
Real Time Fluids in Games

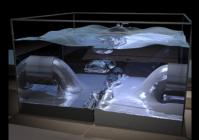
Matthias Müller

- PhysX accelerator chip (PPU) www.ageia.com
- PhysX SDK (PPU accelerated, free!)
 - Rigid bodies + joints
 - Cloth simulation
 - Soft bodies
 - Fluid simulation (SPH)
 - Heightfield fluids to come

Outline

- Fluids in Games
- Heightfield Fluids
 - A very simple program
 - Physics background
 - Object interaction
- Particle Based Fluids
 - Simple particle systems
 - Smoothed Particle Hydrodynamics (SPH)

3


Offline Fluid Simulation

- State of the art is impressive!
- Google "Robert Bridson", "Ron Fedkiw", "James O'Brien", ...

Gas

Liquids

PhysX

4

Offline Simulation Times

- Typical grid size 256³ cells
- Linear system with 16 million unknowns!
- Level sets on even finer grids
- Raytracing (reflection / refraction / caustics)
- Photorealistic results
- 10 seconds 50 minutes per frame!

5

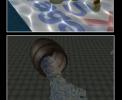
Game Requirements

- CHEAP TO COMPUTE!
 - 40-60 fps of which fluid only gets a small fraction
- Stable even in non-realistic settings
 - Game characters sometimes "walk" at 50 mph
- · Low memory consumption
 - Must run on consoles
- Challenge:
 - Get as close as possible to offline results while meeting all these constraints!

Reducing Computation Time

- Reduce resolution (lazy ⊗)
 - Simple (use same algorithms)
 - Results look blobby and coarse, details disappear
- Invent new methods (do research ©)
 - Reduce dimension (e.g. from 3d to 2d)
 - Use different resolutions for physics and appearance
 - Simulate only in interesting, active regions (sleeping)
 - Camera dependent level of detail (LOD)
 - Non-physical animations for specific effects

7



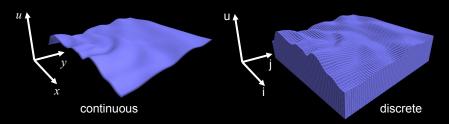
Solutions

- Procedural Water
 - Unbounded surfaces, oceans
- · Heightfield Fluids
 - Ponds, lakes
- Particle Systems
 - Splashing, spray, puddles, smoke

Procedural Animation

- Simulate the effect, not the cause [Bridson07], [Yuksel07], [Fournier86], [Hinsinger02]
- No limits to creativity
 - E.g. superimpose sine waves
- · Difficult but not impossible
 - Fluid scene interaction

9



Heightfield Fluids

Heightfield Fluids

- Represent fluid surface as a 2D function u(x,y)
- Pro: Reduction from 3D to 2D
- Cons: One value per $(x,y) \rightarrow$ no breaking waves

11

Fluid Simulation "Hello World"

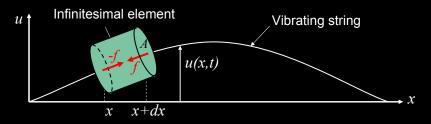
SIGGRAPH2007

- A trivial algorithm with impressive results! Try this at home!
- Initialize u[i,j] with some interesting function
- Initialze v[i,j]=0

```
loop
v[i,j] +=(u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1])/4 - u[i,j]
v[i,j] *= 0.99
u[i,j] += v[i,j]
endloop
```

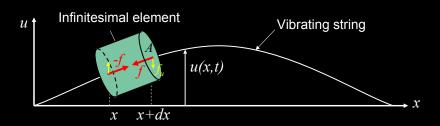
Clamp on boundary e.g. def. u[-1,j] = u[0,j]

The Physics Behind it


- We model the water surface as an elastic membrane with low stiffness [Jeffrey02]
- Fairly good approximation
- Better: Derive a more complex surface model from the Navier Stokes Equations [Thuerey07]
- Most games use procedural water today
- Membrane model is an improvement and often sufficient for games.

The Physics Behind It

· A one dimensional membrane is a string


- u(x,t) displacement normal to x-axis at time t
- ullet Assuming small displacements and constant stress σ
- Force acting normal to cross section A is $f = \sigma A$

15

PDE for the 1D String

- Component of $f = \sigma A$ in *u*-direction: $f_u \approx u_x \sigma A$ where u_x is derivative of u w.r.t. x
- Newton's 2nd law for an infinitesimal segment

$$(\rho A dx) u_{tt} = \sigma A u_{x|_{x+dx}} - \sigma A u_{x|_{x}} \rightarrow \boxed{\rho u_{tt} = \sigma u_{xx}}$$

