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Abstract

Direct methods have made remarkable progress in the computational efficiency
of factorization algorithms during the last three decades. The advances in graph
theoretic algorithms have not received enough attention from the iterative methods
community. For example, we demonstrate how symbolic factorization algorithms
from direct methods can accelerate the computation of a factored approximate in-
verse preconditioner. For very sparse preconditioners, however, a reformulation of
the algorithm with outer products can exploit even more zeros to good advantage.
We also explore the possibilities of improving cache efficiency in the application of
the preconditioner through reorderings. The article finishes by proposing a block
version of the algorithm for further gains in efficiency and robustness.
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1 Introduction

So far research into sparse approximate inverse preconditioners has focused on con-
vergence, ignoring more subtle efficiency issues for the most part. This paper explores
how to get the best performance out of an approximate inverse preconditioner, particu-
larly on modern superscalar workstations.

The algorithm we turn our attention to is Benzi and Tůma’s AINV[1, 2], or more
specifically, a slight variation on the stabilized version SAINV[4] that is guaranteed to
avoid breakdown for positive defininte problems. We previously explored the issue of
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ordering in [7], noting that for good orderings the set-up time for the preconditioner
can be reduced dramatically. Here we go into details on that and other techniques for
boosting the performance of the method. We note that in [1, 2], Benzi and Tůma had
already implemented the symbolic factorization enhancement and outer-product form
below, though don’t discuss it in depth.

Before proceeding, we introduce some notation. Column i of a matrix A is written
Ai (and so row i is (AT )T

i ). The j’th entry of a vector v is given by vj (and so the
(i, j)’th entry of a matrix is indeed Aij). The column vector of all zeros except for the
one at the i’th position is ei: ei is thus column i of the identity matrix I . In algorithms,
x← y indicates that variable x is assigned the value of y.

2 Basic Implementation

The simplest form of SAINV is a left-looking, inner product based algorithm, given
in algorithm 1. It can be viewed as the generalization of classical Gram-Schmidt1 to
constructing A-biconjugate sets of vectors from the standard basis, with small entries
dropped to preserve sparsity. The results are two upper-triangular matrices W and Z

containing the sets of vectors as columns and a diagonal matrix D with W T AZ ≈ D.
(In fact, with the presented choice of dropping, the diagonal of W T AZ is exactly D—
it’s just the off-diagonal terms that might not be zero.) When A is symmetric, the
algorithm can be simplified by eliminating the W computations, using W = Z.

Of course the matrices all should be stored in sparse mode. For this article, com-
pressed column storage format is assumed: each matrix is a collection of n sparse
column vectors.

However, the inner products rZj and WT
j c are more efficiently computed if one of

the vectors is stored in full mode; while a sparse-sparse operation could theoretically be
faster, a typical implementation’s more complicated branching and memory accesses
make it slower on today’s hardware. Since each r and c is reused over many inner
iterations, it is natural to keep these in full storage—though of course, there is the
drawback that often W and Z will be denser than A, so the inner products would be
even more efficient with Wj and Zj in full storage.

One n-vector suffices to store both r and c. To avoid unnecessary O(n2) work it
shouldn’t be completely zeroed out after use: only the nonzero locations should be
reset. Further unnecessary work can be eliminated by only copying nonzeros up to
position i − 1, since W and Z are upper triangular and thus locations from i onwards
will not be involved in the inner products.

With compressed column storage, accessing each column c is simple, but finding
each row r is more time-consuming. In the symmetric case, this is of course unnec-
essary. Even if A just has symmetric structure, r can be found faster since not every

1SAINV in [4] is actually a generalization of modified Gram-Schmidt; this variation is a slightly faster
but typically equal quality algorithm.
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Algorithm 1: The left-looking, inner product form of SAINV.

• Take A, an n× n matrix, and some drop tolerance δ ≥ 0 as input.

• For i = 1, . . . , n

� Initialize columns i of W and Z to the i’th standard basis vector

• Set Wi ← ei and Zi ← ei.

� Make column i of W biconjugate with previous columns

• Get row i of A: r ← (AT )T
i = eT

i A.

• For j = 1, . . . , i− 1

• Set Wi ←Wi −
rZj

Djj
Wj

� Make column i of Z biconjugate with previous columns

• Get column i of A: c← Ai = Aei.

