
Ghost SPH for Animating Water

Hagit Schechter∗

University of British Columbia
Robert Bridson∗

University of British Columbia

Abstract

We propose a new ghost fluid approach for free surface and solid
boundary conditions in Smoothed Particle Hydrodynamics (SPH)
liquid simulations. Prior methods either suffer from a spurious nu-
merical surface tension artifact or drift away from the mass con-
servation constraint, and do not capture realistic cohesion of liquid
to solids. Our Ghost SPH scheme resolves this with a new particle
sampling algorithm to create a narrow layer of ghost particles in the
surrounding air and solid, with careful extrapolation and treatment
of fluid variables to reflect the boundary conditions. We also pro-
vide a new, simpler form of artificial viscosity based on XSPH. Ex-
amples demonstrate how the new approach captures real liquid be-
haviour previously unattainable by SPH with very little extra cost.

CR Categories: Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation; Computer Graphics [I.3.5]:
Computational Geometry and Object Modeling—Physically based
modeling

Keywords: Smoothed Particles Hydrodynamics, SPH, free sur-
face, boundary conditions, volume sampling, liquids, animation

Links: DL PDF

1 Introduction

Animating liquids like water via physical simulation remains a be-
guiling area. Many methods have been developed in graphics to
solve various problems, both for realism of the results and for per-
formance. Our focus here is Smoothed Particle Hydrodynamics
(SPH), where the fluid is represented by material particles with
relatively simple interactions via sums of smooth kernel functions
and their gradients: see Monaghan for a detailed overview [2005],
which we assume as background knowledge. Most SPH methods
enjoy automatic mass conservation (each particle represents a fixed
amount of conserved mass, density is estimated by direct sum-
mation), accurate tracking of the fluid through space (due to the
Lagrangian representation), and a conceptually simple algorithmic
kernel (summing weighted kernels over nearby particles, with no
systems of equations to solve or tricky geometric discretizations).

However, several problems remain: here we tackle the treatment of
free surface and solid boundary conditions. Mass-conserving SPH
methods, where density is estimated by a sum rather than evolved as
a state variable, suffer serious errors near free surfaces causing un-
avoidable surface-tension-like artifacts and reduced stability. Prior

∗e-mail: (hagitsch|rbridson)@cs.ubc.ca

Figure 1: With our new boundary conditions, water pouring on to
a sphere properly coheres to the underside, giving a realistic stream
without excessive numerical surface tension.

treatments of arbitrary solid boundaries do not reflect the correct co-
hesive behaviour visible in many real world scenarios. Our Ghost
SPH method resolves both by careful sampling of ghost particles
in the air and solid regions near the fluid, and appropriate extrapo-
lation of fluid quantities to the ghost particles. Our new sampling
algorithm, an extension of a Poisson-disk method which accurately
captures boundaries, is also of interest to other applications.

2 Related Work

SPH was independently introduced by Gingold and Monaghan
[1977] and Lucy [1977], and has since seen extensive use in physics
research. The advantages above have also made it popular in com-
puter graphics for a variety of liquid phenomena.

Monaghan’s adaptation [1994] of SPH to free-surface flow serves
as a basis for many later works. Müller et al. [2003] used a low
stiffness equation of state along with surface tension and viscos-
ity forces for interactive applications. Refined particle sampling
near free surfaces for accuracy or efficiency is discussed in sev-
eral works [Keiser et al. 2006; Adams et al. 2007; Solenthaler and
Gross 2011]. Becker and Teschner [2007] reduce compressibility
with the stiffer “Tait Equation”, and introduce particle initialization
with highly damped equations to reach a stable density near the
surface, which we directly solve with ghost air particles.

Müller et al. seeded air particles to model bubbles [2003]. Keiser
also used a narrow band of air particles to aid in surface tension and
small bubbles [2006] — however, whereas this work’s mirroring
approach may create air sampling with widely varying density, we
always seed ghost air pairtlces with a near-rest-state distribution.

Bonet and Kulasegaram [2002] modified the underlying SPH
method with corrections to make the scheme numerically consis-

http://doi.acm.org/10.1145/2185520.2185557
http://portal.acm.org/ft_gateway.cfm?id=2185557&type=pdf


tent, resolving density problems near boundaries as we do, but with
significantly heavier calculation.

