this case comes
from the diagonal of the negative definite −Ŝ−1. Thus dii < 0.

As both cases give nonzero pivots, by induction this ordering constraint ensures
that the LDLT factorization exists. Moreover the pivots associated with A-nodes are
guaranteed to be positive and the pivots associated with C-nodes are guaranteed to
be negative: we know the signs of the diagonal entries of D in advance. By rescaling
L ← L|D|1/2 and D ← sign(D) = diag(±1), the diagonal matrix is fully determined
in advance by the structure of the problem, independent of numerical values. I refer
to this as the “signed Cholesky” factorization of K, which I will show later allows a
direct solver to gain additional efficiency.

4. Constraining Ordering Algorithms. One of the most successful strategies
available for reducing fill is the greedy approach of Minimum Degree and relatives.
The heart of these algorithms is maintaining a priority queue of uneliminated nodes,
sorted by some cost metric related to fill-in (such as degree, external degree, deficiency,
or approximations thereof). At each step a node of minimum cost is eliminated,
the graph is updated, and costs of affected nodes are updated. One particularly
important enhancement to this basic approach is the detection and compression of
supernodes in the graph (cliques of nodes with identical neighbour sets). Many other
enhancements are described in more detail in George and Liu’s review [8], with more
recent developments due to Amestoy et al. [1], Rothberg and Eisenstat [12], and Ng
and Radhavan [10]; see also Davis’ book [7] for more implementation details.

Modifying these methods to respect the ordering constraint introduced here is
straightforward. Initially, rather than putting all nodes in the priority queue, only
A-nodes are made available for elimination. Once an A-node is eliminated, its C-node
neighbours are tested to see if all of their A-node neighbours have now been eliminated,
and if so, are added to the priority queue. Nodes that haven’t yet been added to the
priority queue are not considered for inclusion in supernodes (and similarly do not
take part in other enhancements to the basic algorithm, such as mass elimination).

Occasionally sparse matrices may possess a few fairly dense rows/columns; it
is typically far more efficient to detect and strip out these nodes prior to running
minimum degree, and then order them last (as AMD, for example, does [2]). Note
that if a dense A-node is stripped out in this fashion, then to meet the constraint all its
C-node neighbours must follow. However, if it has very many of these neighbours—
as is likely given its density—this may cause catastrophic fill-in. Thus it may be
worthwhile to ignore the constraint for these nodes, and trust that the row rank of B
isn’t hurt if these columns are removed.

Typically, instead of using the raw output from minimum degree for factoriza-
tion, a postordering of the elimination tree is used instead. This simplifies symbolic
operations, improves data locality, and allows for supernodes to be exploited. Notice

6 R. BRIDSON

that if the ordering constraint was met initially, every C-node must be an ancestor of
its A-node neighbours in the elimination tree, thus a postordering of the tree will not
violate the constraint either.

At least for problems based on an underlying mesh, nested dissection and gener-
alizations based on graph partitioning generally outperform Minimum Degree, partic-
ularly when hybridized with Minimum Degree. In this paper, I do not consider this
class of algorithms, though note in principle it should be straightforward to constrain
the search for good vertex separators to only include A-nodes if all their C-node neigh-
bours are also included. Ordering such a separator last would then be compatible with
the constraint in this paper.

A cheap alternative to the preceding approach of directly incorporating the con-
straint into the ordering algorithm is to post-process an arbitrary fill-reducing ordering
to satisfy the constraint. This is done by accepting the given sequence of nodes, ex-
cept delaying any C-nodes until all their A-node neighbours have appeared (again,
with perhaps an unsafe option to ignore the constraint for dense A-nodes).

5. The Signed Cholesky Factorization. Once an ordering respecting the
constraint is found (which I will now assume is in fact a post-ordering of the elimi-
nation tree—as the previous section argues, this doesn’t violate the constraint), and
assuming no stability concerns, LDLT factorization may proceed without need for
numerical pivoting.

For very sparse matrices, Davis [7] reports that a point-wise up-looking algorithm
for Cholesky factorization may be the fastest choice. The square-root free version of
this algorithm may be used unchanged for this case, and no more need be said.