Phys X

The 1D Wave Equation

- For the string: $\rho u_{tt} = \sigma u_{xx}$
- Standard form: $u_{tt} = c^2 \overline{u_{xx}}$, where $c^2 = \sigma/\rho$
- Solution: $u(x,t) = a \cdot f(x+ct) + b \cdot f(x-ct)$ for any function f.
- Thus, c is the speed at which waves travel

17

The 2D Wave Equation

· The wave equation generalizes to 2D as

$$u_{tt} = c^2 \left(u_{xx} + u_{yy} \right)$$

$$u_{tt} = c^2 \nabla^2 u$$

$$u_{tt} = c^2 \Delta u$$

Discretization

Replace the 2nd order PDE by two first order PDEs

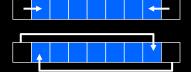
$$u_t = v$$

$$v_t = c^2 (u_{xx} + u_{yy})$$

Discretize in space and time
 (semi-implicit Euler, time step ∆t, grid spacing h)

```
 \begin{array}{lll} v^{t+1}[\texttt{i},\texttt{j}] &=& v^t[\texttt{i},\texttt{j}] \\ && + \Delta t c^2 (u[\texttt{i}+1,\texttt{j}]+u[\texttt{i}-1,\texttt{j}]+u[\texttt{i},\texttt{j}+1]+u[\texttt{i},\texttt{j}-1]-4u[\texttt{i},\texttt{j}]) / h^2 \\ \\ u^{t+1}[\texttt{i},\texttt{j}] &=& u^t[\texttt{i},\texttt{j}] &+ \Delta t & v^{t+1}[\texttt{i},\texttt{j}] \end{array}
```

We are where we started! (correct scaling, no damping)


19

Remarks on Heightfields

- · The simulation is only conditionally stable
 - − Stability condition: $\Delta t < h/c$
- · Boundary conditions needed

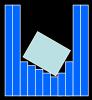
Clamp: Reflection

Periodic: Wrap around

Object Interaction

- Object → Water
 - Object pushes bars beneath it down
 - Add the removed water in the vicinity!

- Water → Object
 - Each bar below the object applies force $\mathbf{f} = -\Delta u \rho h^2 \mathbf{g}$ to body at its location
 - ∠u is the height replaced by the body,
 p water density, g gravity

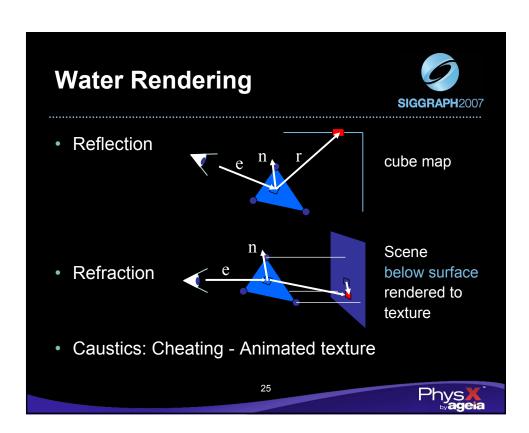

21

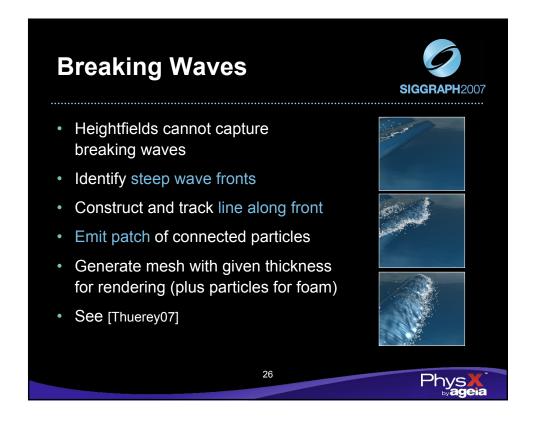
Fully Immersed Bodies

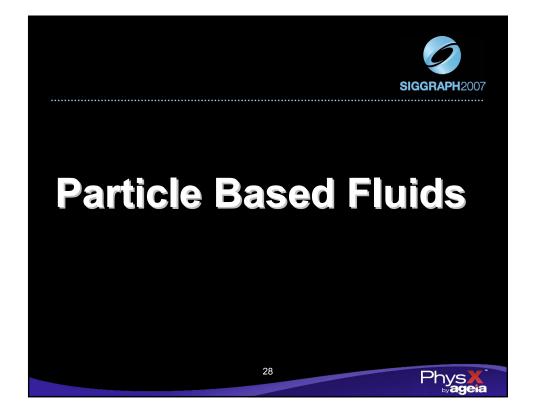
- · Body below water surface
- · Hole appears above the body
- Non-physical
- See story of divided sea