• For j = 1, . . . , i− 1

• Set Zi ← Zi −
W T

j
c

Djj
Zj

� Drop small entries to keep W and Z sparse

• Zero any above-diagonal entry of Wi or Zi with magnitude ≤ δ.

� Find the “pivot” Dii

• Set Dii ←W T
i AZi.

• Return W , Z, and D.



REFINING AN APPROXIMATE INVERSE 4

column of A need be checked for a nonzero at position i: only those columns corre-
sponding to nonzeros in column i.2

The updates to Wi and Zi require some thought, as they should be done in sparse
mode; if constructed as dense vectors, there will be unnecessary O(n) work in every
iteration to gather them up into sparse storage. If the sparse columns are not kept in
sorted order, the simplest way of adding the scaled Wj to Wi (or Zj to Zi) is to do
a linear search in Wi for each nonzero in Wj ; if there is a nonzero already in that
location, add it to it, and otherwise append it. If the columns are sorted, then a faster
merge operation may be used instead.

However, both of these methods require time dependent on the number of nonzeros
already in Wi (some fraction of the elements in Wi will be scanned to determine where
to add the update), which may grow with each inner iteration as updates are applied.
A better implementation is described below, adding the scaled Wj to Wi in time just
proportional to the number of nonzeros in Wj , independent of how many are already
in Wi (avoiding any scan of existing elements).

Maintain two n-vectors, exists and location. The former is a Boolean vector
with exists(k) true when Wi has a nonzero in position k; then location(k) points
to where that nonzero is stored in the sparse data structure. Now adding an entry from
the scaled Wj to Wi, say at position k, takes O(1) time: look up exists(k); if true
use location(k) to modify the existing entry in Wi, otherwise append the new entry
to Wi. If the vectors must be stored in sorted order, after the inner loop Wi can be radix
or bin-sorted very efficiently.

Of course, exists must be reset to all false before each inner loop. A cheap to
avoid this cost is to let exists(k) = i indicate true for Wi, and n + i true for Zi, on
the i’th iteration.

The calculation of the pivot W T
i AZi is best done with Wi in full storage, viewing

it as a sum of full-sparse inner products:

WT
i AZi =

∑

Zji 6=0

(WT
i Aj)Zji

Thus after small entries have been dropped, Wi should be scattered into a full n-vector,
and after the pivot has been calculated, only those nonzeros reset.

3 Fruitless Inner Products

Even with good handling of the sparse vs. dense issues, the algorithm as it stands must
take at least O(n2) time due to the nested loops. This can be improved significantly

2It is also possible to store a row-oriented copy of A along side the column-oriented version, as is done
in [2]; for the scalar case here we have chosen not to, trading higher complexity for more lower storage
requirements. Experiments indicate that typically the row-oriented copy is only worthwhile when A is
not structurally symmetric, but then essentially the same performance can be obtained by adding zeros to
symmetrize the structure, as will be discussed later.
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Table 1: When SAINV with drop tolerance 0.1 is applied to several standard test matrices,
almost all the inner products are exactly zero. The ordering in all cases is nested dissection.

Total number of Number that are Percentage
Matrix inner products exactly zero of total
ADD32 24,596,640 24,580,218 99.9%
BCSSTK25 238,347,282 237,781,980 99.8%
MEMPLUS 315,328,806 315,240,589 99.97%
NASA2146 4,603,170 4,464,828 97.0%
ORSREG1 4,859,820 4,838,964 99.6%
PORES2 1,496,952 1,484,637 99.2%
SHERMAN2 1,165,320 1,118,651 96.0%
SHERMAN3 25,045,020 25,013,829 99.9%
WATSON5 3,431,756 3,421,143 99.7%

after realizing that often many of the inner j iterations are unnecessary: the inner prod-
ucts rZj and WT

j c are often zero simply because there are no nonzero locations in
common.

Table 1 shows some sample statistics of how many inner products turn out to be
exactly zero in the preconditioner construction for some typical test matrices, sym-
metrically ordered with the nested dissection routine from Metis[14].3 This does not
include the small fraction of inner products from the pivot calculation W T

i AZi.

