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Multi-Resolution Approximate
Inverses

This thesis presents a new preconditioner for elliptic PDE problems on ahst&ed meshes.
Using ideas from second generation wavelets, a multi-resolution basissgwtted to effec-
tively compress the inverse of the matrix, resolving the sparsity vs. quatiblgan of standard
approximate inverses. This finally allows the approximate inverse apptoadale well, giv-

ing fast convergence for Krylov subspace accelerators on a widgtyaf large unstructured
problems. Implementation details are discussed, including ordering anttuziios of fac-

tored approximate inverses, discretization and basis construction in dnsvardimensions,
and possibilities for parallelism. The numerical experiments in one and two diomsnson-

firm the capabilities of the scheme. Along the way | highlight many new avefouessearch,
including the connections to multigrid and other multi-resolution schemes.
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Chapter 1

Preliminaries

1.1 Introduction

One of the biggest challenges facing scientific computing today is accusailiyng partial
differential equations. Advances in computer performance help fued#isand for higher
guality numerical solutions to problems from science, engineering, finatweHowever, ef-
fectively using the increased power of workstations and superconspegguires new methods:
algorithms that worked in the past often don't scale well to the new architecand bigger
problems.

This thesis proposes a new technique for solving the systems of linediceguahich take
up so much of the time for elliptic PDE’s on unstructured meshes. Currenpéapyate inverse
preconditioners do not scale well: there must be a trade-off betweesitgnd quality in the
approximation, with the disparity quickly growing as the problem size incezddewever, by
compressing the inverse with techniques from second generation wawelgarseind high
quality preconditioner can be found, giving fast and scalable coamergfor iterative methods.
Furthermore, the attractive parallelism of approximate inverses is retained.

The main effort in this work is to present the essential ideas and motivateisdmulti-
resolution approximate inverses, with proofs of concept showing thpalikties in one and
two dimensions. This is not a theoretical treatise proving optimality of the metlords rit



a blueprint for a high-performance implementation. | have instead strovea practical and
intuitive middle route that will ease the way for progress in all directions.

1.2 Elliptic PDE’s

This thesis is concerned with the numerical solution of elliptic partial differeetiaations
(PDE’s). More specifically, second order linear scalar problems witldresidered:

Lu=f on (1.1

where(? is the region of interestf is some forcing function, and the differential operafois
of the form:
Lu=V-(KVu—bu)+cu

Here K is a positive definite second order tensor fidlds a vector field, and is a scalar
field. Note that these coefficients may vary o¢erin some applications, possibly with jump
discontinuities of several orders of magnitude.

One can physically interpret 1.1 as describing the concentratioinsome quantity—e.g.
heat, a chemical dissolved in fluid, neutrons, etc. The expregsicnu — bu) is the “flux”,
measuring how fast and in what direction the quantity is flowing. Kiéu term represents
diffusion how the quantity naturally flows from regions of high concentration tos/aedions
of low concentration at a rate proportional to the gradient (thoughi# not a scalar multiple of
the identity, anisotropy in the underlying medium can distort this flow). skhierm represents
theconvectiorof the quantity by some underlying flow field—a current in the medium destribe
by b carries the quantity along with it. Thag - (K'Vu — bu) at a point gives the total change
in u at that point due to flow of the quantity. The final term representseaction where the
quantity is createdc(> 0) or destroyedd < 0) at a rate proportional to its concentration. In
the former case; > 0, the problem may become indefinite or even ill-posed.

There are several special examples of elliptic equations which dorctlgxall under this
interpretation. For example, irrotational, inviscid, incompressible fluid flowlEadetermined
by solving Laplace’s equation

V2=V V=0



for a potential functionp, giving the velocity fieldv = V¢. Another example is the Helmholtz
equation arising in electromagnetics

VA + kP = f

Of course, 1.1 is under-determined without appropriate boundanyitamrsd For example,
the value or derivatives af could be specified along the boundary. To be precise, letting the
boundaryof2 of 2 be partitioned int@2p, 00y, andofdr, impose the following on 1.1:

u=g¢gp on 0Qp

(KVU)‘ﬁ:gN on 0Qy
(KVu)-n+au=gr on 0Qg

Here 7 denotes the normal vector to the boundary. The first condition, whésespecified,

is called a Dirichlet condition. The second condition, where the diffusive fhrough the
boundary is specified, is the physical generalization of the NeumanrdaguoonditionVu -

n = g. The third, a linear combination of the first two, is the generalization of therRob
conditionVu - » + au = g. Note in particular that specifying the combined diffusive and
convective flux(KVu — bu) - i = (KVu) - 7+ (—b - n)u, is a special case of this third type.

An important application of solving equations like 1.1 arises in the implicit numesadat
tion of time-dependent parabolic partial differential equations, of thafor

%:ﬁu on Q, t>0
ot

Another big application is non-linear elliptic problems, where each step ofdfésumethod
will involve solving a linearized problem of the type 1.1, with the coefficienfsetheling on the
solution from the previous step.

Finally, the problem 1.1 is also seen in inverse iteration methods for findingwailyes and
eigenfunctions of the operator, i.e. scalarand functions: such thatCu = Au.



1.3 Discretization

To numerically approximate the solution of the PDE, the equation 1.1 mudisbeetized re-
ducing it from an infinite dimensional linear system to a finite dimensional oycally this is
done by first determining a set of points (the “nodes”) in the region wiherapproximate val-
ues ofu are sought. A mesh is generated that connects those nodes, breakiegegion into
small and simple subregions—e.g. sub-intervals in 1D, triangles or quachitabe 2D, tetra-
hedra or prisms in 3D. For each node, a linear equation involving neadbgsns determined
from the mesh, attempting to approximate the true equation 1.1 or the bounchalyi@o at
that node. The resulting finite system of equations is then solved for thexapate values of
u at the nodes. The system will be written&s = f, whereA is the matrix of coefficients of
the equationsy is the vector of unknown values afat the nodes, anflis the known right-hand
side vector arising fronf and the boundary conditions.

This thesis is concerned with problems on unstructured meshes, that isstieshare not
regularly arranged grids. This is of particular interest for two reasdtisst, most real life
problems involve regions of such geometric complexity that it is difficult to falthfepresent
them with a structured grid. Second, in most real life problems the magnitfittesderivatives
of the solution, which govern the accuracy of the discretization, vargiderably: in regions
of rapid changes, more nodes are required for adequate accitgsy.adaptive meshing” is
often difficult to manage with structured grids.

For discretizing a PDE on an unstructured mesh, either the finite volume mettieifimite
element method is normally used. Particularly for difficult problems with discoiti&s in the
coefficients, fairly low-order approximations using many nodes areepes. In this case, the
finite element method can often be interpreted as a type of finite volume methask aevsa,
and so in fact often the two methods are used together. See sections 5.2 &orddetails.

1.4 Iterative Solvers

The meshes on which PDE’s are discretized are often very fine, using moaes, in order to
give more accurate solutions. This gives rise to very large systems afieqsi to be solved.
Fortunately, the coefficient matrices are sparse: almost all the entriesrareThe traditional
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approach of using Gaussian elimination to decompose the matrix into triangctarsfathen
solving triangular systems, can be enhanced to exploit this sparsity. Mtdiezct methods”
use sophisticated reorderings of the rows and columns to keep the stegagrements for the
factors as low as possible, and clever data structure algorithms to redufsethrization and
solution time to a minimum.

However, as problems have continued to grow and computer architettangexd, direct
methods have hit serious difficulties. Matrices with millions of rows are becoagingnon, and
at that size just storing the factors can be too expensive, let alone coppfheém! Furthermore,
Gaussian elimination and triangular solves can be difficult to effectiveBllpéize, resulting in
poor efficiency on todays high performance machines with tens, hundrezven thousands of
processors.

Alternatives include “fast solvers,” which typically use the Fast FouFransform to solve
certain PDE problems very efficiently. Unfortunately their use is generadiiricted to some
special constant coefficient PDE’s discretized only on uniform Gartegids, which is inade-
quate for many applications.

