
1

Real Time Fluids in GamesReal Time Fluids in Games

Matthias Müller

2

• PhysX SDK
(PPU accelerated, free!)
– Rigid bodies + joints
– Cloth simulation
– Soft bodies
– Fluid simulation (SPH)
– Heightfield fluids to come

• PhysX accelerator chip (PPU)
www.ageia.com

2

3

Outline

• Fluids in Games

• Heightfield Fluids
• A very simple program

• Physics background

• Object interaction

• Particle Based Fluids
• Simple particle systems

• Smoothed Particle Hydrodynamics (SPH)

4

Offline Fluid Simulation

• State of the art is impressive!

• Google “Robert Bridson”, “Ron Fedkiw”,
“James O’Brien”, …

Gas Liquids

3

5

Offline Simulation Times

• Typical grid size 2563 cells

• Linear system with
16 million unknowns!

• Level sets on even finer grids

• Raytracing
(reflection / refraction / caustics)

• Photorealistic results

• 10 seconds – 50 minutes per frame!

6

Game Requirements

• CHEAP TO COMPUTE!
– 40-60 fps of which fluid only gets a small fraction

• Stable even in non-realistic settings
– Game characters sometimes “walk” at 50 mph

• Low memory consumption
– Must run on consoles

• Challenge:
– Get as close as possible to offline results

while meeting all these constraints!

4

7

Reducing Computation Time

• Reduce resolution (lazy /)
– Simple (use same algorithms)
– Results look blobby and coarse, details disappear

• Invent new methods (do research ☺)
– Reduce dimension (e.g. from 3d to 2d)
– Use different resolutions for physics and appearance
– Simulate only in interesting, active regions (sleeping)
– Camera dependent level of detail (LOD)
– Non-physical animations for specific effects

8

Solutions

• Procedural Water

– Unbounded surfaces, oceans

• Heightfield Fluids

– Ponds, lakes

• Particle Systems

– Splashing, spray, puddles, smoke

5

9

Procedural Animation

• Simulate the effect, not the cause
[Bridson07], [Yuksel07], [Fournier86], [Hinsinger02]

• No limits to creativity

– E.g. superimpose sine waves

• Difficult but not impossible

– Fluid – scene interaction

10

HeightfieldHeightfield FluidsFluids

6

11

Heightfield Fluids

• Represent fluid surface as a 2D function u(x,y)

u

x

y

u

i

j

continuous discrete

• Pro: Reduction from 3D to 2D

• Cons: One value per (x,y) → no breaking waves

12

Fluid Simulation „Hello World“

loop
v[i,j] +=(u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1])/4 – u[i,j]
v[i,j] *= 0.99
u[i,j] += v[i,j]

endloop

• Clamp on boundary e.g. def. u[-1,j] = u[0,j]

• A trivial algorithm with impressive results! Try this at home!

• Initialize u[i,j] with some interesting function

• Initialze v[i,j]=0

7

13

Bars Demo

14

The Physics Behind it

• We model the water surface as an
elastic membrane with low stiffness [Jeffrey02]

• Fairly good approximation

• Better: Derive a more complex surface model
from the Navier Stokes Equations [Thuerey07]

• Most games use procedural water today

• Membrane model is an improvement and
often sufficient for games.

8

15

The Physics Behind It

u

x
x x+dx

u(x,t)

Vibrating string

• u(x,t) displacement normal to x-axis at time t

• Assuming small displacements and constant stress σ

• Force acting normal to cross section A is f = σΑ

Infinitesimal element

• A one dimensional membrane is a string

A

f
-f

16

PDE for the 1D String

• Component of f = σΑ in u-direction:
fu ≈ uxσΑ where ux is derivative of u w.r.t. x

• Newton’s 2nd law for an infinitesimal segment

(ρΑdx)utt = σΑux|x+dx - σΑux|x → ρ utt = σ uxx

u

x
x x+dx

u(x,t)

Vibrating stringInfinitesimal element

A
fuf

-f

9

17

The 1D Wave Equation

• For the string: ρ utt = σ uxx

• Standard form: utt = c2 uxx,
where c2= σ/ρ

• Solution: u(x,t) = a · f (x + ct) + b · f (x - ct)
for any function f.