Müller et al [2005] achieved two-way SPH fluid interaction using
“color field”-derived curvature. Solenthaler and Pajarola [2008]
introduced a modified density equation for accurate SPH density
computation at the interface between the two fluids. However, this
is not directly applicable to free surfaces.

Many SPH works represent solids with particles. Repulsion forces
from solid particles are often used to avoid fluid penetrating solids
[Monaghan 1994]. Two-way interaction between fluid and solid
particles is also common [Keiser et al. 2006; Becker et al. 2009].
Colagrossi and Landrini more accurately captured velocity bound-
ary conditions at solids by mirroring nearby fluid particles, but were
limited to simple solid geometry [2003]. We handle velocities in a
similar manner, but with solid bodies of arbitrary shape. Ihmsen
et al. [2010], like us, extrapolated fluid quantities into solid parti-
cles to improve solid boundary conditions, avoiding “stacking” and
irregular pressure distributions in standing water situations; we fur-
ther capture accurate cohesion to solids.

Fedkiw and collaborators’ “Ghost Fluid Method” [1999], used
extensively for Eulerian fluids including coupling to Lagrangian
solids [Fedkiw 2002], inspires our velocity and density extrapola-
tion to ghost particles at both solid and free surface boundaries.

Artificial viscosity is critical in SPH for stability and regularity.
Many methods use Lucy’s equations [1977], e.g. [Monaghan 1994;
Becker and Teschner 2007]. Müller et al. suggested another for-
mulation based on second derivatives of a specially designed kernel
[Müller et al. 2005; Müller et al. 2003]. Our artificial viscosity
approach instead derives from the Monaghan’s “XSPH” position
update for handling shocks [1989]; we extend this to a velocity up-
date, and find it more intuitive and controllable than prior forms.

Solenthaler and Pajarola’s PCISPH [2009] replaces the equation of
state, with its stability time step restriction, by an iterative solver
for bringing the system to incompressibility. PCISPH allows much
larger time steps and reduces the need for parameter tuning. While
our examples use an equation of state, we use the same summed-
mass density and thus our Ghost SPH method can just as easily be
used with PCISPH.

Our seeding algorithm is based on blue noise sampling original
developed for rendering. Cook [1986] emphasized the virtues of
Poisson-disk distributions for blue noise. Turk [1992] introduced a
relaxation method for surface sampling. Dunbar et al. [2006] mod-
ified dart throwing to efficiently generate Poisson-disk distributions
in 2D; Bridson [2007] simplified this with rejection sampling, ex-
tending it to higher dimensions with minimal implementation ef-
fort. We extend Bridson’s algorithm to tightly sample the boundary
of a domain as well as its interior.

3 The Basic Method

There is a wide variety of SPH methods; here we introduce our
notation and present a common set of choices for graphics, which
we call “Basic SPH”. We also call attention to the problems we later
will solve with our Ghost-SPH model.

Particle i has position xi, velocity vi, and massmi (uniform across
all particles), with acceleration ai computed from force divided by
mi. Kernel function W is radially symmetric with a finite radius
of support: our examples use Monaghan’s M4 cubic spline [2005]
with radius of support 3h for an average particle spacing of h, but
this is orthogonal to the contributions of the paper.

Density Evaluation: One critical choice is how to compute density
ρi at particle i. We advocate the popular direct summation estimate,

ρi =
∑
j

mjWij , (1)

where Wij = W (xi − xj). This naturally conserves mass, and
forces computed from this density directly correct deficiencies in
the particle distribution, generally producing higher quality results.

Equation (1) is problematic near free surfaces. In the interior parti-
cles are surrounded by other particles, so an even distribution gives
a roughly uniform density. Near a free surface, however, the air
part of a particle’s neighborhood is empty and the same distribution
gives a much lower density estimate: see Figure 3. The equation of
state then causes particles to unnaturally cluster in a shell around the
liquid, rebalancing density but causing a strong surface-tension-like
artifact, stability and accuracy issues due to the distorted distribu-
tion, and a deformed initial shape as in Figure 4b and d.

An alternative is to evolve the density as an independent quantity
with ∂ρ/∂t + ∇ · (ρv) = 0 [Monaghan 1994]: this eliminates
the free surface problem, but discretization and integration errors in
this equation permit drift from true mass conservation, leading to
steadily worse particle distributions particularly around splashes.