The search for scalable algorithms for effectively solving very largdblems, especially
on parallel computers, turns instead to “iterative methods”. The esserdgglbiehind these
schemes is that starting with an initial guagsfor the solution ofAu = f, refinements are
made to get better guessas, u?, .... The process is halted wheri is deemed accurate
enough, say wheplAu’ — f|| < 107%||Au® — f||.

There are many possibilities for determining better guesses at the solutienmdst pop-
ular general purpose algorithms are called “Krylov subspace actmigta There are many
different schemes in this framework, but it is widely accepted that the elobiaccelerator isn’t
crucial compared to the choice of preconditioner, explained below. Iitegss | follow a pop-
ular choice of using the Conjugate Gradient method for symmetric positiveitdefnatrices,
and the Biconjugate Gradient Stabilized (BiCGStab) method for all othetgmzh See [32]
for an exposition of these and other methods.

The advantages of these iterative methods are twofold: firstly, thereoalege factors
needed—ijust the matrix and a few auxiliary vectors—and secondly, oslly garallelized
matrix-vector multiplies are used. On the other hand, the major disadvantageatiffe meth-
ods is robustness. The rate of convergence to the correct solutiendkeppon the condition
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numbet which is often so large that the accelerator simply won't converge at aite fime-
cision arithmetic errors build up faster than the theoretical convergenais. iSTespecially a
problem for large, highly nonuniform unstructured meshes: the conditiomber increases not
only with the size of the problem, but also with the degree of irregularity in thehmesr
problems with highly variable coefficients, or that show strong anisotmat are indefinite
or close to indefinite, the condition number is still worse. It is generally aljiieet not much
improvement can be made to the standard accelerators; the key is insteeatigitioning”.

A preconditioner in general is a pair of non-singular linear operatbysandM r such that
M;AMp =~ I. Note that they don’t have to be explicitly known in matrix form, instead being
implicitly represented by linear algorithms or products of matrices for examleci&l cases
where one of the operators is just the identity (and so is ignored) areaefi® as left or right
preconditioning. The key observation is that the system = f is equivalent to the system
(MpAMpg)v = Myf, u = Mpv, but the second system should be much easier to solve
iteratively thanks to its improved condition number. The goal then is to findopditioners
that are effective in improving the condition number, but that are cheapmpute, store, and

apply.

1.5 Approximate Inverse Preconditioners

One preconditioning strategy exemplified by ILU and Gauss-Seidel &8gif to determine
very sparse approximations to the triangular factordofTriangular solves can then be used
to approximate the application &, just as a direct method uses the exact factors to exactly
apply A, modulo rounding errors. Even though this can be much cheaper thaBaudisian
elimination, since the full factors need not be computed, the approachititier parallelism
problems of direct methods, and so much research has been devotedatisbeschemes.

Of particular interest today are approximate inverse preconditionersawte is directly
approximated with a sparse matrix, or more generally, a product of spasi&es. This re-
stores the attractive parallelism of accelerators, since to apply the piigooar again only
easily parallelized matrix-vector multiplies are needed.

The condition number oA, denoted byx(A), is a measure of how far the matrix is from the identitylt is
generally defined ag(A) = ||A|| - ||A™|| for some appropriate matrix norm.
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Several algorithms have been proposed for constructing approximasésy These can
be loosely categorized first by their result: some algorithms produce a sipglse matrix ap-
proximatingA~'—e.g. SPAI[22], Chow and Saad’s MR method[15, 16], Tang and SVacal
inverse[35]—and others produce factored approximations (apprtximeerses of the trian-
gular factors)—e.g. FSAI[25], AINV[4]. The factored form has thdvantages of guaranteed
non-singularity, extra sparsity from good orderings, and apparenthg reffect per nonzero
thanks to its more implicit nature. However, the non-factored form has thengabes of ro-
bustness with respect to orderings—bad pivots are not an issue—aadgarallel application.

The algorithms can secondly be classified according to their generalagbpminimization
of the Frobenius norm of the error between the preconditioned matrix anidiehtity under
sparsity constraints (e.g. SPAI, FSAI), limited optimization of that error @xgpw and Saad’s
MR method, Tang and Wan'’s local inverse), or incomplete inversion algasitle.g. AINV).

There is much work to be done in improving these algorithms—implementation details,
parallelism in construction, finding good sparsity patterns, etc.—but iteap@d the moment
that the factored, incomplete inversion algorithms are the most practical IJdrétam used in
this thesis is AINV.

1.6 Discrete Green's Functions
One general method for analytically solving 1.1 is to find the Green’s functofunction
G : Q x Q — R which satisfies:

L,G(z,y) =00z —y), for z,yeQ, (y held fixed (1.2)

and suitable boundary conditions 8f2. Here the derivatives are with respectitcands is the
Dirac delta distribution. Neglecting the boundary conditions for simplicity, thetism to 1.1
is:

mmzémmwww (1.3)

since then

Llu(z) = géamwﬂm@

7



- / L£.G(x,y) f(y) dy
Q

- /Q 5z — y)f () dy
f(x)

Suppose 1.1 has been discretizeddas = f, whereA approximate<, u approximates:
with u; ~ u(x;), andf approximates with f; ~ f(z;), again ignoring boundary conditions
for simplicity. With the matrixA™" satisfying

AAl =1 (1.4)
write the discrete solution as:

u=A'f, Qe u=)» Alf (1.5)

J

Note that the identity matrif is the discrete Dirac deltal;; = J;;. The analogy between
1.2 and 1.4, and between 1.3 and 1.5 is then clear. The nittiis a discrete version of the
Green'’s functiorG.

For most elliptic problems the Green'’s functiGhis known to be nonzero on all 6t x €,
and possibly significantly large on a lot of that domain. If the discretizaioof the operator
L is of any value,A™" must similarly be mostly nonzero with possibly many large entries.
Unfortunately this means a sparse yet high quality approximation is impossibeEnera—
there is no hope for scalable approximate inverses. That is, in the sfidvakis: the aim of this
thesis is to find a better basis where sparsity and quality aren’t mutually asclus

1.7 Multi-Resolution Bases

Before going further, | shall introduce some notation. Ték® be the (bounded) domain of
interest. Suppose there amepointszy,...,x, € € identified at which the value of some
function f : © — R is known; call the vectof = (f1,..., f,) € R", wheref; = f(xz;), the
discretized version of . Often the word “signal” is used instead of function.



The standard basis vectors f&"* aree',...,e", with ¢f = d;;; for example,e® =
(0,1,0,0,...,0). Thus expressing the discretized functionfas- (fi,...,f,) = fie' +
...+ f,e™ uses the standard basis. The coefficientsiofa different basis/!, ..., v" are the
real numbers,, ..., a, such thaf = a;v! +- - -+a,v". The dual basis consists of the vectors
wl, ..., w" such that; = f - w'. If the basis is orthogonak{ - v/ = §;;) then the dual basis
is the basis itself; in general, the two are distinct but biorthogorfal ¢/ = 4;).

A multi-resolution basis is a choice of basis vectors that seeks to repegseath functions
efficiently—if f is smooth, most of the coefficients in its multi-resolution representation will
be very close to zero. (This opens the way for data compression, ag goad approximation
to f is retained when only the few large coefficients are stored and the eeassnmed zero).
Smoothness essentially means that large changes in the function value ppéntaver large
length scales. In other words, most of the information in the signal is at adselution. Then
what is needed is a basis that includes a few vectors with variation oveldagth scales,
spanning a low resolution subspace, and is filled up with other vectors thabmashorter
length scales, giving the high resolution components. The coefficienteddrandful of low
resolution vectors will be large, but the coefficients for the high resolwimtors, which form
the greater part of the basis, should be small. A natural way of adaptiniffeicedt degrees of
smoothness in functions is to in fact have a whole spectrum or hierardfiffexent resolution
vectors—hence the name multi-resolution.