In slightly more dense scenarios, factorizations that can exploit dense subblocks
are generally favoured. Both left-looking and right-looking multifrontal variants can
handle supernodes (columns of L with identical nonzero structure below the diagonal)
with dense operations. Typical fill-reducing orderings generate many such supernodes
that can be detected in the symbolic factorization stage. In the context of this paper,
a code that computes the standard LDLT (“square-root free”) form of Cholesky
factorization can be trivially adapted to the saddle-point case by changing the call to
a dense Cholesky factorization of supernodal blocks on the diagonal to an indefinite
solver, such as LAPACK’s Bunch-Kaufman routine. In fact, some codes such as
PARDISO already offer this as an option for general symmetric indefinite matrices.
(Of course, without the guarantee of existence offered by the orderings in this paper,
perturbation of the diagonal blocks may be necessary to avoid zero pivots, which in
turn necessitates several steps of residual refinement [13].)

However, more can be done. In practice, I found supernodes often have a mix of
A- and C-nodes; without modifying the nonzero structure of L or the structure of its
elimination tree, and without violating the constraint, the ordering can be modified
to put all of the A-nodes within the supernode first. Then each such supernode
can be efficiently split in two, an A-node only part and a C-node only part. An A-
supernode produces only positive pivots, and therefore its diagonal block is positive
definite and may be factored with a more efficient dense Cholesky code. Similarly a
C-supernode only produces negative pivots, and therefore the negative of its diagonal
block is positive definite and may also be factored with an efficient dense Cholesky
code. This naturally produces the signed Cholesky factorization introduced earlier,
and allows an efficient supernodal sparse Cholesky implementation to be adapted to
the saddle-point case simply by flipping sign bits for C-supernodes at a few choice
points in the code.

ORDERING FOR SADDLE-POINT MATRICES 7

Boeing/bcsstm36 GHS indef/d pretok GHS indef/qpband
FIDAP/ex4 GHS indef/darcy003 GHS indef/sit100
FIDAP/ex14 GHS indef/dtoc GHS indef/stokes64
GHS indef/aug3dcqp GHS indef/exdata 1 GHS indef/stokes128
GHS indef/boyd1 GHS indef/k1 san GHS indef/tuma1
GHS indef/boyd2 GHS indef/laser GHS indef/tuma2
GHS indef/brainpc2 GHS indef/mario001 GHS indef/turon m
GHS indef/cont-201 GHS indef/mario002 Grund/meg4
GHS indef/cont-300 GHS indef/ncvxqp9 stokes 2d 250
GHS indef/cvxqp3 GHS indef/olesnik0 stokes 2d 500

Fig. 6.1. Saddle-point test matrices. All but the last two are drawn from the University of
Florida Sparse Matrix Collection [6]; stokes 2d 250 and stokes 2d 500 are discretizations of the 2D
Stokes problem on larger square grids.

6. Results. To demonstrate the ordering constraint, I implemented a proto-
type code KKTDirect (available online [4]). While this implementation is far from
optimal—in particular the KKTDirect version of external minimum degree is several
times slower than the AMD code of Amestoy et al. [2] for SPD matrices, and the
symbolic factorization stage currently uses a simple but inefficient algorithm—it is
fast enough to produce meaningful comparisons.

My test set of matrices was primarily drawn from the University of Florida Sparse
Matrix Collection [6], with some benchmarking done on a subset of the SPD matrices
(160 matrices, consisting of those with at least 1000 nonzeros in the Cholesky factor
but still fit in memory of the test platform), and more tests on those that appeared
to be saddle-point matrices satisfying the rank constraints of the paper. In addition,
matrices for solving the 2D Stokes problem on a square staggered grid with the usual
central finite difference formulas at 250×250 and 500×500 resolutions were included.
See table (6.1) for a list of these 30 matrices.

The test platform was a 2GHz PowerPC G5 Macintosh with 8GB RAM, using the
vendor-supplied vecLib BLAS and LAPACK. It was found that limiting supernodes
to a maximum size of 63 usually provided the best performance.

6.1. Testing Ordering Quality. For SPD problems of reasonable size (where
AMD took at least 0.5 seconds to run on the test platform, but where numerical
factorization didn’t run out of memory), the exact external degree algorithm ran on
average 10 times slower than AMD but never worse than 15 times. Initial profiling
of the code suggests many avenues for optimization, but I felt as it stood the code
runs fast enough (in particular, significantly faster than the actual factorization) and
consistently enough that the numerical tests are reasonable. In terms of fill, the exact
external degree algorithm produced 2% more fill than AMD in the mean (and only
1% more as the median ratio), at worst 23% more (for matrix UTEP/Dubcova3),
and at best 32% less fill (for matrix Mulvey/finan512), thus I felt confident in basing
comparisons on the quality of this code’s ordering.