Solid Boundaries: We represent solids by sampling with particles.
The most common way of preventing liquid particles from pene-
trating solids is to apply repulsive forces near solid particles: our
Basic-SPH examples use the Lennard-Jones approach advanced by
Monaghan [1994]. However, while this aims to prevent liquid from
entering a solid, it freely allows liquid to separate from a solid —
which is often just wrong. In typical scenarios, liquid can only sep-
arate from a solid if air can rush in to fill the gap: by default liquid
shouldn’t be able to leave, leading to the standard no-stick v ·n̂ = 0
boundary condition. This provides a visually critical form of cohe-
sion, quite apart from surface tension, which our ghost treatment
of solid boundaries enables (see Figures 1 and 11 as well as the
accompanying video with real footage).

Solid Collisions: Despite treating boundary conditions at the ve-
locity level, truncation errors in time integration may allow liq-
uid particle positions to stray inside solids. Therefore we check
them against the solid geometry, represented by level sets for con-
venience, and if inside project them back to the outside.

Incompressibility: In our examples we computed pressure from
density using the Tait equation, pi = k

(
(ρi/ρ0)7 − 1

)
[Monaghan

1994] with k = 2000, but other equations or calculations such as
PCISPH may serve equally well for the purposes of this paper.

Pressure Force: We used Monaghan’s usual pressure gradi-
ent, −mi

∑
j mj

[
pj/ρ

2
j + pi/ρ

2
i

]
∇Wij to compute the pressure

force on particle i, but other formulas could be freely used.

XSPH: Noise in the raw particle velocities can make the simple po-
sition update xnew

i = xi + δt · vi problematic. XSPH [Monaghan
1989] improves matters by blending in surrounding particle veloci-
ties with the addition of ε

∑
j(mj/ρj) (vj − vi)Wij where ε is a

user-tuned parameter on the order of 0.5.

Artificial Viscosity: Some form of artificial viscosity is necessary
to stabilize the inviscid equations. For Basic SPH we adopt the
same model as Becker and Teschner [2007] with α = 0.0005.



(a) (b)

Figure 2: Ghost SPH: 2D Simulation Snapshots.
Dark Blue: liquid. Light blue: ghost air. Green: ghost solid.

4 The Ghost SPH Method

4.1 Algorithm Overview

We solve the particle deficiency at boundaries and eliminate arti-
facts by (1) dynamically seeding ghost particles in a layer of air
around the liquid with a blue noise distribution, (2) extrapolating
the right quantities from the liquid to the air and solid ghost parti-
cles to enforce the correct boundary conditions, and (3) using the
ghost particles appropriately in summations. Figure 2 shows the
three classes of particles in a 2D simulation and Algorithm 3 gives
full pseudocode for a time step. Mass, density, and velocity are
assigned to ghost particles in the spirit of Fedkiw’s Ghost Fluid
Method: if a quantity should be continuous across a boundary, it is
left as is in the ghost; if it is decoupled and may jump discontinu-
ously, the fluid’s value is instead extrapolated to the ghost.

4.2 XSPH Artificial Viscosity

Before describing the ghost treatment of boundary conditions, we
introduce a simplification of the basic method which eases imple-
mentation. The goal of artificial viscosity is just to damp out non-
physical oscillations that plague the undamped method: a full treat-
ment of physical viscosity, with a nonphysical coefficient tuned to
stabilize the discretization, is overkill. We propose adopting the
simpler XSPH style of damping noise, but at the velocity update
level — this works just as well, but is cheaper and easier to tune,
and further obviates the need for XSPH in the position update.

Every time step we take the step-advanced velocities v∗i = vi +
δt · ai and diffuse them with a tunable parameter ε = 0.05:

vnew
i = v∗i + ε

∑
j

mj

ρj

(
v∗j − v∗i

)
Wij . (2)

We can then evolve positions directly with the particle velocity,
xnew
i = xi + δtvnew

i .

4.3 Ghost Particles in the Air

Air particles are generated at the start of simulation within a kernel
radius of the liquid, outside of solids: see Section 4.5. The ghost
mass of each air particle is set to the mass of a liquid particle, and
the ghost velocity of an air particle is set to the velocity of the near-
est liquid particle (extrapolating, since in a free surface simulation,
there isn’t even a defined air mass or velocity). Under the p = 0
free surface boundary condition, we set the ghost air density equal
to the rest density of the liquid, producing zero pressure.

Ghost air particles contribute to the density summation, and since
they fill a thick enough layer around the liquid, this entirely solves

(a) (b)

Figure 3: Ghost-Air Particles at the Free-Surface. (a) Basic SPH
(b) Ghost SPH. Fluid particles are shown in blue, ghost-air parti-
cles are shown in gray.