The simplest multi-resolution basis is the Fourier basis, constructed fronutiotidns
1,sin(x), cos(x), sin(2z), cos(2x), sin(3z), . .. on the interval0, 27|, with a uniform spacing
of the pointszy, . . ., z, usually assumed. This gives a spectrum of resolutions,sivitltz) or
cos(kx) varying on a length scale @(1/k). Many theorems have been proved showing the
link between smoothness (precisely characterized by bounded dexssafia certain order, for
example) and small coefficients for the high resolution components.

Unfortunately, the Fourier basis has a significant flaw: global smoathiegsquired. For
example, a single jump discontinuity in an otherwise extremely smooth function walrgi-
atively large coefficients even in the high resolutions. The problems theg¢ tsiagularities
can cause for the Fourier basis have again been precisely chamedtterinany theorems. In
our application, compression of discrete Green’s functions with multi-résolbases, this is
devastating—there is a guaranteed singularity along the diagonal pobdydbe Dirac delta,
not to mention the possibility of singularities from discontinuous coefficients.
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The remedy is “compact support”, or more generally, fast decay ofuhélwhsis vectors.
If w' is zero or very small far away from;, the coefficients; will be completely or mostly
independent of the values gffar away—and thus unaffected by distant singularities. Where
the function is smooth, the high resolution coefficients will be small.

Wavelets are an attractive class of multi-resolution bases with this compacrsppoperty.
They also are constructed to allow very fast transformation algorithmsedinmg a signal from
the standard basis to wavelet coefficients or vice verg¥ir) time, and to handle noisy signals.
The next chapter will deal with them more thoroughly.

1.8 Related Methods

Probably the first multi-resolution method for solving linear systems was mult&gjd[The
most basic idea behind multigrid is instead of directly solving the original probiesstrict”

the initial guess to a coarser grid, correct all the lower resolution ettiers at lower cost, then
project the corrected solution back to the original grid and cheaply atdite remaining high
resolution errors—but do this recursively with a hierarchy of gridsgieater efficiency. This
works remarkably well for many problems, and is backed up with conditetheory showing
optimal O(n) complexity is achieved for some equations on regular grids. Extending multigrid
to more challenging PDE’s and to irregular meshes is a subject of cuesgdnch.

This research began by considering how to improve the Wavelet Spam®¥mate In-
verse proposed in [14]. As will be elaborated in the next chapter, tlaess of this method
is its restriction to uniformly spaced regular grids that scale strictly by powfetwo, due to
using classical wavelets (such as the Daubechies D4 wavelet[18]¢efardhi-resolution basis.

The hierarchical basis technique[28] is similar to the technique propased-hn fact, it
can be viewed as a special case where the mesh is well structured, tpelation (see later)
is simple linear, and the approximate inverse is trivial.

There are also classes of algebraic multi-resolution methods, where tla metsh and
PDE are forgotten and only the matri is available. Examples of this include algebraic
multigrid[31], BILUM[33], and repeated red-black ILU[8].
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1.9 Roadmap

Chapter two begins with a brief review of classical wavelets. The main wak exposition
of a popular construction of second generation wavelets, going into thiésdef the transform
algorithms and presenting new ideas about construction on unstructuskesne

The general multi-resolution approximate inverse algorithm is laid out in chéptee,
complete with sections on interpolation, factored approximate inverse cotisiruand order-

ing.

Chapters four and five contain implementation details for one dimension andirvem-d
sions respectively. After going through the discretization and the multluesio basis con-
struction, test results are presented showing some of the capabilities & dhichan.

Chapter six summarizes the main results of the thesis, and finishes with sompropen
lems.
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Chapter 2

Constructing a Wavelet Basis

2.1 Overview

From the mathematical side, wavelets and their name came about in an attempt ¢osfix-th
gularity problem of the Fourier basis. Taking the full sine and cosine svamel modifying
them to get compact support produces smaller abbreviated wavesave-lets”. From the
signal processing side, quadrature mirror filters, which apply a reeussquence of low and
high-pass filters, gave a fadt(n) linear transform that could handle noisy signals, implicitly
defining a multi-resolution basis.

As the initial motivation for wavelets came from improving the Fourier basis st Faurier
Transform, classical wavelets were developed in the same context: mrsempling (with a
small multiple of a power of two sample points) in one dimension along an intervapettbdic
boundaries Higher dimensional wavelets on similarly structured Cartesian grids ameetbr
as tensor products of one dimensional wavelets.

However, the periodic boundary conditions necessary for the algordéchsheory caused
problems for many applications—for example, wavelet transforming a typicatperiodic
photograph would implicitly find a jump discontinuity at the boundary, degradivadysis and

1Just as with Fourier series, uniform sampling along the infinite real line éssalslied but of course is of less
practical interest, and will not be considered here.

12



compression nearby. The restriction to powers of two and uniform samplitbthe simplistic
tensor product approach to higher dimensions, similarly grew inconvenW&hile develop-
ments in classical wavelet theory could fix some of these problems, it bedaardlat a new
approach was required.

The general term for these new methods is second generation wavelsts: that preserve
the multi-resolution, compact support, fast transform, and noise tole@operties but that
can be applied on irregular multi-dimensional domains with all kinds of boynotznditions.
The popular approach used in this research is the lifting scheme[34t;puksibilities include
Harten’s work[1].

2.2 Classical Wavelets

Classical wavelets, described in [18] for example, are constructed tirm functions on the
real line, the scaling functiop(x) and the wavelet functiog(x). For this simple review, it
is assumed they are zero outside of the intej¥a N —1), whereN is some positive integer.
Define their periodic translates and dyadic (power of two) dilates:

¢3(x) = ¢(2'z—j mod2'q)
Vi) = $(2'z—j mod2'q)

for some integery > 2N —1. The modulo operation reduces the argument to a number in the
interval [0, 2¢q) by subtracting multiples df’q, making the functiong-periodic.

Biorthogonal wavelets also implicitly have dual functiaf(&) andzZ(x), along with their
translates and dilates, for the dual basis. To keep things simple, | shati@$isat an orthogonal
basis is constructed, st(z) = ¢(x) andy)(z) = 1(z).

The lowest possible resolution, scaling level 0, is provided by the furection
#(@), ¢lx), ... dha(x)
The next resolution, wavelet level 0, is given by
vo(2), i), ..., Yg(2)
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Higher resolutions consist of dilates of the wavelet function—wavelet legentains the2iq
functions

Yo(x), s i (@)
Forn = 2¥¢ sample points, the basis stops at wavelet lével 1 for a total ofq + ¢ + 2q +

. 4 2k-1g = 2kg = p discretized basis functions. For orthogonal wavelets these functions
should all be orthogonal, both in the continuous and discrete settings.

The multi-resolution property comes from the dilations: lev@linctions handle features
with variations on a length scale 6f(2~%). Compact support comes from restrictin¢r) = 0
outside[0, 2N —1) so that¢§(x) is nonzero only in the length—¢(2N —1) interval starting at
2745,

The fast transforms are derived from the dilation equations:

2N—-1
@) = Y ajpj(x)
j=0
2N—1
vo(x) = b ()
j=0
for some constant coefficients, ..., asny—1 andby, ..., ban_1 to be determined. Assume the

discrete input signaf has the continuous form
2kg—1

f@) =Y fidi(a)
i=0

The levelk — 1 wavelet coeﬂ‘icientsdj“"1 for basis functior@/}f‘l(m), can be easily computed
by:

5k—1

= [t @) de
= /Oq (Z flqﬁf(a:)) wf_l(x) dx
= S5 [ b @) o

2N—-1

- [ (z brqssw) iz
i 0 r=0
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2N—1
= Zflzb / gbk ¢2]+7"

2N—-1

= Z brf2j+7"
r=0

using orthogonality. Each coefficient then takeé flops to compute. Temporary scaling level
k — 1 coefficients s " for ¢! (x), can similarly be computed as:

2N—-1

P =" arfajge
r=0
with 2V flops. From these scaling level— 1 coefficients both sets of levél— 2 coefficients
can be computed:

2N-1
k=2 _ 2 :
Mj - GTMQJJrr

2N-1

7 = Z b7’1u’2]+r

and the process recursively continues until the level 0 coefficienfsand. Including the tem-
porary scaling levels, there are a little less tRancoefficients computed &N flops a-piece,
giving a total run-time of about Nn for the forward transform. Typicall is very small, so

this is effectivelyO(n). Note also that at each level, all coefficients can be computed indepen-
dently in parallel, allowing an optimum parallel complexity@flog n). Using orthogonality,

a similar inverse transform algorithm can be derived with the same complexity.