As an aside and as many authors have observed, the main bottleneck of minimum-
degree-like algorithms is the recomputation of node costs (e.g. external degree). It can
be observed that often a node will have its cost recomputed dozens or even hundreds
of times before it actually is eliminated as a node of minimum cost—leading one to
question if all of those recomputations are necessary. While the approach taken in
AMD is to make the recomputation as efficient as possible, KKTDirect provides an

8 R. BRIDSON

alternative to cut out a lot of these unnecessary recomputations. When a node is
eliminated, its neighbours’ costs are replaced with a cheap lower bound (for external
degree, their current cost minus the degree of the eliminated node) and a flag is set
to indicate this is inexact. When the next node of minimum cost is selected from the
priority queue of uneliminated nodes, this flag is tested. Only if the cost is exact does
the node get eliminated; otherwise its cost is recomputed exactly, the priority queue
is updated, and a new (or possibly the same) node of minimum cost is selected. This
can significantly improve performance without adversely affecting ordering quality.

Proceeding to the 30 saddle-point test matrices, I ran three different ordering
algorithms to get an estimate of the penalty imposed by the constraint, and the
relative merits of incorporating constraints directly into the ordering or as a post-
process:

• the plain external degree algorithm (as if the matrices were SPD),
• the external degree algorithm incorporating constraints (excluding dense A-

nodes),
• and the plain external degree ordering post-processed to respect constraints

(again, excluding dense nodes from the constraint).
Including the dense nodes in the constraint in some cases caused disastrous fill-in,
in particular for GHS indef/boyd2 which contains two nearly dense columns in B,
but was found to be unnecessary for the factorization to succeed, thus I ran the tests
without constraints applied to dense nodes.

For six problems the constraints had zero effect on fill:
• Boeing/bcsstm36,
• GHS indef/boyd1,
• GHS indef/dtoc,
• GHS indef/exdata 1,
• GHS indef/laser,
• GHS indef/qpband.

In three cases ordering with constraints actually reduced fill:
• GHS indef/aug3dcap,
• GHS indef/boyd2,
• GHS indef/brainpc2,

which might have something to do with the special structure (A is diagonal) of these
problems.

For the remaining 21 problems, the fill penalty (relative to the unconstrained
ordering which assumed the matrix SPD) ranged from a fraction of a percent to an
outlier factor of 7.5 for post-processing the ordering of GHS indef/cvxqp3, a particu-
larly challenging matrix for direct solvers. Post-processing an ordering after the fact
usually generated better results: it outperformed external degree with incorporated
constraints 14 times out of 21. However, the two methods were quite competitive:
on the problems for which post-processing was superior, it was between 3% to 40%
better, with a mean 20% improvement; on the other problems, it was up to 185%
worse, with a mean 50% degradation. Given that both strategies are relatively cheap
compared to the cost of factorization, it may well make sense to try both and select
the best.

6.2. Speed of Numerical Factorization. To calibrate the speed of the new
factorization code, I compared my supernodal signed Cholesky code to CHOLMOD [5]
a well established code that takes the same left-looking supernodal approach, on
the SPD problems. On the reasonably sized problems—those for which the codes

ORDERING FOR SADDLE-POINT MATRICES 9

didn’t run out of memory and for which CHOLMOD required at least 0.5 seconds to
numerical factor the matrix—the two codes were evenly matched, one never running
more than twice as fast as the other, and on average performing identically. This
is to be expected as the bulk of computation time for both codes is spent in the
same dense BLAS/LAPACK kernels. I excluded the time for symbolic factorization
from the tests as currently the new code uses a slow, näıve algorithm; however, as
this step is identical for SPD and saddle-point matrices (being a purely structural
computation), there is nothing significant to test.

To test the gains in speed possible for the saddle-point problems, I ran the signed
Cholesky code with the external degree ordering including constraints (not modified
after the fact), as well as UMFPACK with the default options. While UMFPACK is a
partial pivoting LU code, and thus ignores symmetry, it is a well established and freely
available code appropriate for indefinite problems (and exploits level 3 BLAS for high
efficiency)—and indeed, for some problems it turns out unsymmetric permutations
are an advantage. To take an extreme example, if B is square and invertible and
C = 0, an unsymmetric code can reduce the saddle-point matrix to block triangular
form with obvious benefits.

Looking at the 18 problems for which the methods took more than 0.5 seconds to
compute the numerical factorization on this platform, there is a wide spread of results.
In the worst case (GHS indef/cvxqp3), the signed Cholesky numerical factorization
was 4.3 times slower than UMFPACK; the extremely large bandwith of this prob-
lem and the accompanying enormous amounts of fill in the factors for both methods
probably indicate this is simply a very challenging problem for any direct solver. For
three other problems (GHS indef/exdata 1, GHS indef/mario001, GHS indef/sit100)
the new signed Cholesky code was 35% to 60% slower than UMFPACK, again possi-
bly due to unusually dense components or very large bandwidths. However, for the
remaining 14 problems, the signed Cholesky code was on average twice as fast, and in
some cases orders of magnitude faster: for GHS indef/boyd1 and GHS indef/boyd2
the signed Cholesky approach was 1000 and 750 times faster respectively.