(a) (b)

(c) (d)

Figure 4: Hydrostatic Test. Upper row: 2D square. Lower row:
3D cube. Left: Ghost SPH. Right: Basic SPH. Taken at frame 400.

the free surface density problem: see Figure 3. As their density is
the rest density, they contribute no pressure force on the liquid. We
explicitly exclude them from the artificial viscosity, as they would
add a slight bias in favour of the outermost particles’ velocities.

To make the overhead of resampling negligible, we only resample
every 10 time steps or so (twice per frame in our examples), and
in interim steps advect the ghost air particles with their velocities.
This is frequent enough that no appreciable drift of the ghost parti-
cles away from the liquid happens in practice.

Figure 4 demonstrates the results of a zero-gravity hydrostatic test
with Basic SPH vs. Ghost SPH. Our method keeps the fluid stable,
maintains its original shape and volume, and conserves the initial
uniform particle distribution and density. In contrast, in the Ba-
sic SPH model pressure pushes the outer particles inwards to reach
a density equilibrium, forms a stiff shell of particles at the free-
surface, and non-uniformly shrinks the fluid volume.

4.4 Ghost Particles in the Solid

Solid particles, like air particles, have a dual role: correcting the
density summation near the boundary and implementing the right
boundary condition in lieu of the basic method’s Lennard-Jones ap-
proach. They too are seeded inside each solid within a kernel-radius



Figure 5: Ghost-Solid Velocity in inviscid flow with static solid
wall. Blue: liquid particles. Green: ghost-solid particles.

(a) (b) (c) (d)

Figure 6: Grid sampling the air vs. Poisson disk. (a) Initial grid.
(b) 500 frames later, with an anisotropic shell developed. (c) Initial
Poisson disk. (d) 500 frames later, essentially unchanged.

layer of the solid surface, are assigned a ghost mass equal to the liq-
uid particles, and contribute to density summation in the liquid.

The solid boundary condition implies different treatment of ghost
density. Pressure should be continuous through the boundary, thus
we extrapolate fluid density (which controls pressure via the equa-
tion of state) by setting each ghost density to the nearest liquid
particle’s density. This naturally enforces the no-penetration and
no-separation boundary condition (up to numerical errors). Note
that while this is physically correct, when the boundary layer is
under-resolved, as may happen in large-scale simulations, reverting
to freely separating boundary conditions by disallowing negative
pressures may provide more plausible results [Batty et al. 2007;
Chentanez and Müller 2011].

For an inviscid liquid, the associated no-stick condition implies
the normal component of liquid and solid velocities match at the
boundary, but that tangential components are completely decou-
pled: the liquid can freely slip past tangentially. We thus construct
the ghost velocity at each solid particle by summing the normal
component of the solid’s true velocity and the tangential compo-
nent of the nearest liquid particle’s velocity:

vghost = vsolid
N + vliquid

T . (3)

See Figure 5. Ghost solid velocities contribute to XSPH / artificial
viscosity of Equation 2, reinforcing the velocity part of the solid
boundary condition without introducing unphysical tangential drag.

Of course, for a visibly viscous liquid, the no-slip boundary con-
dition may be more appropriate, where tangential components of
solid and liquid velocities also match. In this case, setting the full
ghost solid velocity to the real solid velocity, allowing its tangential
component to enter the XSPH artificial viscosity term, gives rise to
the desired stickiness; the ε parameter controls the stickiness and
may be adjusted independently for the solid for artistic control.

(a) (b)

Figure 8: Sampling Relaxation Step in 2D. Our sampling algo-
rithm running in a 2D cross section of the Stanford Bunny geometry
with zoom in to the head. Left: intermediate result before the last
relaxation step. Right: the final result after relaxation.

4.5 Sampling Algorithm

For seeding particles in the initial liquid, solid layer, and dynamic
air layer we need fast isotropic uniform sampling which tightly fits
given boundaries. The boundary fit rules out simple periodic pat-
terns: Figure 6 illustrates the artifacts caused by simple grid sam-
pling in the air. We turned to Poisson disk patterns, and specifically
Bridson’s fast rejection-based approach as the simplest to imple-
ment and modify in 3D [2007]. Throughout we take a parameter r
proportional to the desired SPH inter-particle spacing and use it as
the Poisson disk radius.