From the signal processing viewpoint, theoefficients define a low-pass filter, blurring out
the high resolution components of the signal and keeping just the smoothexdoiution part.
This is what gives the noise tolerance property: if a smooth signal is cordgedimy high-
resolution noise, the low-pass filter cuts it out so lower levels only see ttherlying smooth
signal without random artifacts, and can then properly process it. Bhisept is made precise
by the idea of moment preservation. Tfith moment of a functiory is the value[ 2’ f () dx
a generalization of the average value (whes 0). A faithful lower resolution representation

2Flop stands for floating point operation. A multiply and add are traditionaliynted together as one flop.
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Figure 2.1: The D4 scaling and wavelet functions
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of the original signal is ensured by requiring that the firstoments are preserved:

/x3<z,u ¢k2 )dw—/xjf(x)dac for j=0,...,5—1

Applying the dilation equation reduces thiss@onditions on thé coefficients.

The coefficients define a complementary high-pass filter, differencing oubiter reso-
lution components and isolating the high resolution part. This can be madeepbgdise idea
of vanishing moments, requiring that the wavelet coefficients of the ideallp#nianctions
1, z, 22, ..., z° be zero. From orthogonality, this is equivalent to the moment preservation
condition on thex’s.

Other conditions to be imposed on theandb coefficients result from requiring orthogo-
nality in this case, and possibly other desirable features. Of course,qunditions require
more coefficients, i.e. large€¥, which both slows down the transform algorithms and makes the
support larger and hence the basis more susceptible to damage frotasiiegu One common
choice, used in [14] for example, is the D4 wavelet of DaubechiesfiBprthogonal basis with
N = 2 and two preserved moments. See figure 2.1 for a picture of its fundamenctsioins.

At the core of classical wavelet theory are the dilation equations, whifdrtunately are
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also the root cause of all the restrictions: powers of two, periodic kamigs] uniform sampling,
etc. The key to second generation wavelets is to focus instead on thetrarafjorithm.

2.3 The Lifting Scheme

The lifting scheme[34] proposed by Sweldens is a way of constructinthoigonal second gen-
eration wavelets—ones that retain the essential properties of multi-resolkugimpact support,
fast transforms, and noise tolerance, but not the limitation to such reguiaaids.

The core of the lifting scheme is its transform algorithms, rather than whattie func-
tions actually are. Of course, any invertible linear transformation can beedi@s a change-
of-basis, and it is possible to recover tfith basis function simply by inverting’ (and the;j’th
dual basis function by transforming).

Figures 2.2 and 2.3 give the general forms of the forward transfororitiigh and inverse
transform algorithm respectively. Note that the resolution levels are arsefrom the follow-
ing section on classical wavelets, so level O is the highest resolution.

2.4 The Multi-Resolution Property

The lifting scheme is a natural way of arranging for small wavelet coeffisiehere the func-
tion is smooth—presumably at those points, the prediction will be very ac¢smathe predic-
tion errory? will be close to zero. This can also be naturally interpreted as the multi-resolutio
property: the coarsest leval gives the lowest resolution view of the function, with giving

the next higher resolution details that were missed, twéﬁ the further level of resolution
details that were missed, etc., finishing with giving the highest resolution details. Smooth
functions will naturally have near negligible high resolution details, hencd sneaefficients.

In order for this to be successful, tlieat each level must be accurate of course. One of
the fundamental requirements for the partition into fine and coarse nodegightit each fine
node should be easily predicted from the coarse nodes. Normally this wit thea there
should be coarse nodes in close proximity to every fine nhode—the finecamslecnodes must
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Figure 2.2: The forward transform for the lifting scheme.

e Start with the function valueg, . . ., f,, at sample points, . ..

e Let)\) = f;foralli,C° = {z1,...,2,}, and;j = 0.

e Begin loop:

Return )\’ from the coarsest level along with the wavelet coefficienits .., 7 from

Split up the sample point¥ into two disjoint subsets, the fine nod€s*! and the

coarse node€’*1,

Predict)\},, the values at the fine nodes, froj, the values at the coarse nods

with some linear prediction operat#r. )\{p ~ P)\{'j.

Store the wavelet coefficienf "' = \/ — (P),); for each fine node; € F7+1.

Update the value at each coarse nodepy = M + (U~7t1), for eachs; € ¢/
so that the required moments will be preserved. This update op&Jataust also

be linear.

If |C7T1| is small enough, below some constant, break out of the loop. Other

setj « j -+ 1 and continue.

, T -

wise,

each level.
Figure 2.3: The inverse transform for the lifting scheme.
e Start with\’/ and the wavelet coefficientg, ..., /.
e Begin loop:

e Reconstruch’, " at the coarse nodes By " = X/ — (U~/); for eachz; € C7.

e Reconstruch’, " at the fine nodes by) ~' = 47 4 (P ), for eachs; € F7.

Continue withj «— 5 — 1 until j = 1.

Returnf; = XY for all i.
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be fully intermingled. This might be achieved in one dimension, for example elacting
every even node to be coarse and every odd node to bé flwatinuing in one dimensiorP
could then be defined to do linear interpolation between the two coarse sindesnding each
fine node. UsuallyP is defined to do polynomial interpolation through the surrounding coarse
nodes, which corresponds precisely to vanishing moments as discuskegnevious section.

2.5 Compact Support

Compact support is arranged by making eRcandU a sparse matrix, so that the prediction at
each fine node and the update at each coarse node depend upomsio@l mumber of nearby
nodes. For example, linear-interpolati®gin one dimension satisfies this by only using the
two surrounding coarse nodes to predict at the fine node betweerbaBlegoal of compact
support, containing the damage done by singularities, is naturally achietresiwway: although
the prediction will likely be inaccurate near the singularity, the wavelet aeffisy further
away are completely independent of the function values at the singuladtyhas cannot be
adversely affected.

2.6 Fast Transforms

Choosing theP and U operators very sparse also makes the transform algorithms fast. For
example, if each fine node is predicted from at mpsearby coarse nodes, taking at mgst
flops, then the operatiol?)\jc will take at most|.F/*1|q flops. Adding up the operations for

the entire transform, noting that the fine node sets are disjoint, we have taugpier bound

of nq flops for the predict operations. Similarly if each coarse node is updededdt mosty
nearby fine nodes, the operatithy’*! will take at mostC’*!|q flops. The coarse node sets
are nested, not disjoint, but if we assume that the number of coarse iscatdsast halved at
each level |C7+1| < |C7|/2), then from the geometric sum we still have an upper bounagof
flops for all update operations. Therefore under these assumptitimsransform algorithms

run in O(n) time, in fact bounded bgngq flops, twice as fast as classical wavelets.