Fortunately, many of these inner products can be avoided. We begin by considering
those inner products which are zero even without small entries dropped in the algo-
rithm, i.e. when the true inverse factors are computed. Because the algorithm doesn’t
rely on cancellation anywhere, dropping can only result in more zero dot-products—
thus we are always safe to avoid the ones that are zero without dropping.

First consider the case when A has symmetric structure, so the true inverse factors
have the same structure as each other. Then we have the following result:

Theorem 3.1 Assuming symmetric structure, at step i with r equal to the i’th row of
A, the inner product rZj 6= 0 only if j < i and j is an ancestor in the elimination
tree[16] of some k with Aik 6= 0.

Proof: In [7] the structure of the true inverse factors, assuming no felicitous cancella-
tion, was shown: Zkj 6= 0 if and only if k is a descendent of j in the elimination tree
of A. The inner product rZj is nonzero if and only if there is some k with Aik 6= 0
and Zkj 6= 0. Therefore the inner product is nonzero only when there is some k with
Aik 6= 0 and k a descendent of j, i.e. j an ancestor of k. Only values j < i are
considered in the original loop, and so the result follows.

3In [3, 7] other orderings were considered for AINV, but as nested dissection is generally close to best in
convergence, often best in construction time, and most easily parallelized, this article sticks with just nested
dissection. Results for other inverse factor fill reducing orderings are similar.
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Another proof of this result can be made from the factorization A = LDU (with L

unit lower triangular, U unit upper triangular, and D diagonal), so Z = U−1 and thus
AZ = LD. Then the inner product rZj at step i is simply LijDjj , and the nonzero
structure of each row of L has been characterized precisely as above in [15]. The only
difficulty with this route is determining what role cancellation plays in the structure of
AZ—with inexact arithmetic and especially with dropping, it’s not immediately clear
that the structure of the lower triangle of AZ will be a subset of the structure of L.

In [15] a very efficient algorithm is given for finding the elimination tree of A, lead-
ing to a fast symbolic factorization. We can use this to create a symbolic factorization
enhanced AINV, replacing the inner j = 1 . . . i−1 loop with one just over the nonzeros
in row i of L. Of course, taking note of the symmetric structure and column-oriented
storage of A, the upwards-traversals of the elimination tree to find those indices should
start with the nonzeros in column i of A with indices less than i.

When A doesn’t have symmetric structure, things get a little more complicated.
Often A is close to structurally symmetric and so ordering, symbolic factorization, and
biconjugation can all be done efficiently with zeros inserted into the sparsity structure
to make it symmetric. However, there may be cases when it is best to exploit the
non-symmetric zeros in any or all of these steps. (For example, it may be possible to
exploit unsymmetric zeros in ordering to reduce the matrix to block triangular form, in
which case only smaller submatrices need be preconditioned.) Here we will consider
an unsymmetric symbolic factorization enhancement.

The key again is the structure of the true inverse factors. This is most easily dis-
cussed with the language of graph theory, where the nonzero structure of an n × n

matrix M corresponds to a graph GM with vertices labelled 1, . . . , n and directed edge
i → j if and only if Mij 6= 0. See [10], for example, for more discussion of graph
theory and sparse matrix computations.

As proven in [12], the inverse of a matrix M has the structure of the transitive
closure G∗

M of GM , that is a graph G∗
M with a directed edge i → j whenever there

is a path from i to j in GM . The simplest characterization of the structure of the true
inverse factors W T = L−1 and Z = U−1 is then as the transitive closures of the
graphs of L and U respectively. However, there are many unnecessary edges in GL

and GU from this standpoint—if an edge i → j exists alongside a disjoint path from
i to j, the edge i → j may be deleted without effecting the transitive closure. If all
such redundant edges are deleted, the result is called the transitive reduction. If A was
structurally symmetric, this turns out to be the elimination tree mentioned above[16];
otherwise GL and GU reduce to a pair of directed acyclic graphs called elimination
dags[11].