There are several components to our sampling, used depending on
the context (liquid, solid, or air): sampling on the surface, relax-
ation on the surface, sampling in the volume, and relaxation in the
volume.

For the initial liquid particles, we first sample the surface (repre-
sented by a level set for convenience), then improve that initial sam-
pling with surface relaxation, then sample the interior volume, and
finish with volume relaxation.

Solids are sampled the same way, but with a distance limit on the
volume sampling since we only need a narrow band of particles.

Air sampling, and continuous liquid emission during the simula-
tion, eschew the surface sampling and the relaxation, and instead
just sample the required volume starting from existing nearby liq-
uid particles which serve the role of the “surface”. As a simple
optimization, we do not sample air particles around isolated liquid
particles, as their motion is just ballistic anyhow.

We use similar hashed acceleration grids to expedite the the accep-
tance/rejection search for point samples as we use for SPH summa-
tions. For air sampling we also include liquid and solid particles in
the rejection test, as we must avoid sampling too close to the liquid
or solid, and need not sample beyond one kernel-radius band of the
liquid particles.

While reading through the following details of each step, refer to
Figure 7 for an illustration of the different components in 2D, and
Figure 8 for the interior relaxation in particular. Note that the
method applies equally to any dimension, and may be applicable
to many problems outside SPH.

4.5.1 Surface Sampling

We assume the surface geometry is given as a signed distance func-
tion: this permits fast projection of points to the surface. Pseu-
docode is provided in Algorithm 1. In the outer loop we search



(a) (b) (c) (d)

Figure 7: Sampling Algorithm Illustration. (a) Sampling the surface. (b) Surface relaxation. (c) Sampling of the interior. (d) Volume
relaxation. Blue: newly added or moved particle. Darker gray: particle originating the new particle sample. White with gray line: point
sampled to the exterior before projected to the surface.

for “seed” sample points on the surface, checking every grid cell
that intersects the surface (i.e. where the level set changes sign) so
we don’t miss any components: in a cell we take up to t attempts,
projecting random points from the cell to the surface and stopping
when one satisfies the Poisson disk criterion, i.e. is at least distance
r from existing samples. Once we have a seed sample, we continue
sampling from it, taking a step of size e · r from the previous sam-
ple along a random tangential direction d, again projecting to the
surface and checking the Poisson disk criterion. Parameters t = 30
and e = 1.085 worked well, but could be further tuned.

Algorithm 1 Surface Sampling

Input: Level set φ, radius r, # attempts t, extension e
Output: Sample set S

1: for all grid cells C where φ changes sign do
2: for t attempts do
3: Generate random point p in C
4: Project p to surface of φ
5: if p meets the Poisson Disk criterion in S then
6: S ← S ∪ {p}
7: Break
8: if no point was found in C then
9: Continue

10: while new samples are found do
11: Generate random tangential direction d to surface at p
12: q← p + d · e · r
13: Project q to surface of φ
14: if q meets the Poisson Disk criterion in S then
15: S ← S ∪ {q}
16: p← q

4.5.2 Interior Sampling

In the interior sampling stage we run regular Fast Poisson Disk
Sampling [Bridson 2007] but starting with the surface sample
points as initial seeds, and using the level set to reject any sam-
ples outside the geometry. For solids, we also use the level set to
avoid sampling beyond one kernel-radius into the interior. For air
or continuous liquid emission, we use the existing liquid particles
as the initial “surface” seeds, and for air also avoid sampling too
more than a kernel radius away from the liquid. As speed is critical
for air and liquid emission during simulation, we reduce the maxi-
mum number of random attempts per sample t to 8; for initial liquid
shapes and solids we take the usual t = 30.

4.5.3 Surface and Volume Relaxation

The goal of the relaxation procedure (Algorithm 2) is to reduce
noise in the SPH density by optimizing sample locations. It runs

twice during the initial particles seeding process, first for relaxing
the surface samples and then for relaxing the volume samples.

We attempt to reposition each sample in turn so that it is a greater
distance away from its closest neighbor, again using simple rejec-
tion sampling. The code takes t = 50 nearby random points (with
distance from the sample decreasing through the iteration) and if
any are further from other samples than the original position, we
take the best. Surface sample candidates are additional projected to
the surface of the level set, and interior sample candidates are pro-
jected if outside the level set. We sweep through all the samples k
times, with k = 5 for the surface and k = 30 for the volume.