3Based on this, Swelden’s original presentation of the scheme actuafijthes¢éerms even and odd instead of
coarse and fine throughout
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2.7 Noise Tolerance

Just as with classical wavelets, the key to noise tolerance is moment piteserv he update
operatorU is chosen so that approximating the input function by zeroing out waveédti-c
cients preserves its moments. Particularly on a multi-dimensional irregularlylesduhpmain,
the classical definition of moment isn’'t necessarily meaningful, thus | fahilze notion of
generalized moments; = [, 0;(z) f(z) dz for some smooth moment kernel functiang ).
(The classical 1D choice is;(x) = z7.) The discrete form is then:

mj = Z Sjifi
=1

for some appropriate discretizatich; ~ fcl_ oj(x) dx with C; a small cell around;. Letting
m be the vector of moments, this can be written as

m = Sf

At each transform step, the original functiomNsand the coarsened function is:

PUARIE )\jé + Uit
= XN+ U, —PN)

= (I-UP))\, +UN,
The approximate function reconstructed without wavelet coefficight$ is given by:
X, = Nt -Uo
= (I-UP)X, +UN,
Mo = 0+PX,
= P(I-TUP)\, +PUN;

Splitting up the moment kernel matri& into S for the fine node columns arsl> for the
coarse node columns, we then require:

SN = SV
SENp +ScX, = SpMN, 4+ ScX,
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SpNy+ 8o, = Sp(P(I-UP)\, + PUN,)
+Sc ((1 — UP)M, + U)\fw)
(Sk — SFPU — ScU)N, = (SpP — SpPUP — ScUP)X,
(Sk — SFPU —ScU)N, = (Sp—SrPU —ScU)PN,
This is true automatically if the prediction is perfect, i.e. the function perfecthofitsnotion
of smoothness. However, this should be truedoy function, irregardless of the independent
values of\}, and )\, so we must have:
SF—SFPU-ScU = 0
(SFP +S¢)U Sk

This equation coupled with the sparsity constraints should determine the erfties

Each column ofU can be computed independently, and actually only involves solving a
small submatrix o8 7P + S thanks to the sparsity constraint. Note that for the submatrix to
be invertible it must be square, so the numbey abefficients used to update each coarse node
must equal the number of preserved moments.

Generalizing the notion of moment preservation even further, | hereopeoponstructing
the small system independently for each coarse node, allowing diffee&df moments to be
locally preserved at different places. This might be desirable, for examlés ihconvenient
to arrange for all coarse nodes to use the same numbec@éfficients in the update step.

2.8 Additional Algorithm Features

Another nice feature of these algorithms is that they can work in ptgice: can overwritex%

and M1 can overwrite\/; in the forward transform; vice versa for the inverse transform. In
particular, this is irregardless of the order in which the fine nodes adégbed and the order in
which the coarse nodes are updated.

These algorithms are also naturally parallel. Not only can each fine nogeelected
simultaneously and each coarse node updated simultaneously, but asssmiagly nearby
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neighbours are used for both operations only a small amount of local coivation between
nodes is needed. Again assuming that the number of coarse nodes tdtabaeh level, there
are onlyO(log n) steps in the algorithms, so with(n) processors it is theoretically possible to
do the transforms i (log n) time.

2.9 The Matrix Formulation

The transform algorithms can also be described with matrix notation. Assumg¢haodes
are ordered from finest to coarsest, namely \thfirst, thenF2, ..., thenF7, and finallyC’
last. LetP? andU" be the prediction and update operators at stdjmen the forward transform
can be written with the following product:

7t fr1
g = Mf =M, --- MM,

Pyj fFj
by fo;

) (o I '
v 1 I P || a1
. ; .
pX U 1 I Y=
M;
The inverse transform can similarly be written:
’Yl ’Yl
f:M—l :' :MflMglM;l :‘
»YJ 73
N N
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where the inverse transform at stejs M

1

Y (o 3 '
| 1 P 1 o
/\ic—1 I -U 1 M\

M—l

Of course, these matrices should be treated as sparse matrices, i.e. amyzleeos and
their locations should be saved. Standard sparse matrix multiplication rouginéisen be used
to do the wavelet transform efficiently.

As will be the case in section 3.6, these algorithms can furthermore operai& sessparse
mode, where the vector to be transformed is sparse too. The matrix formusatimm simplest
to use, since again standard sparse-sparse multiply routines can be used
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Chapter 3

The General Algorithm

3.1 Overview

As the preceding chapters have suggested, the basic idea behind theesullition approx-
imate inverse is to construct, via the lifting scheme, a multi-resolution basis forressipg
the discrete Green'’s function. Later chapters will deal with the detailssi$ lsanstruction for
one or two dimensional problems; this chapter will cover the details that aepémdient of
dimension.

3.2 Using the Multi-Resolution Basis

The goal is to compres&™, obtaining an accurate but highly sparse approximate inverse from
just the large coefficients in its multi-resolution representation. HoweVerjs unknown of
course, so this is not just a simple matter of applying the transform algorithm.

Recall thatA™ is the discrete version of the Green’s functi@fr, i), which is defined on
Q x Q. Itis then natural to look for a basi$ on (the discretized form ofp x €2 that is a tensor
product of two basea andg on Q: II = a ® 5. Each elemenp € II is then a separable
functionp;; = a;b; with a € aandb € 3. (In the continuous formy(z,y) = a(z)b(y).)
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Let the bases be = {al,a% ... a"}, 3 = {b',b? ..., b"}, and their tensor product
T = {p",p?',...,p",...,p""}, wherep! = at. To express the discrete Green’s function
in the basidl, find coefficients);; so that:

n n
A = 2.2 Quplj

k=11=1
n n

kpl

= E E Qra; bj
k=11=1

n

n
= > ai Y Qub}
k=1 I=1

In this last expression, viewingas fixed, observg ", ; lebg is thek’'th coefficient of thex
basis representation of colunjrof A~!. Then lettingj vary again; is thel’th coefficient of
the G basis representation of thogth coefficients. IfM,, is the forward transform operator
from the standard basis to the basis,Mj is the forward transform tg@, and the@),; are
arranged as an x n matrix, this can be written more clearly as

Qr = (Mg(M,A D)y

or simply
Q =M, A'M}
which is equivalent to
A—l _ M(;IQMBT

Of course, the same result can be obtained by first viewasyfixed and the rows ok being
compressed witls.

The preconditioner is going to be a compressed fornAdf where smallll coefficients
have been dropped, i.MjQM;}T forQ a sparse approximation @Q. If the IT basis does a
good job, a very sparse yet high quality approximation will be possible. dlthiat

Q = M, A'Mf = (M;"AM, )™

soQ is in fact a sparse approximate inverseMgTAMgl. All of these matrices are known,
so we now have a tractable proposition. The general outline of the algasthiven in figure
3.1
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Figure 3.1: The multi-resolution approximate inverse algorithm.

e Compute the transform coefficients ferand 5 through the lifting scheme.
e Compute a sparse approximate invegse- (M/gTAMgl)—l.

o The preconditioner is theNI;'QM ;" ~ A7

There is some flexibility in choosing the preconditioned system. In exact atithmith
Q = Q, all of (M;'QM;T)A, (QM;T)AM,!), (M;")A(M,'Q), andA (M;'QM;")
are equal to the identity—and@ is in factored form, even more possibilities exist. The choice
of which is best wherQ # Q should generally be made according to h@is constructed;

see section 3.6 for details on the choice made for this thesis.

The preconditioned system must be non-singular, thus in parti@taust be non-singular.
At the same time, we warffz to be very sparse; an obvious goal is then to mQ@kas close as
possible to a diagonal matrix, with diagonal entries much larger than ofbdagntries. (This
is especially the case for factored approximate inverse algorithms withaiingy) Intuitively
speaking this should naturally be the case, since the Green’s functioiddh® smooth off
the diagonal—allowing very small off-diagon@) coefficients—but should have a singularity
along the diagonal caused by the Dirac delta—giving large diagQnadefficients. The next
few sections will outline how to best achieve this.

Notice that the bases and 3 can be constructed completely independently; not only can
the choices of prediction and update operators be different, but thardtigr of fine/coarse
nodes can be completely different too. Later this flexibility in choosing diffepredictions
will be exploited, but throughout the rest of the thesis it will be assumedtlieahierarchies
are the same. The first advantage of this restriction is that it is possibledk apeut a coarse
node unambiguously; this much simplifies analysis of the algorithm. Also impodantder-
ing the nodes prior to computing a factored approximate inverse, somesd#gggmmetry is
preserved—ifA is structurally symmetric, and the prediction and update operatorsdodj
have the same structure, thMgTAMgl is structurally symmetric too.
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3.3 PDE-Interpolation

Examine more closely what the basis transform does in compressing the columnaAdf
SinceAA™! =T, thej'th column of A is the solution ofAu = e/, which is the discretized
form of Lu(x) = 6(x — x;) (cf. section 1.6). Thus each column being transformed satisfies
Lu = 0 everywhere except at the diagonal.