6.3. Stability and Accuracy. In terms of stability of the factorization, the
signed Cholesky factorization succeeded for all problems, despite several being singu-
lar (e.g. for the larger Stokes problems, there is a one dimensional null-space consist-
ing of constant pressure values)—for these problems the right-hand-side was chosen
to be consistent, and one of infinitely many solutions was found. Moreover, the com-
puted solutions were relatively accurate for all but four of the nonsingular problems
(GHS indef/boyd2, GHS indef/cont-300, GHS indef/cvxqp3, GHS indef/k1 san) and
in all of these cases one step of residual refinement was sufficient to recover full ac-
curacy. Interestingly, even the initial inaccurate solution to GHS indef/k1 san was
several orders of magnitude more accurate than that computed by UMFPACK.

7. Conclusions. This paper presented a simple ordering constraint sufficient to
guarantee the LDLT factorization of a large class of saddle-point matrices, and gave
two possible implementations, either directly incorporating it into a minimum-degree-
like ordering or post-processing an arbitrary existing ordering. Both were found to
be effective, and in the test problems often did not incur much penalty compared to
the idealized situation of a SPD matrix of with the same sparsity pattern.

Since the ordering constraint permits the solver to predict the signs of D in
advance, it was shown how a supernodal code can rely on dense Cholesky factor-
izations (i.e. avoiding numerical pivoting even within supernodes). This permits the
full efficiency of a Cholesky direct solver to be retained for more general saddle-point

10 R. BRIDSON

matrices. Comparisons against a pivoting code showed that for many (though not
all) problems this can lead to significant performance gains.

REFERENCES

[1] P. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm.
SIAM J. Matrix Anal. Appl., 17(4):886–905, 1996.

[2] Patrick R. Amestoy, Enseeiht-Irit, Timothy A. Davis, and Iain S. Duff. Algorithm 837: AMD,
an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw., 30(3):381–
388, 2004.

[3] Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle point problems.
Acta Numerica, pages 1–137, 2005.

[4] Robert Bridson. KKTDirect: a direct solver package for saddle-point matrices. available from
http://www.cs.ubc.ca/∼rbridson/kktdirect.

[5] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 8xx: CHOLMOD, su-
pernodal sparse Cholesky factorization and update/downdate. Technical report, University
of Florida CISE Tech. Report, 2006.

[6] T. A. Davis. University of Florida Sparse Matrix Collection. available from
http://www.cise.ufl.edu/research/sparse/matrices, NA Digest 92(42) 1994, NA Digest
96(28) 1996, and NA Digest 97(23) 1997.

[7] T. A. Davis. Direct methods for sparse linear systems. SIAM, 2006.
[8] A. George and W. H. Liu. The evolution of the minimum degree ordering algorithm. SIAM

Rev., 31(1):1–19, 1989.
[9] Philip E. Gill, Michael A. Saunders, and Joseph R. Shinnerl. On the stability of Cholesky

factorization for symmetric quasidefinite systems. SIAM J. Matrix Anal. Appl., 17(1):35–
46, 1996.

[10] Esmond G. Ng and Padma Raghavan. Performance of greedy ordering heuristics for sparse
Cholesky factorization. SIAM J. Matrix Anal. Appl., 20(4):902–914, 1999.

[11] Arie C. De Niet and Fred W. Wubs. Numerically stable LDLT -factorization of F-type saddle
point matrices. Technical report, Rijksuniversiteit Groningen, 2005.

[12] E. Rothberg and S. C. Eisenstat. Node selection strategies for bottom-up sparse matrix ordering.
SIAM J. Matrix Anal. Appl., 19(3):682–695, 1998.

[13] O. Schenk and K. Gärtner. On fast factorization pivoting methods for sparse symmetric indef-
inite systems. Electronic Transactions on Numerical Analysis, 23:158–179, 2006.

[14] Miroslav Tůma. A note on the LDLT decomposition of matrices from saddle-point problems.
SIAM J. Matrix Anal. Appl., 23(4):903–915, 2002.

[15] Robert J. Vanderbei. Symmetric quasidefinite matrices. SIAM J. Opt., 5(1):100–113, 1995.