Algorithm 2 Surface/Volume Relaxation

Input: Initial sample set S, level set φ, radius r, # sweeps k, and #
attempts t

Output: S relaxed sample set
1: for k sweeps do
2: for all p ∈ S do
3: Let B(p) ⊆ S be the samples within 2r of p
4: d← minq∈B(p) ‖p− q‖
5: pnew ← p
6: for i = 0 . . . (t− 1) do
7: τ ← t−i

t
8: Generate random vector f from unit sphere
9: pcand ← p + r · τ · f

10: if pcand outside φ or came from surface sample then
11: Project pcand to surface of φ
12: d′ ← minq∈B(p) ‖pcand − q‖
13: if d′ > d then
14: pnew ← pcand

15: d← d′

16: p← pnew

4.6 SPH Density Distribution

Our stochastic sampling doesn’t optimally pack samples together.
Therefore we use an empirically determined radius of r = 0.92h
where h is the desired simulation particle spacing, thereby reaching
an SPH density close to the target rest density. At the initial state,
we further measure the average density ρ̄ and scale the initial parti-
cle mass by ρ0/ρ̄ where ρ0 is the target rest density: the densities
then average exactly to ρ0, and we start very close to a correct phys-
ical equilibrium. In contrast, Basic SPH suffers from noticeable
acoustic waves in the beginning of the simulation, which requires
several hundred damped steps to reach an initial equilibrium.



Algorithm 3 Ghost SPH Simulation Step

1: Sample new liquid particles, or air particles, if needed this step.
2: Compute density:
3: for all liquid particles i do
4: Compute ρi with Equation 1
5: for all solid particles i do
6: Find closest liquid particle j
7: ρi ← ρj
8: Compute pressure:
9: for all particles i do

10: Compute pressure pi using the equation of state
11: Compute liquid accelerations and velocities:
12: for all liquid particles i do
13: Compute the acceleration ai from gravity and pressure
14: v∗i ← vi + δt · ai

15: Prepare solid boundary conditions:
16: for all solid particles i do
17: Find closest liquid particle j
18: v∗i ← vN

i + vT
j as in Equation 3

19: Apply XSPH artificial viscosity:
20: for all liquid particles i do
21: Update vnew

i using Equation 2
22: Extrapolate velocity into air:
23: for all air particles i do
24: Find closest liquid particle j
25: vnew

i ← vj

26: Update positions:
27: for all liquid and air particles i do
28: xnew

i ← xi + δt · vnew
i

4.7 Temporal Coherence

Whenever we resample the air region, there can be a small change
in the nearby density summations etc. which in principle could be
a problem for temporal coherence. Since we resample twice per
frame, this is not an issue — and even if we resampled less fre-
quently we could always smoothly fade out the old air particles
while fading in the new. That said, it’s worth evaluating how small
the change due to resampling is.

Consider a simple constant shear flow where only internal forces
(pressure, artificial viscosity) act on the fluid. The exact solution
has zero acceleration, which we use as a baseline to measure the
general SPH error vs. the change due to air resampling. We ran
this example with 6400 liquid particles initially in the unit square
centered at (0, 0) with velocity field v(x, y) = (0, x).

We measure the acceleration Ai of a particle with the second order
finite difference of position, and from that define two metrics,

En
i = ‖Ai(t

n)‖ (4)

∆En
i = ‖Ai(t

n)− Ai(t
n−1)‖, (5)

where tn is the time at step n. The general SPH error is given by
En

i , how far the acceleration deviates from the theoretical solution
(zero), or in other words the SPH error. We estimate the jump due to
resampling by comparing ∆En

i on the steps with resampling versus
the other steps.

Figure 9 shows both the average and the maximum of the metrics
over all particles for the first few dozen steps. Every tenth step,
after air resampling, we can see a telltale jump in the ∆Ei value.
However, the jump is of the same magnitude as the SPH accelera-
tion error Ei in steps without resampling, which is quite tolerable.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Average Error

Step (n)

E
rr

o
r 

(a
rb

it
ra

ry
 u

n
it
s
)

 

 

0 5 10 15 20 25 30 35
0

0.5

1

1.5

Maximum Error

Step (n)

E
rr

o
r 

(a
rb

it
ra

ry
 u

n
it
s
)

 

 

average{∆ E
i
}

average{E
i
}

max{E
i
}

max{∆ E
i
}

Figure 9: SPH Error vs. Resampling Error. Measurements of
the general SPH error Ei (red) and the acceleration change ∆Ei

(blue) in simulation steps 3 − 32. Top: average values. Bottom:
maximum values. Each graph is normalized by its maximum red
plot value. Resampling occurs at every tenth step.