A better choice than the usual polynomial interpolation Barnow presents itself, what |
call “PDE-interpolation”. When predicting the value at fine nagdrom nearby coarse nodes
Zj, ..., xj, treat it as a small PDE problef. = 0 with an unknown at:; and specified
“boundary” values at;,, ...,z;,. After defining a small mesh on these nodes, the discretization
routine can be called to give the linear equation approximafing= 0 at the fine node, and
this can be immediately solved since we know the values at all the other poiptstticular, if
the discretization at; is

0= Lu = ajju; + iy Wiy + -+ Qi Ujy

then the prediction should be

Of course, at boundary nodes the boundary condition should betiisx rather than the PDE.

Similar arguments can be made féronly sinceA” A" = I the rows of A™! are discrete
solutions of theadjoint problem. If £ is not self-adjoint, this makes a crucial differendes
should be generated by discretizidg at the fine node and neighbouring coarse nodes, trans-
posing the resulting small matrix to get the discrete adjoint operatorthremdsolving for the
fine node value.

For nearly self-adjoint problems, i.e. those with relatively weak convedti@extra storage
spent on distincP,’s andP z's might not be worth it, and the symmetrized equation should be
used instead. However, testing results in later chapters show the béméiitosingP,, # Pg
for strong convection PDE’s.

Note that constructing the PDE-interpolation is only a constant factor mgensie than
linear interpolation—once the neighbouring nodes have been foundy wéitbe done i (1)
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amortized time[12], there is onl® (1) work left to do. Further note that the local mesh and
discretization need only be computed once; the coefficients, /ai;, ..., —a;j, /a; can then
be stored i, for future use. The construction costs can be further amortized if theraany
solves to be done, and even if the PDE coefficients change betwees &mdviem a non-linear
problem or some time-dependent problems) at least the local mesh consteadis may be
amortized.

Reassuringly, PDE-interpolation often reduces to polynomial interpolatieeny is the
Laplacian operatok’2. In 1D for example, suppose the fine node is at peinwith coarse
neighboursr;; to the left andx;1; to the right. The normal second order discretization of
Lu=v"=0atz;is:

2ui 41 2u; 2ui

_ + =0
(i —xi) (@i —xiza)  (wip—x)(zi—xia)  (zi—xia)(@ip —2ia)

Solving foru; gives:

Tj—Tj—1 LiHl — T4
W=\ ———|Unt+t | Ui
Tit1 —Ti—1 TiH1 —Ti—1
which is just linear interpolation.

The same thing happens in 2D for piecewise linear finite elements on trianptes.fine
node is inside a triangle of three coarse nodes, linear interpolation in thiglerisrequivalent to
splitting the triangle into three subtriangles, constructing the linear finite elersenétization,
and solving for the fine node.

Notice that it is important that the discretization not be limited to fine meshes fdlitstab
and accuracy; the interpolation will need to be carried out at the cdaveds where the distance
between nodes is much larger than in the original mesh. For example, a sdteeomvinding
should be used for the convection term, and discontinuous coefficientdmbandled physi-
cally correctly (e.g. with harmonic means in one dimension). Ideally the PDificieats them-
selves should be coarsened along with the mesh in some homogenizatiotupeseperhaps
taking appropriate averages of the coefficients at nearby fine nddegsve this coefficient
homogenization problem for future research.

The expense of setting up these local meshes, even when amortized, otiget worth-
while for simple problems, but the benefit should be clear for tough PDESs.example, if
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there is strong convection, the naturally centrally weighted polynomial intemtsowill give
equal weight to downstream values—a clear mistake—when the PDE-il@etgorrectly em-
phasizes the upstream values. If the diffusion coefficient is discontiten solutions won't
be smooth at the discontinuities, violating the assumption underlying polynomigdafdats,
but appropriate PDE-interpolation should still work.

As an addendum, other methods for improving on polynomial interpolatiorgen na-
ture, have arisen in multigrid, such as the energy minimization approach f1®jrar{“Blackbox
Multigrid” in [2]. It would be interesting to compare the performance andistiess of these
interpolations—whether the discretization approximations or the algebraioxaptions are
better.

3.4 Forgetting Moments

It turns out that takindJ = 0, so moments araot preserved, appears to be the best choice.
The next chapter illustrates this with numerical experiments; this section paitheoretical
justification.

In signal processing, the noise tolerance provided by preserving nisnsecrucial. The
functions being transformed often have random fluctuations due to tzagkg)noise or errors
in the sampling process, so added to the underlying smooth signal is a haitices error.
Without an update step in the transform the function values at the coaies ace unchanged
at lower resolutions, and so the high resolution error is carried down imbav aesolution
error. Then at all levels the error would cause problems for the predjcmdespite the fact
that the signal really is smooth at lower resolutions, the lower resolutionletaxeefficients
won't be small. The introduction of a sparse update step means momentsseevpd locally,
maintaining local average values and thus smoothing out the function fortesautions. This
damps out the high resolution error so it can only harm the high resolutieeletaoefficients.

However, in this application there should be no high resolution fluctuations.atcuracy
of a solution generally is related to the size of its derivatives; small-scalBatisns would
make those large, indicating that the discretization is of little value and probafigrsfrom
instability. Therefore the real need for an update step is gone. It is taiedme indefinite prob-
lems or problems with rapidly fluctuating coefficients will inherently give risedlatsons with
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small-scale oscillations, in which case a multi-resolution method is bound to meetiltig
at low resolutions, though in the latter case a coefficient homogenizaticaguwoe might help.
Perhaps here multi-resolution methods are simply not suitable; | leave thigdioe fesearch.

Thus in the cases of interest, though it appears not to be crucially imparsamtte update
step still be of some use?

Write out the first step of the transformation with fine nodes ordered é&imarse nodes
andA™" decomposed a $):

A—l

()G ()Y

Carrying out the prediction step gives:
I B-P,D-CP[+P,EP; C-P,E) (I U}
U, I D - EP} E I

Now, if the prediction operators are accurate@®eandD fromE (i.e.C — P,E ~ 0 and
D—-EPZ ~ 0), they necessarily are close to ideal PDE-interpolation, since in theséaginal
portions of A~! we haveLu = 0 everywhere. Then the predictid, D or CPg for B will be
accurate except at the diagonal, whére= 1 instead of). So the prediction error roughly will
be0 away from the diagonal, and/a;; (the coefficient in the rediscretization) on the diagonal.
If A is the diagonal matrix with these coefficients on the diagonal, BenP,D ~ A and
B - CP[T3 ~ A. So the scheme will approximately give:

(o) (5 ) (")

Thus the predict step achieves exactly what is needed: a near diagainad. However, this is
the result if the update step is then applied:

A AUT
U.A E+U,AUY

The attractive near zero blocks that were created by the predictiorbkawdilled in with scaled
versions of the update matrices. Furthermore, the coarsened siidtas been perturbed in a
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way that won't necessarily improve later prediction, and will probably nikanit is no longer
a discrete Green’s function of the PDE—making PDE-interpolation uselHss.problem is
that there is an essential singularity on the diagonal thaiveset to keep sharp—the error in
prediction at the diagonal is beneficial; the algorithm should maintain it at losgeiutions,
rather than trying to blur it out with an update step.

Finally, it's clear that including an update step adds expense in storage apd transfor-
mation time, not to mention complicating analysis of the algorithm. Therefore | salhae
U = 0 from now on. Since moment preservation is an essential feature of wavelave
adopted the name multi-resolution approximate inverse rather than waveleapgte in-
verse.

3.5 Multiplying out the Transforms

A second look at the forward transform algorithm (figure 2.2) showswlihout the update
step, the coarsened signalsare just sub-samplings of the original sigrfavalues unchanged.

In particular then, all the”’s are immediately available, so the predictions are independent and
may be done simultaneously.