Unfortunately the elimination dags can be fairly expensive to compute, and so
somewhat denser but cheaper graphs, intermediate between the triangular factors and
their transitive reductions, have been investigated in [9]. For this application, an alter-
native route is to use graphs whose transitive closures contain the structures of W T and
Z but may be a little denser still—for example, the elimination tree of the symmetrized
A. With these cases in mind, the unsymmetric generalization of the previous theorem
is:
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Theorem 3.2 Let G◦
L and G◦

U be directed acyclic graphs whose transitive closures
contain the structures of W T and Z respectively. Then at step i of AINV, the inner
product rZj 6= 0 only if j < i and there is a path in G◦

U to j from some k with
Aik 6= 0; similarly the inner product W T

j c 6= 0 only if j < i and j is reachable in G◦
L

from some k with Aki 6= 0.

Proof: We will only prove the rZj part, as the W T
j c part is essentially the same.

Since the transitive closure of G◦
U contains the structure of Z, Zkj 6= 0 only if there

is a path in G◦
U from k to j. The inner product rZj 6= 0 if and only if there is some

k with Aik 6= 0 and Zkj 6= 0. Therefore the inner product is nonzero only if there is
some k with Aik 6= 0 and with a path to j in G◦

U . Only values j < i are considered in
the original loop, and so the result follows.

Just as before, this can be interpreted as symbolic factorization, if G◦
L and G◦

U are
chosen to be the elimination dags or other intermediate structures between the elimina-
tion dags and the triangular factors. For example, the inner product rZj at step i is just
LijDjj , and the above characterization is the same as that shown for the rows of L in
[11, 9].

Table 2 compares the regular form of AINV with the symbolic factorization en-
hanced version, with a drop tolerance of 0.1 for each test matrix as before. The timing
counts are from a C implementation running on an Apple Macintosh workstation with
a 233MHz PowerPC 750 processor. For the matrices with non-symmetric structure
an elimination dag version is tested first, followed by a symmetrized version. Even
without the time required for finding the elimination dags taken into account, and even
though more unnecessary zero inner products are performed, the symmetrized version
is clearly much faster for these typical matrices. In all cases, the enhanced algorithm is
significantly faster than the original algorithm, often by an order of magnitude or more.

For a successful ordering, the number of nonzeros in the LDU factors, hence the
number of inner products in the symbolic factorization enhanced algorithm, is an order
of magnitude less than O(n2) (e.g. see [13] for guarantees on two-dimensional finite
element meshes). Assuming that the average cost of an inner product in the regular and
the enhanced algorithms is the same—which is probably not strictly true, but still is a
good rough estimate—this explains why the enhanced version is so much faster.

4 Revisiting the Outer-Product Form

The symbolic factorization enhancement may avoid all inner products that can be de-
termined zero a priori. However, there are still more that result from the nonzeros that
are dropped during the algorithm. Possibly these could be avoided by pruning the elim-
ination structures as the algorithm goes, but a simpler approach is to rewrite SAINV as
a right-looking outer product algorithm by switching the order of the loops. With the
obvious sparsity enhancement, the result is given in algorithm 2.

In exact arithmetic without dropping, the vectors l and u at step j are the j’th colum
and row of LD and DU respectively. With dropping, they naturally become sparser,
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Table 2: A comparison of regular and symbolic factorization enhanced SAINV on some stan-
dard test matrices. The matrices marked as “symmetrized” had zeros inserted in their sparsity
structure to make them structurally symmetric, albeit not numerically symmetric.

Millions of Percentage of Seconds spent
inner products zero inner products on AINV

Matrix Regular Enhanced Regular Enhanced Regular Enhanced
ADD32 25 0.02 99.9% 15.5% 15.2 0.04
BCSSTK25 238 1.57 99.8% 82.0% 730 6.8
MEMPLUS 315 0.11 99.97% 18.9% 310 44.5
(symmetrized) 0.11 21.4% 260 0.42
NASA2146 4.6 0.14 97.0% 50.2% 7.7 0.31
ORSREG1 4.9 0.17 99.6% 87.6% 3.4 0.20
PORES2 1.5 0.06 99.2% 78.4% 1.2 0.28
(symmetrized) 0.09 86.0% 1.1 0.07
SHERMAN2 1.2 0.12 96.0% 60.3% 1.8 0.71
(symmetrized) 0.16 70.1% 1.4 0.50
SHERMAN3 25 0.20 99.9% 84.3% 18.1 0.34
WATSON5 3.4 0.02 99.7% 50.8% 3.7 0.46
(symmetrized) 0.09 88.8% 3.7 0.08

Algorithm 2: The outer product form of SAINV.