The accompanying video supports this, demonstrating stable flow
in free fall stages and hydrostatic tests for example.

5 Results and Discussion

We ran our simulations on a quad-core Intel i7-2600 (8M Cache,
3.40 GHz) with 8GB memory. Neighbor searches and sam-
pling were accelerated with background grid structures. We used
OpenMP to parallelize particle computations.

Figures 10 and 11 show selected frames from our 3D simulation
results, referred herein as the “tomato” and the “bunny” examples.
Table 1 gives statistics on particle counts, overhead for ghost parti-
cles, and run time. The tomato example has a continuous emission
of liquid particles, thus we report average liquid particle count and
computation time over 16k time steps / 800 frames.

Figure 11 of the tomato example compares Ghost SPH to Basic
SPH with the same shared parameters. Basic SPH suffers severe
surface tension artifacts at air and solid interfaces, lacks the physi-
cal cohesion between liquid and solid, and causes particles to form
unnatural clusters instead of spray. Ghost SPH simulation comes
much closer to the natural motion of the fluid flow (see the video for
real footage), wrapping all the way around the tomato before freely
leaving in a stream from the bottom — despite the small number of
simulation particles.

The ghost air particles of Ghost SPH added a nontrivial 141%
memory overhead in the tomato example, though a much smaller
9% overhead for the bunny. Asymptotically the memory overhead
scales with the surface area, not the volume, and thus the overhead
is reduced at higher resolutions. Interestingly, Ghost SPH only took
26% more computation time per time step than Basic SPH for the
tomato, 1.29s versus 1.02s: we argue the considerable improve-
ment in results at the same resolution is worth this small cost. The
computation overhead cause is the air resampling step and the in-
creased number of particles; on average air resampling took 11% of
a simulation step computation time, density and particle neighbor
data 56%, pressure force 19%, and XSPH for artificial viscosity and
boundary conditions took 10% of the time. We also found the im-
proved particle distribution at boundaries meant a much wider range



Statistic Tomato Bunny

Liquid particle average count (#) 59k 91k
Ghost-solid particle overhead 102% 9%
Ghost-air particle overhead 136% 40%
Avg. computation time per step 1.92 s 1.29s
Avg. computation time per frame 38.46 s 25.75s

Table 1: Simulation statistics for the 3D examples. “Overhead”
refers to the ratio of ghost particles to real liquid particles. Each
animation frame is subdivided into 20 time steps.

of stiffness coefficients and artificial viscosities could work, sim-
plifying parameter tuning; in some but not all simulations a much
larger stable time step was possible than with Basic SPH, which
lead to a net improvement in performance.

A larger 750k particle simulation of a
double dam break (frame 250 to the left;
also see the accompanying video) aver-
aged 21.4s per step, demonstrating the
expected linear cost.

6 Conclusions

Together our ghost treatment of solid and free surface boundaries,
particle sampling algorithms, and new XSPH artificial viscosity al-
low significantly higher quality liquid simulations than basic SPH
with only a moderate overhead. Our approach should extend easily
to related methods such as PCISPH, and the sampling may find use
in any particle simulation. Looking to the future, we plan to extend
the ghost method to a more accurate treatment of surface tension
and to two-way coupling with solids or other fluids.

Acknowledgements

This work was supported in part by a grant from the Natural Sci-
ences and Engineering Research Council of Canada and a schol-
arship from BC Innovation Council and Precarn Incorporated. All
bunny-like solids were derived from the scanned bunny model made
available by the Stanford Computer Graphics Laboratory.

References

ADAMS, B., PAULY, P., KEISER, R., AND GUIBAS, L. J. 2007.
Adaptively sampled particle fluids. ACM Trans. on Graphics
(Proc. SIGGRAPH) 26, 3.

BATTY, C., BERTAILS, F., AND BRIDSON, R. 2007. A fast varia-
tional framework for accurate solid-fluid coupling. ACM Trans.
Graph. (Proc. SIGGRAPH) 26, 3.

BECKER, M., AND TESCHNER, M. 2007. Weakly compressible
sph for free surface flows. In Proc. ACM SIGGRAPH / Euro-
graphics SCA, 63–72.