This fact may be seen by multiplying out the matrix product form of the fodvteamsform:
M=M;--- MM,

For example, multiplying the first two steps together gives:

I I ‘ _p!
MoMy = I _p2
‘ I
I
| —p!
- I _Pp2
I
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The off-diagonal—P’s simply add, thanks to the diagonal identity blocks and the order of
multiplication. It's simple to see how this continues, giving

I —P!

M = I —P?

1 —-PJ

I

The forward transform is now reduced to a single sparse matrix multiply.

On the other hand, the inverse transform cannot be similarly reducezbnReucting)\’
depends on/‘*! in the inverse transform algorithm (figure 2.3) even wi&nr= 0; the steps
must be done one after the other. From a matrix viewpoint, this can be seenfili-th that
results when the inverse transform is multiplied out, caused by the revantbedof the factors.
For example, multiplyingVI;* M, gives:

pL. (I f:)

I P2
I

I P2
|

—1 —1
M 1 M2

Not only is the storage requirement increased when the matrices are multipljdaibthe time
required for the inverse transform similarly increases.

However, observe that the forward transform matrix is upper triangsdahe inverse trans-
form can be applied by the backwards substitution of a triangular solvéactnthe inverse
transform algorithm can be interpreted as doing exactly this, but with thegedtéor paral-
lelism made explicit: nodes from the same level can be solved independently.

As an aside, recall from the previous section that the ideal action of dukgtion steps is
to reduceA™ to near diagonal fornMaA*1M§ is almost a diagonal matrid, neglecting the
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small sub-matrix of coarsest nodes. Then similarly the inverse is close tondiag
T —1 A—1
Mj;"AM, ~ A

SinceM}; is lower triangular andV,, is upper triangular, this can now be interpreted as an
incompletel. DU factorization:
A~ Mgg_lMa

The transformation to the multi-resolution basis is now seen as an incompletéezatidm pre-
conditioner, using triangular solves with approximate factors. This is anatop BILUM[33]
or repeated red-black ILU[8], where the triangular factors aredawith a multi-level algebraic
algorithm rather than the interpolation approach here. Inspired fromthiegy, an interest-
ing extension to this thesis would be an algebraic version of the multi-resolyigmoxmate
inverse preconditioner, where the prediction operators are determigeloraically from the
original matrix A.

However, return now to the problem of computi@ realizing that the inverse transform
matrices are only available in factored form.

3.6 Computing the Approximate Inverse

AIthoughMgT, A, andM ;! are known, their produd?t/[gTAMgl is not explicitly known—as
discussed in the previous section, even just multiplying out the inversddrarsswill incur a
penalty. ThusQ must be found with an approximate inverse algorithm that works when the
matrix is known only as a linear operator. Actually, a little more is known: the aidggithe
operator

(MET AM;l)T _ M;T ATM;

may be used in the algorithm as well.

This rules out the Frobenius norm minimization algorithms such as SPAI[22F 8AI[25],
as well as Tang and Wan'’s local inverse method[35], since they alirectiie ability to access
submatrices oMgTAMgl. Chow and Saad’s MR method[15, 16] is a possibility as it only uses
the matrix as an operator. However, the impressive performance[Sgahtiomplete inverse
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factorization algorithms makes them the most attractive choice. | chose tbthdapiNV[4]
algorithm.

The original form of AINV is a column-oriented, left-looking, dot-prodbased algorithm
that constructs a factored approximate inverse via biconjugation, shofiguie 3.2. Given a
matrix B it returns upper triangular matricB¥ andZ along with a diagonal matri¥d, where
the columns oW andZ are approximatelyB-biconjugate W' BZ ~ D. It can be interpreted
as a generalization of the classical Gram-Schmidt orthogonalization algolb#gimning with
the standard basis vectors and making tigiconjugate.

AINV gives an approximation to th& DL factorization ofB~!, since the biconjugation
condition is equivalent to
B! ~ZD'WT

However, the choice of preconditioned system should naturally follow éhstouction of the
preconditioner: eitheD(WTBZ) or (WI'BZ)D. These choices guarantee a unit diago-
nal in the preconditioned system, which is often a good property.

Observe that the storage and work can be cut in half viBiés symmetric; therW = Z,
so onlyZ need be computed. In addition, B is symmetric positive definite and the algorithm
is accurate enougf) should only have non-negative entries,130%2 can be used. Then an
approximate inverse of the upper Cholesky factoZ® 2, and the preconditioned system
D2ZTBZD ' not only has a unit diagonal but is also symmetric positive definite, a definite
advantage in iterative methods.

The algorithm above works fine evenBf andB” are only available as operators; though
the rows and columns d@ are actually found explicitly by multiplying with the standard basis
vectors, only one row or column needs to be stored at a time, and eachiigdegnly once. Of
course, it is imperative to do these multiplies in sparse-sparse mode or ebgdhithm will
run very slowly.

3.7 Improving AINV

The problem with using this algorithm, elaborated in [9], is that the biconjugationps are
often doing too much work. As it stands the algorithm runs in at I64st) time, even if much
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Figure 3.2: The original dot-product form of AINV.

e TakeB, ann x n matrix, and some drop toleranée> 0 as input.
e Fori=1,...,n
> Initialize columns of W andZ to the:’th standard basis vector
e SetW,; = e’ andZ,; = €.
> Make column of W biconjugate with previous columns
e Getrowi of B: r = (¢/)TB = (B”e)7.
eForj=1,...,i—1
o W, — W, — =W,
o> Make column of Z biconjugate with previous columns
e Get columni of B: ¢ = B; = Be'.
e Forj = 1,...,2’—1T
o Zi— Z;— V;;jc
> Drop small entries to keepV andZ sparse

Z;

e Zero any above-diagonal entry ¥, or Z; with magnitude< 6.
> Find the “pivot” D;;
e SetD;; = W/BZ,.

e ReturnW, Z, andD.
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less tharD(n?) nonzeros are input and output. Typically, the majority of the time spent in the
algorithm is wasted computing the sparse dot-prodtZ}sandeTc when they turn out to be
identically zero, due to the vectors having no nonzero entries in common.

There are inexpensive symbolic methods to cut downjtheops from (1, ... — 1) to
much smaller lists (especially if the nodes are ordered in a good manner—eseextisection).
Unfortunately, these symbolic methods make crucial use of the nonzectus&rof the matrix
B and its elimination tree[26] or related structures, which aren'’t directly aMailaere. The
structures of the factors iM[;TAM;1 are available, so it may be possible to recover these
symbolic methods and use the dot-product algorithm efficiently. Howelesaye this problem
for future research and instead turn to a different form of AINV.

Reversing the nesting of the loops, the algorithm can be rearranged inthtdoaging
outer-product based method, shown in figure 3.3. The same commentsialialiingonals and
symmetry apply here. Note that the dropping strategy is slightly different:adsié zeroing
out small entries oW, andZ; after they have been fully computed, small updates simply are
not added.

The benefit of this formulation is that the inndpbops can be easily trimmed to just what is
needed: a loop over the non-zero values @fu. Normallyl andu will be quite sparse so this
means big savings (especially for good orderings of the nodes—seexhgettion).

Another potential slow-down is the calculationlo&ndu; if computed as dense vectors,
this takesO(n) time via the lifting scheme, making the whole algorithm at leagt?). This
can be avoided by doing them in sparse-sparse mode. Potentially etearigashybrid mode
described in [9] that uses efficient sparse-dense multiplies but kesghsdf where nonzeros
are created for a fast “gather” operation back to a sparse result.

The down side of this formulation is that whereas the original form constitbe columns
of W andZ one at a time, here all of columrist+ 1, ...,n are being updated as the algorithm
proceeds. Dynamic linked list data structures are required to store theshefi columns,
inevitably bringing up worries about efficiency—e.qg. in [4], where a®eprocessor was used,
this outer-product form was dismissed as inappropriate. Howeverctsigsaring this version
to the original with symbolic enhancements (for explicitly kno#f), running on a modern
superscalar workstation, show that it is competitive. In fact, since the @ierdigorithms
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Figure 3.3: The outer-product form of AINV.

e Take as inpuB andé.
e SetW =TandZ =1.
e FOorj=1,...,n

e Setl = BZ;

e Setu =BTW;

e SetD;; = u'Z;

e Fori=35+1,...,n

e UpdateW; «— W, — drop(zﬁj_j W;, 6), where entries of the update vector
with magnitude< § are dropped.