Phys X

Solution


- New state variable r[i,j]:
 - Each column stores the part r[i,j]
 of u[i,j] currently replaced by solids

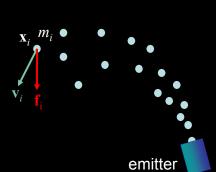

- At each time step:
 - u[i,j] is not modified directly
 - Ar[i,j] = r^t[i,j]-r^{t-1}[i,j]
 is distributed as water u
 to the neighboring columns
 - In case of a negative difference water is removed


23

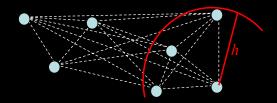
Particle Based Fluids

- · Particle systems are simple and fast
- Without particle-particle interaction
 - Spray, splashing

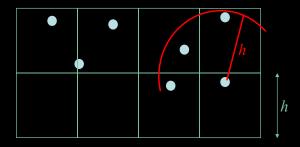
- · With particle-particle interaction
 - Small puddles, blood, runnels
 - Small water accumulations


29

Simple Particle Systems

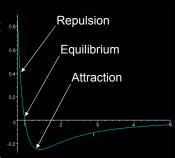

- Particles store mass, position, velocity, external forces, lifetimes
- Integrate $d/dt \mathbf{x}_i = \mathbf{v}_i$ $d/dt \mathbf{v}_i = \mathbf{f}/m_i$
- Generated by emitters, deleted when lifetime is exceeded

Particle-Particle Interaction


- No interaction → decoupled system → fast
- For n particles $O(n^2)$ potential interactions!
- To reduce to linear complexity O(n) define interaction cutoff distance h

31

Spatial Hashing


- Fill particles into grid with spacing h
- Only search potential neighbors in adjacent cells
- Map cells [i,j,k] into 1D array via hash function h(i,j,k) [Teschner03]

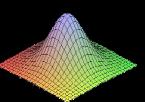
Phys X

Lennard-Jones Interaction

• For simple fluid-like behavior:

$$\mathbf{f}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \left(\frac{k_{1}}{\left|\mathbf{x}_{i} - \mathbf{x}_{j}\right|^{m}} - \frac{k_{2}}{\left|\mathbf{x}_{i} - \mathbf{x}_{j}\right|^{n}}\right) \cdot \frac{\mathbf{x}_{i} - \mathbf{x}_{j}}{\left|\mathbf{x}_{i} - \mathbf{x}_{j}\right|}$$

k₁, k₂, m, n control parameters


33

Solving Navier-Stokes Eqn.

- · How formulate Navier-Stokes Eqn. on particles?
- We need continuous fields, e.g. v(x)
- Only have $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_n$ sampled on particles
- · Basic idea:
 - Particles induce smooth local fields
 - Global field is sum of local fields

PhysX

SPH

- · Smoothed Particle Hydrodynamics
- Invented for the simulation of stars [Monaghan92]
- Often used for real-time fluids in CG [Müller03]
- Use scalar kernel function W(r)

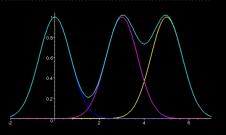
$$- W_{i}(\mathbf{x}) = W(|\mathbf{x} - \mathbf{x}_{i}|)$$

- Normalized: $\iiint W_i(\mathbf{x}) d\mathbf{x} = 1$

Example [Müller03]

$$W(r,h) = \frac{315}{64\pi h^9} (h^2 - r^2)^3 \quad 0 \le r \le h$$

35


Density Computation

· Global density field

$$\rho(\mathbf{x}) = \sum_{j} m_{j} W(\mathbf{x} - \mathbf{x}_{j})$$

• Density of each particle $\rho_i = \rho(\mathbf{x}_i)$

Mass conservation guaranteed

$$\int \rho(\mathbf{x})d\mathbf{x} = \sum_{j} \left(m_{j} \int W(\mathbf{x} - \mathbf{x}_{j}) d\mathbf{x} \right) = \sum_{j} m_{j}$$

Smoothing Attributes

- Smoothing of attribute A,
- Given $A_1...A_n \rightarrow \text{compute } A(\mathbf{x})$

$$A_{s}(\mathbf{x}) = \sum_{j} \frac{m_{j}}{\rho_{j}} A_{j} W(\mathbf{x} - \mathbf{x}_{j})$$

· Gradient of smoothed attribute

$$\nabla A_s(\mathbf{x}) = \sum_j \frac{m_j}{\rho_j} A_j \nabla W(\mathbf{x} - \mathbf{x}_j)$$

37

Equation of Motion

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = \rho \mathbf{g} - \nabla p + \mu \nabla^2 \mathbf{v}$$