• Take as input A and δ.

• Set W ← I and Z ← I .

• For j = 1, . . . , n

• Set l← AZj

• Set u←W T
j A

• Set Djj ← uZj or equivalently W T
j l, whichever is cheapest

• For i > j, li 6= 0

• Update Wi ← Wi − drop
(

li
Djj

Wj , δ

)

, where entries of the update vector

with magnitude ≤ δ are dropped.

• For i > j, ui 6= 0

• Update Zi ← Zi − drop
(

ui

Djj
Zj , δ

)

.

• Return W , Z, and D.
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giving the improvement over the symbolic factorization enhanced inner product algo-
rithm.

Note that because small entries are dropped before being added in this formulation,
the result will in general be different from the inner product version. Usually the same
drop tolerance will produce a sparser but less accurate preconditioner than the inner
product form.

The primary drawback of the outer product form is its right-looking nature: all of
columns j + 1, . . . , n of W and Z must be stored in dynamic data structures, since
updates to them may insert entries in any row up to j. The natural implementation
with each column of W and Z in a sorted linked list then can suffer from inefficient
insertions, poor cache usage, and difficulties for vectorization.4 However, the savings
from exploiting the dropped zeros hopefully can make up for this.

Just as with the inner product form, there is a difficulty when A doesn’t have sym-
metric structure and a row-oriented copy is not available: the left-multiplication W T

j A

cannot be made in an efficient fully sparse mode. All entries must be computed, even
though most will be zero. One possibility to speed this up is to use a similar symbolic
factorization approach as before, making use of a characterization of the columns of
L (rather than the rows) to a priori eliminate most of the zero computations. How-
ever, this would lose the motivation for the outer product form—exploiting the zeros
that cannot be determined a priori—while still incurring the dynamic data structure
penalties. Therefore we have chosen to symmetrize the sparse matrix data structure as
before.

A timing comparison between the inner product and outer product algorithms is
given in table 3. Since the same drop tolerance of 0.1 produces slightly different factors
for the outer product form than for the inner product form, I have chosen new drop
tolerances for the outer product tests to give it roughly the same number of nonzeros.

As the results show, while for some problems the extra overhead of outer product
SAINV isn’t worth the small gain made from exploiting the full sparsity, in several
cases the benefit is considerable.

With these results in mind the choice of algorithm depends on several factors:

• How much storage is available? Enough for the overhead of the dynamic data
structures in the outer product form? Enough for an additional row-oriented copy
of A?

• Approximately how full will the factors be? Full enough that there will be so
few zero inner products that inner product AINV is faster?

• Is A so far from structurally symmetric that it pays to exploit the unsymmetric
zeros in some way? (e.g. using unsymmetric elimination structures for inner-
product SAINV rather than the elimination tree of the symmetrized matrix)

4More sophisticated data structures such as B-trees may do better in some cases—normally though, the
number of nonzeros in each column of W and Z is so small that the increased overhead is not worth it.
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Table 3: Timing comparison for inner product SAINV versus outer product SAINV. Matrices
with unsymmetric structure are symmetrized with additional zeros.

Time for inner Time for outer
Matrix product form product form
ADD32 0.04 0.06
BCSSTK25 6.75 0.97
MEMPLUS 0.42 0.55
NASA2146 0.31 0.17
ORSREG1 0.20 0.06
PORES2 0.07 0.04
SHERMAN2 0.50 0.44
SHERMAN3 0.34 0.10
WATSON5 0.08 0.11

It should be noted also that for some problems, A is known only as an operator or
as a product of matrices, not in explicit matrix form. In this case, finding elimination
structures for A may be impossible, prompting the choice of the outer product form
which doesn’t require them (see [6] for example).

5 Ordering for Application

Forgetting the trivial diagonal matrix D for the time being, the basic operation in an
iterative solver is applying the preconditioned operator to a dense vector: W T AZx.
Algorithm 3 shows the simplest algorithm for doing this with compressed column stor-
age.

One major issue in the speed of this algorithm on modern superscalar processors
comes from the memory hierarchy: efficient cache usage. For example, in the first main
loop (multiplying u = Zx) each entry of u may be accessed several times according
to the structure of Z. The more cache misses there are—the more times an entry of
u has to be fetched from main memory—the slower the loop will run. Ideally, once
an entry from u is fetched from cache it will stay there until done with, and won’t be
prematurely bumped out of the cache. The situation is complicated by how entire cache
“lines” of consecutive memory locations are brought into cache at each miss—typically
on the order of 64 bytes.