• Thus, c is the speed at which waves travel

18

The 2D Wave Equation

• The wave equation generalizes to 2D as

utt = c2 (uxx + uyy)

utt = c2 ∇2u

utt = c2 ∆u

10

19

Discretization

• Replace the 2nd order PDE by two first order PDEs
ut = v
vt = c2 (uxx + uyy)

• Discretize in space and time
(semi-implicit Euler, time step ∆t, grid spacing h)

vt+1[i,j] = vt[i,j]
+∆tc2(u[i+1,j]+u[i-1,j]+u[i,j+1]+u[i,j-1]-4u[i,j])/h2

ut+1[i,j] = ut[i,j] +∆t vt+1[i,j]

• We are where we started! (correct scaling, no damping)

20

Remarks on Heightfields

• The simulation is only conditionally stable

– Stability condition: ∆t < h/c

Clamp: Reflection

Periodic: Wrap around

• Boundary conditions needed

11

21

Object Interaction

• Water → Object
– Each bar below the object applies force
f = -∆u ρ h2 g to body at its location

– ∆u is the height replaced by the body,
ρ water density, g gravity

• Object → Water
– Object pushes bars beneath it down
– Add the removed water in the vicinity!

22

Fully Immersed Bodies

• Body below water surface

• Hole appears above the body

• Non-physical

• See story of divided sea

12

23

Solution

• New state variable r[i,j]:
– Each column stores the part r[i,j]

of u[i,j] currently replaced by solids

• At each time step:
– u[i,j] is not modified directly
– ∆ r[i,j] = rt[i,j]-rt-1[i,j]

is distributed as water u
to the neighboring columns

– In case of a negative difference
water is removed

24

From Bars to Water

13

25

Water Rendering

• Reflection
cube map

• Refraction

ne r

Scene
below surface
rendered to
texture

• Caustics: Cheating - Animated texture

n
e

26

Breaking Waves

• Heightfields cannot capture
breaking waves

• Identify steep wave fronts

• Construct and track line along front

• Emit patch of connected particles

• Generate mesh with given thickness
for rendering (plus particles for foam)

• See [Thuerey07]

14

27

Breaking Waves

28

Particle Based FluidsParticle Based Fluids

15

29

Particle Based Fluids

• Particle systems are simple and fast

• With particle-particle interaction
– Small puddles, blood, runnels
– Small water accumulations

• Without particle-particle interaction
– Spray, splashing

30

Simple Particle Systems

• Particles store
mass, position, velocity,
external forces, lifetimes

mi

vi fi

xi

• Integrate
d/dt xi = vi
d/dt vi = fi/mi

emitter• Generated by emitters,
deleted when lifetime is exceeded

16

31

Particle-Particle Interaction

• No interaction → decoupled system → fast

h

• For n particles O(n2) potential interactions!

• To reduce to linear complexity O(n)
define interaction cutoff distance h

32

Spatial Hashing

• Fill particles into grid with spacing h

• Only search potential neighbors in adjacent cells

• Map cells [i,j,k] into 1D array via hash function h(i,j,k)
[Teschner03]

h

h

17

33

Lennard-Jones Interaction

• For simple fluid-like behavior:
Equilibrium

Attraction

Repulsion

ji

ji
n

ji
m

ji

ji
kk

xx
xx

xxxx
xxf

−

−
⋅















−
−

−
= 21),(

• k1, k2, m, n control parameters

34

Solving Navier-Stokes Eqn.

• How formulate Navier-Stokes Eqn. on particles?

• We need continuous fields, e.g. v(x)

• Only have v1, v2, .. vn sampled on particles

• Basic idea:
– Particles induce smooth local fields
– Global field is sum of local fields

18

35

SPH

• Smoothed Particle Hydrodynamics

• Invented for the simulation of stars [Monaghan92]

• Often used for real-time fluids in CG [Müller03]

• Use scalar kernel function W(r)
– Wi(x) = W(|x-xi|)
– Normalized: ∫ ∫ ∫ Wi(x) dx = 1

xi
x

r

hrrh
h

hrW ≤≤−= 0)(
64

315),(322
9π

• Example [Müller03]

36

Density Computation

• Global density field
∑ −=

j
jjWm)()(xxxρ

)(ii xρρ =
• Density of each particle

• Mass conservation guaranteed
() ∑∑ ∫∫ =−=

j
j

j
jj mdWmd xxxxx)()(ρ

19

37

Smoothing Attributes

• Smoothing of attribute A,

• Given A1..An → compute A(x)