· Because particles follow the fluid we have:

$$\frac{D\mathbf{v}}{Dt} = \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = \frac{d\mathbf{v}_i}{dt} = \mathbf{a}_i$$

• The acceleration a_i of particle i is, thus

$$\mathbf{a}_i = \frac{\mathbf{f}_i}{\rho_i}$$
 \mathbf{f}_i is body force evaluated at \mathbf{x}_i

Pressure

The pressure term yields

$$\mathbf{f}_{i}^{\text{pressure}} = -\nabla p(\mathbf{x}_{i}) = -\sum_{j} \frac{m_{j}}{\rho_{i}} p_{j} \nabla W(\mathbf{x}_{i} - \mathbf{x}_{j})$$

Symmetrize (SPH problem: actio ≠ reactio)

$$\mathbf{f}_{i}^{\text{pressure}} = -\sum_{i} \frac{m_{j}}{\rho_{i}} \frac{p_{i} + p_{j}}{2} \nabla W (\mathbf{x}_{i} - \mathbf{x}_{j})$$

- Pressure $p_i = k \rho_i$ with k gas constant (stiffness)
- Other state laws possible [Becker07]

39

Remaining Forces

External force, e.g. gravity:

$$\mathbf{f}_{i}^{\text{external}} = \rho_{i} \mathbf{g}$$

Viscosity (simmetrized)

$$\mathbf{f}_{i}^{\text{viscosity}} = \mu \sum_{j} m \frac{\mathbf{v}_{j} - \mathbf{v}_{i}}{\rho_{j}} \nabla^{2} W (\mathbf{x}_{i} - \mathbf{x}_{j})$$

Remarks on SPH

- Compressibility
 - Pressure force reacts to density variation (bouncy)
 - Predict densities, solve for incompressibility [Premoze03]
- · Parameters hard to tune
- Rendering
 - Sprites for smoke, blurry surface
 - Marching cubes for liquids
- Combine particles and heightfields [O'Brien95, Thuerey07]

41

Surface Tracking

- Two main bottlenecks
 - Not the simulation!
 - Collision detection
 - Surface tracking for liquids
- Marching cubes
 - Often used to in offline simulations
 - Generates detailed geometry in non visible places, far from the camera
- Screen Space Meshes [Müller07]

Screen Space Mesh

- Regular 2D mesh
- · Constructed in screen space
- Modified marching squares
- Vertices projected back to world space
 - Frozen mesh, side view

43

SPH Demo Scenes Siggraph2007

Acknowledgements

- AGEIA, co-workers (fluid simulation)
 - Philipp Hatt, Nils Thuerey, Simon Schirm, Bruno Heidelberger, Stephan Duthaler, Isha Geigenfeind, Richard Tonge
- Robert for the invitation

45

References 1/2

[Becker07] M. Becker and M. Teschner, Weakly compressible SPH for free surface flows, SCA 07
 [Bridson07] R. Bridson et al., Curl noise for procedural fluid flow, Siggraph 07

[Fournier86] A. Fournier and W. T. Reeves. A simple model of ocean waves,

SIGGRAPH 86, pages 75-84

[Hinsinger02] D. Hinsinger et al., Interactive Animation of Ocean Waves, In

Proceedings of SCA 02

[Jeffrey02] A. Jeffrey, Applied Partial Differential Equations, Academic Press, ISBN

0-12-382252-1

[Monaghan92] J. J. Monaghan, Smoothed particle hydrodynamics. Annual Review of

Astronomy and Astrophysics, 30:543-574, 1992.

References 2/2

[Müller07] M. Müller et al., Screen Space Meshes, SCA 07.

[Müller03] M. Müller et al., Particle-Based Fluid Simulation for Interactive Applications,

SCA 03, pages 154-159.

[O'Brien95] J. O'Brien and J. Hodgins, Dynamic simulation of splashing fluids, In

Computer Animation 95, pages 198-205

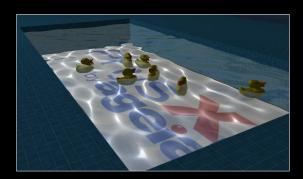
[Premoze03] S. Premoze et al., Particle based simulation of fluids, Eurographics 03,

pages 401-410

[Teschner03] M. Teschner et al., Optimized Spatial Hashing for Collision Detection of

Deformable Objects, VMV 03

[Thuerey07] N. Thuerey et al., Real-time Breaking Waves for Shallow Water


Simulations Pacfific Graphics 07

[Yuksel07] Cem Yuksel et al., Wave Particles, Siggraph 07

Phys X

47

Slides & demos available soon at www.matthiasMueller.info www.cs.ubc.ca/~rbridson/fluidsimulation/

Thank your for your attention!

Questions?