One of the advantages of approximate inverses is that any orderings may be used in
the matrix-vector multiplies—the rows and columns of the matrices and vectors may be
permuted without effecting the result, modulo finite precision arithmetic errors, with
the only restriction coming from the compatibility of the orderings in multiplication
(e.g. the ordering of x must be the same as the columns of Z). With detailed knowledge
of the hardware hopefully this can be exploited to promote efficient cache usage in the
multiplies. Such tuning is beyond the scope of this article, but some simple tests can
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Algorithm 3: Multiplying W T AZx.

• Take as input sparse matrices W , A, and Z (in compressed column format) and a dense
vector x.

• Initialize dense vectors u = 0 and v = 0

• For i = 1, . . . , n

• For j with Zji 6= 0

• Update uj ← uj + Zjixi

• For i = 1, . . . , n

• For j with Aji 6= 0

• Update vj ← vj + Ajiui

• For i = 1, . . . , n

• Set ui ← 0

• For j with Wji 6= 0

• Update ui ← ui + Wjivj

• Return the result in u.

show the potential effect of ordering for application. We hope to raise questions here,
rather than provide answers.

Table 4 compares the performance for random orderings, the nested dissection or-
dering used in construction of the preconditioner, and a reordering of the elimination
tree for the nested dissection ordering starting at the leaves and progressing upwards
level by level. This last ordering is an entirely equivalent elimination sequence to the
nested dissection, but mimics the greedy choices made by minimum degree or MIP[7].

The differences in performance, at least for ADD32, BCSSTK25, MEMPLUS, and
SHERMAN3, highlight how important ordering might be here. Random ordering is
clearly bad—indicating for example that unstructured meshes created with no natural
ordering should be appropriately reordered for iterations. The standard nested dissec-
tion is generally better than the elimination tree equivalent leaf reordering, perhaps
indicating that if minimum degree or MIP is used for construction a further reordering
is necessary. We believe the reason for these differences is that standard nested dissec-
tion tends to cluster most of the nonzeros in small blocks (excepting the large block
separators), which intuitively will allow efficient cache usage. We note that other fac-
tors may be involved, such as how fully used are multiple instruction pipelines, but for
the moment we don’t see a reason they would have this effect; we refer the reader to [8]
for a full discussion of all the factors involved in tuning a (dense) matrix-multiplication
routine.

The question remains whether there are significantly superior orderings to stan-
dard nested dissection. The following theorem suggests that for fairly full approximate
inverses, the nested dissection ordering could well be the best. In general, for sym-
metrically structured matrices, a post-ordering of the elimination tree[10] is a natural
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Table 4: The number of milliseconds taken to compute W T AZx for various orderings of the
matrices and x. W and Z are computed from inner product SAINV with a drop tolerance of
0.1 and the nested dissection ordering. The leaf reordering is an equivalent elimination sequence
to the nested dissection, but begins with all the leaves of the elimination tree and progresses
upwards level by level, mimicking minimum degree and MIP to some extent.

Ordering
Matrix Random Nested Dissection Leaf Reordering
ADD32 5.6 4.7 4.8
BCSSTK25 102.3 70.6 91.6
MEMPLUS 33.6 27.4 28.6
NASA2146 13.0 12.4 12.7
ORSREG1 2.3 2.6 2.2
PORES2 1.3 1.3 1.3
SHERMAN2 4.2 4.3 4.4
SHERMAN3 7.9 6.6 6.9
WATSON5 3.7 3.4 3.8

generalization of the nested dissection ordering even when the ordering was not con-
structed in that manner.

Theorem 5.1 For symmetrically structured A with a post-ordering of the elimination
tree[10], the true upper triangular inverse factor has a dense skyline. In other words,
its columns consist of a block of zeros followed by a single dense block of nonzeros
ending at the diagonal.

Proof: The key characterization of a post-ordering is that any subtree is ordered in
a contiguous block, with the root of the subtree coming last. The nonzeros in column i of
the true upper triangular inverse factor correspond to all children of i in the etree, i.e.
to the others nodes in the subtree rooted at i. Thus the nonzeros form one contiguous
block, ending at the diagonal (the i’th row).