∑ −=
j

jj
j

j
s WA

m
A)()(xxx

ρ

∑ −∇=∇
j

jj
j

j
s WA

m
A)()(xxx

ρ

• Gradient of smoothed attribute

38

Equation of Motion

vgvvv 2∇+∇−=





 ∇⋅+

∂
∂ µρρ p

t

• The acceleration ai of particle i is, thus

i

i
i ρ

fa = fi is body force evaluated at xi

i
i

dt
d

tDt
D avvvvv

==





 ∇⋅+

∂
∂

=

• Because particles follow the fluid we have:

20

39

Pressure

• The pressure term yields

)()(pressure
jij

j j

j
ii Wp

m
p xxxf −∇−=−∇= ∑ ρ

)(
2

pressure
ji

j

ji

j

j
i W

ppm
xxf −∇

+
−= ∑ ρ

• Symmetrize (SPH problem: actio ≠ reactio)

• Pressure pi = k ρi with k gas constant (stiffness)

• Other state laws possible [Becker07]

40

Remaining Forces

• External force, e.g. gravity:

gf ii ρ=external

• Viscosity (simmetrized)

)(2viscosity
ji

j j

ij
i Wm xx

vv
f −∇

−
= ∑ ρ

µ

21

41

Remarks on SPH

• Compressibility
– Pressure force reacts to density variation (bouncy)
– Predict densities, solve for incompressibility [Premoze03]

• Parameters hard to tune

• Rendering
– Sprites for smoke, blurry surface
– Marching cubes for liquids

• Combine particles and heightfields [O’Brien95, Thuerey07]

42

Surface Tracking

• Two main bottlenecks
– Not the simulation!
– Collision detection
– Surface tracking for liquids

• Marching cubes
– Often used to in offline simulations
– Generates detailed geometry

in non visible places, far from the camera

• Screen Space Meshes [Müller07]

22

43

Screen Space Mesh

• Regular 2D mesh
• Constructed in screen space
• Modified marching squares

• Vertices projected back
to world space

• Frozen mesh, side view

44

SPH Demo Scenes

23

45

Acknowledgements

• AGEIA, co-workers (fluid simulation)
– Philipp Hatt, Nils Thuerey, Simon Schirm, Bruno

Heidelberger, Stephan Duthaler, Isha Geigenfeind,
Richard Tonge

• Robert for the invitation

46

References 1/2

[Becker07] M. Becker and M. Teschner, Weakly compressible SPH for free surface
flows, SCA 07

[Bridson07] R. Bridson et al., Curl noise for procedural fluid flow, Siggraph 07

[Fournier86] A. Fournier and W. T. Reeves. A simple model of ocean waves,
SIGGRAPH 86, pages 75–84

[Hinsinger02] D. Hinsinger et al., Interactive Animation of Ocean Waves, In
Proceedings of SCA 02

[Jeffrey02] A. Jeffrey, Applied Partial Differential Equations, Academic Press, ISBN
0-12-382252-1

[Monaghan92] J. J. Monaghan, Smoothed particle hydrodynamics. Annual Review of
Astronomy and Astrophysics, 30:543–574, 1992.

24

47

References 2/2

[Müller07] M. Müller et al., Screen Space Meshes, SCA 07.

[Müller03] M. Müller et al., Particle-Based Fluid Simulation for Interactive Applications,
SCA 03, pages 154-159.

[O’Brien95] J. O’Brien and J. Hodgins, Dynamic simulation of splashing fluids, In
Computer Animation 95, pages 198–205

[Premoze03] S. Premoze et al., Particle based simulation of fluids, Eurographics 03,
pages 401-410

[Teschner03] M. Teschner et al., Optimized Spatial Hashing for Collision Detection of
Deformable Objects, VMV 03

[Thuerey07] N. Thuerey et al., Real-time Breaking Waves for Shallow Water
Simulations Pacfific Graphics 07

[Yuksel07] Cem Yuksel et al., Wave Particles, Siggraph 07

Thank your for your attention!

Questions?

Slides & demos available soon at

www.MatthiasMueller.info

www.cs.ubc.ca/~rbridson/fluidsimulation/