BECKER, M., TESSENDORF, H., AND TESCHNER, M. 2009. Di-
rect forcing for Lagrangian rigid-fluid coupling. IEEE Transac-
tions on Visualization and Computer Graphics 15, 3, 493–503.

BONET, J., AND KULASEGARAM, S. 2002. A simplified approach
to enhance the performance of smooth particle hydrodynamics
methods. Appl. Math. Comput. 126, 2-3, 133–155.

BRIDSON, R. 2007. Fast Poisson disk sampling in arbitrary dimen-
sions. In ACM SIGGRAPH Technical Sketches.

CHENTANEZ, N., AND MÜLLER, M. 2011. A multigrid fluid
pressure solver handling separating solid boundary conditions.
In Proc. Symp. Comp. Anim., 83–90.

COLAGROSSI, A., AND LANDRINI, M. 2003. Numerical simu-
lation of interfacial flows by Smoothed Particle Hydrodynamics.
J. Comp. Phys. 191, 2, 448–475.

COOK, R. L. 1986. Stochastic sampling in computer graphics.
ACM Trans. Graph. 5, 1.

DUNBAR, D., AND HUMPHREYS, G. 2006. A spatial data struc-
ture for fast Poisson-disk sample generation. ACM Trans. on
Graphics (Proc. SIGGRAPH) 25, 3.

FEDKIW, R., ASLAM, T., MERRIMAN, B., AND OSHER, S. 1999.
A non-osillatory Eulerian approach in multimaterial flows (the
Ghost Fluid Method). J. Comput. Phys. 152, 457–492.

FEDKIW, R. 2002. Coupling an Eulerian fluid calculation to a
Lagrangian solid calculation with the Ghost Fluid Method. J.
Comp. Phys. 175, 200–224.

GINGOLD, R. A., AND MONAGHAN, J. J. 1977. Smoothed Par-
ticle Hydrodynamics - theory and application to non-spherical
stars. Mon. Not. R. Astron. Soc. 181, 375–389.

IHMSEN, M., AKINCI, N., GISSLER, M., AND TESCHNER,
M. 2010. Boundary handling and adaptive time-stepping for
PCISPH. In Proc. VRIPHYS, 79–88.

KEISER, R., ADAMS, B., GUIBAS, L. J., DUTRÉ, P., AND PAULY,
M. 2006. Multiresolution particle-based fluids. Tech. Rep. 520.

LUCY, L. B. 1977. A numerical approach to the testing of the
fission hypothesis. Astron. J 82, 1013–1024.

MONAGHAN, J. J. 1989. On the problem of penetration in particle
methods. J. Comput. Phys. 82, 1–15.

MONAGHAN, J. J. 1994. Simulating free surface flows with SPH.
J. Comput. Phys. 110, 399–406.

MONAGHAN, J. J. 2005. Smoothed Particle Hydrodynamics. Re-
ports on Progress in Physics 68, 8, 1703–1759.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proc. ACM
SIGGRAPH / Eurographics SCA, 154–159.

MÜLLER, M., SCHIRM, S., TESCHNER, M., HEIDELBERGER,
B., AND GROSS, M. 2004. Interaction of fluids with deformable
solids. J. Comput. Anim. and Virt. Worlds 15, 3–4, 159–171.

MÜLLER, M., SOLENTHALER, B., AND KEISER, R. 2005.
Particle-based fluid-fluid interaction. In Proc. ACM SIGGRAPH
/ Eurographics SCA, 237–244.

SOLENTHALER, B., AND GROSS, M. 2011. Two-scale particle
simulation. ACM Trans. on Graphics (Proc. SIGGRAPH) 30, 4,
81:1–81:8.

SOLENTHALER, B., AND PAJAROLA, R. 2008. Density contrast
SPH interfaces. In Proc. ACM SIGGRAPH / Eurographics SCA,
211–218.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective incompressible SPH. ACM Trans. on Graphics (Proc.
SIGGRAPH) 28, 3.

TURK, G. 1992. Re-tiling polygonal surfaces. ACM Trans. on
Graphics (Proc. SIGGRAPH) 26, 2.



(a) (b) (c)

Figure 10: Fluid sphere on solid bunny.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Tomato Under Tap Water. Ghost SPH vs. Basic SPH. Upper row (a)-(d): Ghost SPH. Lower row (e)-(h): Basic SPH. (equivalent
frames are presented)