This simple block structure is near optimal for cache use within each column,
though the question of the order in which the columns should be considered is still
open.

6 Block Methods

As with direct methods, the eventual goal of the algorithms should be to cut the sym-
bolic operations to a minimum while doing the necessary numerical operations effi-
ciently in cache. We have shown ways to eliminate unnecessary numerical operations
in the preconditioner construction, and the possibility of promoting cache usage in the
application. For further improvements we now turn to block methods to cut down
symbolic operations and further cache efficiency.
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Algorithm 4: The left-looking, inner product form of block SAINV with symbolic factorization
enhancement.

• Take A, an m×m block matrix, and some drop tolerance δ ≥ 0 as input.

• For i = 1, . . . , m

� Initialize block columns i of W and Z to the i’th standard basis block vector

• Set Wi ← Ei and Zi ← Ei.

• Get block row i of A: R← (AT )T
i = ET

i A (up to column i− 1)

• For j < i, Uji 6= 0 (determined by symbolic factorization)

• Wi ←Wi −Wj(RZjD
−1

jj )T

• Get block column i of A: C ← Ai = AEi (up to row i− 1)

• For j < i, Lij 6= 0 (determined by symbolic factorization)

• Zi ← Zi − Zj(D
−1

jj W T
j C)

• Zero any above-diagonal block of Wi or Zi with norm ≤ δ.

• Set Dii ←W T
i AZi (and store D−1

ii ).

• Return W , Z, and D.

This approach, partitioning A into small dense block matrices, is used to great
advantage in direct methods, where for example supernodes[17] are used to eliminate
redundant symbolic operations. There are also many problems, e.g. from systems of
PDE’s, that naturally have a block structure and it sometimes makes sense to treat them
as such: convergence may sometimes be improved, as shown below.

The generalization of SAINV to block matrices is straightforward. We redefine our
notation somewhat for block structures. Throughout we assume that A and all other
matrices have been partitioned with 1 = b1 < b2 < · · · < bm+1 = n + 1. Then Ai

indicates block column i of A, consisting of the “point” columns bi to bi+1 − 1, and
Aij indicates the j’th block in this block vector, the submatrix of A extending from
position (bi, bj) to (bi+1 − 1, bj+1 − 1). The i’th block column of the identity is given
by Ei. Notice that diagonal blocks of a matrix are necessarily square, but off-diagonal
blocks might not be if the block size isn’t constant.

Block SAINV produces matrices W , Z, and D that approximately satisfy W T AZ =
D, where W and Z are block upper triangular and D is block diagonal. The inner prod-
uct form is given in algorithm 4; for this paper we don’t explore the performance of the
somewhat more complicated outer product form. The generalization of the scalar outer
product algorithm is straightforward nonetheless.

The symbolic factorization enhancement now must use the graph of the block form
of A, where each vertex represents a diagonal block and each edge a nonzero off-
diagonal block. Also notice that since the storage requirements of a sparse block matrix
is strongly dominated by the numerical entries in the dense blocks, it is perfectly rea-
sonable to store a row-oriented version of the sparsity structure (referencing the same
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numerical entries) along side the column-oriented version—so finding block rows of
unsymmetric A can be done with ease.

Determining when to drop “small” blocks from W and Z is an interesting issue,
especially as one drop tolerance is used for blocks of potentially different sizes. One
possibility, used here, is to compare the Frobenius norm of the block divided by the
number of entries in the block against the drop tolerance δ.

In the scalar case it is possible that a pivot will be zero (or small enough to cause
problems when dividing by the pivot later). This problem is alleviated somewhat with
the block algorithm, since the inversion of the block pivots can be carried out more
robustly with a partial pivoting LU decomposition, a QR decomposition, or even an
SV D operation to be completely confident of numerical stability. However, it still
may happen that a block pivot is singular or so close to singular that problems emerge.
Our implementation currently only checks for exact zeros in the partial pivoting LU

decomposition; this never happenned in the testing however. Several possibilities exist
for recovery if this does happen—adding a diagonal shift to the block, for example, or
using a shifted SV D instead.

Some of the test problems have a natural block structure while it isn’t so clear for
others. One possibility is to use the supernodes following a nested dissection ordering,
hoping that since the nodes making up a supernode have essentially the same structure
in the true inverse factors, they should have similar structure in the approximate inverse
and thus be correctly handled with dense blocks. The problem is that usually many
supernodes are singletons, so unless care is taken in coding the algorithm, the overhead
of the block algorithm is wasted. It is also important to note that there are typically
some supernodes of very large size, which must be broken up into more manageable
sizes for storage and computational efficiency.

Perhaps a better approach is to use the aggregation algorithms of algebraic multi-
grid. Here we tried applying the ideas from [5] (using |A|+ |AT | for the unsymmetric
matrices).

Table 5 shows construction times and convergence rates for scalar inner product
AINV and block inner product AINV, with the same drop tolerance of 0.1 as before.
For these examples, the block form is always slower—the overhead simply isn’t worth
any gains in dense operations. It should be noted that the BLAS and LAPACK libraries
used for these timings were not highly tuned, however, so better results are definitely
anticipated in better implementations. The convergence is generally worse for the block
method, presumably because the block version may drop important nonzeros in other-
wise near zero blocks while retaining unimportant nonzeros that happen to occur in the
same blocks as important nonzeros. The exception is SHERMAN2, where as suggested
in [7] the block form succeeds but the scalar form fails.

It seems then that the block version might only be appropriate in certain cases,
unless a better determination of blocks and a more sophisticated dropping strategy
are adopted. For example, the improvement for SHERMAN2 over the scalar version
is probably because the scalar version’s simple diagonal pivoting is inappropriate—
with weak diagonals and condition numbers ranging from 107 to 1011, the diagonal
blocks require partial pivoting to be inverted. (For the other matrices, the diagonal
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Table 5: A comparison of preconditioner construction times and convergence rates. The drop
tolerance for scalar inner product AINV is 0.1, and the drop tolerance for the block version is
chosen to give approximately the same number of nonzeros. CG is used for s.p.d. problems and
BiCGstab for the rest; the right-hand side is the vector of all ones, the initial guess is all zeros,
and convergence is flagged when the residual 2-norm is decreased by a factor of 106.

Scalar Block
Time for Average Time for

Matrix AINV Iterations block size AINV Iterations
ADD32 0.04 5 2 0.10 32
BCSSTK25 6.75 ∞ 3.0 7.88 ∞

MEMPLUS 0.42 17 2 0.58 ∞

NASA2146 0.31 85 3.9 0.30 135
ORSREG1 0.20 31 2.5 0.31 46
PORES2 0.07 ∞ 2 0.20 ∞

SHERMAN2 0.50 ∞ 6 0.57 21
SHERMAN3 0.34 96 1.7 1.13 127
WATSON5 0.08 127 2.7 0.13 ∞

blocks aren’t nearly as badly conditioned.) Of course, this raises the question whether
a simple block diagonal rescaling applied before scalar AINV would be enough to cure
the problem.

7 Conclusions

We have presented several refinements for improving the performance of the SAINV
factored approximate inverse. Ideas and algorithms from direct methods allowed sig-
nificant performance enhancements for the inner product form of the algorithm; for
many problems, however, even faster construction was possible with an outer prod-
uct reformulation. Experimental results demonstrated how reordering the approxi-
mate inverse can greatly effect the cache efficiency during its application in an iter-
ative solver. We finally proposed a block version of the algorithm for further gains
in cache efficiency, which unfortunately are offset by increased overhead in the cur-
rent implementation—we expect further tuning of the code will make block processing
worthwhile. The block version can give better convergence for some badly condi-
tioned block-structured problems thanks to its better treatment of pivots, but for other
matrices appears to be less robust since the block-by-block dropping is more likely to
make bad choices. More sophisticated ideas from algebraic multigrid for finding better
block structures may alleviate this difficulty, as might better dropping strategies than
the current ad hoc choice.

The underlying theme to this research is that significant gains can be made for
iterative solvers by considering the techniques designed originally for direct solvers.
Progress towards high performance iterative methods requires solving many of the al-
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gorithmic problems that have confronted the direct methods community; the solutions
developed there, tempered with knowledge of iterative approaches, are bound to be
valuable.
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