Fori=454+1,...,n

e UpdateZ; «— Z,; — drop(fjj%’j

Z,, 5).
e ReturnW, Z, andD.
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cannot account for sparsity due to the dropping of small elements, boutee product form
automatically does, this version often is more efficient![9]

3.8 Ordering

Before using AINV, one more thing must be considered: the orderingeafidldes. In [6, 10] it
was made clear that ordering has a significant effect on the constrtiati®of the approximate
inverse, and on the convergence of the preconditioned system. Hpidatropic problems, the
heuristic of inverse factor fill reduction has proven to be very effectivdering algorithms like
Nested Dissection, Minimum Degree, and Minimum Inverse Penalty[10] amwd gpb. These
often handle more difficult problems, but [10] showed that anisotropiciceatcan be better
handled by algorithms sensitive to the numerical entries in the matrix. The questiow best

to deal with anisotropy still requires more research, so in this thesis | hagesid the issue.

| have chosen to work with Nested Dissection. Despite indications in [10jltbed may be
slightly superior orderings for convergence, this is not well undedst@ll, whereas it is clear
that Nested Dissection is the best fill reduction and execution speed—dteantiicon parallel
machines—with good implementations like Metis[24].

Unfortunately there is a major difficulty to overcome before running therorgalgorithm:
MgTAMC;1 is known only in factored form, so the nonzero structure required isxpitcily
available.

Before going further, recall the graph theory notation often used irsspaatrix ordering.
With a givenn x n matrix B, associate the grapfig, or simply G if the context makes it
clear, defined on noddd, . .., n} with a directed edgé — j if and only if B;; # 0. Thus the
nonzero structure dB and the grapli-g may be identified. As an abbreviation, write> j to
mean the statement that the directed edge j exists inG. The neighbourhood of a nodés
the set ofj such that — j. A path is a sequence of distinct nodes. . ., i, such that; — s,
iy — i3, ..., andig_1; — i, often writteni; — --- — 4y, or simplyi; ~ ig. The transitive
closureG* of a graph@ is one constructed on the same nodes but havingj whenevet ~» j
in G. For a fuller treatment, see [20, 21].

As is shown in [21], assuming here and for the rest of this section that ihepo felicitous
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cancellation, the structure &~ is given by the transitive closure of the graph(é. As was
mentioned before, when the forward transfdxfy, is multiplied out (with no update steps), the
off-diagonal—P’s are just added—no fill-in occurs. Then the grapiMbf, satisfiesi — j iff

at some level is a fine node whose prediction uses coarse odderefore the graph &¥1!
hasi — j iff there is a chain of prediction dependencies: ;.

Define the support of a nogeto be the sesupy(j) of nodesi such tha{M_!);; # 0—this
is actually the support of th@gth multi-resolution basis function. From the transitive closure
characterization of inverses, observe that the supports have a sestetdre: ifi € supf;)
thensupgi) C supfj). Notice that if; is a fine node at the highest resolution legelpgj) =
{j}, but that ifj is at the lowest resolution level its support may be very dense—more justifica
tion never to multiply out the inverse transform!

Now examine the structure MgTAMj. Assume thaA has symmetric structured(; #
0iff A;; # 0) andMpg andM,, have the same structure. Then the product has symmetric
structure, and one can speak unambiguously about coarse/finearatifee support of a node.
Observe

M=
M=

(M;"AM, )y = (M")in A (M)

bl

S

I
NE

._.

o~
Il

—

(M5") ki A (M )i

£
Il

11

Il
—_

Then(M[;TAMgl)l-j # 0 iff there exist nodes and! with & € supgi), [ € supfj), and
k — lin A. In other words; — j in the product iff their supports are adjacentAn Using the
nested structure of the supports, it is then clear that the neighbourlieog aode;j contains
the neighbourhoods of all nodessopg;).

Now, the location of nonzeros in columnof the upper inverse triangular factr of a
symmetric structure matril8 can be characterized as follow#,; has an entry for each node
before: and reachable from, via paths inB using nodes beforé (One easy proof uses
induction and the dot-product form of AINV.)

Consider the effect of swapping the positions ef j in some ordering, whehe supgy).
Clearly the number of nonzeros in columnsérordered before bothand; or after both will
not be changed. However, the columns in between may be altered. Simeghbourhood of
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j contains the neighbourhood@fany nodes reachable on paths throughe reachable through
4, but not necessarily the other way around. Therefore ordeérrgjore;j can't result in more
nonzeros irZ, but putting; beforei might.

Thus any ordering of the nodes should respectdered after all other nodes supgy).
Sincesupgj) is the set ofi such that(M_!);; # 0, this is equivalent to requiring thatbe

ordered beforg whenever; ~ j in M,. This is clearly equivalent to orderingbefore j
whenever — j in M, which can be enforced by the algorithm in figure 3.4.

Essentially the algorithm outputs the nodes in the existing order except witanse node
comes before any of its fine dependents. Then the coarse node is mad# tmt all the
fine dependents have been ordered, at which point it's put on a daehee ordered as soon
as possible. The valueumdepi) serves as a counter of how many fine nodes dependent on
have yet to be ordered—sinéés only put intop when this reaches zero, the ordering must be
consistent.

The initialization loop, assuming sparse storage of the matrix, takes time on thweadrd
the number of nonzeros in the matrix, which should’iez) as mentioned in section 2.3. The
complexity of the main loop is a little more difficult to prove:

First note that both and j begin at 1 and never are decremented. det
> i, numdepi), so before the main loop begids= nnZM,) — n, the num-
ber of off-diagonal nonzeros iNI,,. Values innumdepare never incremented €0
never increases.

A node can only be marked as waiting in the final else clause, and sisigecre-
mented there it can never be marked as waiting again. The only way an entry in
numdepcan be decremented to zero is if it had been marked as waiting, and when
it hits 0 its marked as not waiting, so it can never be decremented paerefore

d is always non-negative.

Supposé is incremented past + 1—this can only happen if= n + 1 at the start
of an iteration with the queue empty. There must be some unordered nages lef
otherwisej would have been incremented pasind the loop would have stopped.
If any of the unordered nodes hadmdepequal to zero, they either would have
started at zero, in which case the first else clause would have beeneaxkéar that
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Figure 3.4: Modifying an ordering to respect the multi-resolution basis.

Take as input the structure M, or Mg (multiplied out).

Fori=1,...,n
e Setnumdely) = number of nodeg with j — ¢, not includingi itself.

e Setwaiting(7) to false.

Initialize a queue with room for entries, empty at first.

Seti = 1, the first node to attempt to order.

Setj = 1, the first index into the modified ordering

Whilej <n
¢ If the queue is not empty then
e Remove the first nodk from the front of the queue.
e Setp; = kandj «— j + 1.
e Consider, in order, each# k with k& — [ andwaiting(/) true; decremen
numdefdl), and if this isO setwaiting(!) to false and appenito the queue.
e Else ifnumde) = 0 then
e Setp; =i,j — j+1,andi i+ 1.
e Consider, in order, each# i with : — [ andwaiting(/) true; decremen
numdefdl), and if this isO setwaiting(!) to false and appenito the queue.
e Else umdely) > 0)
e Setwaiting(7) to true, and — i + 1.

¢ Return the modified ordering

t

t
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value ofi, or they would have been decremented to zero and added to the queue—
in either case implying that they must now be ordered, a contradiction. Thbe a
unordered nodes have positimemdepcounters. However, some unordered node

v must be from the finest resolution level of all unordered nodes, ardsioot

have any unordered dependent fine nodes—and so mushhawtepv) = 0, a
contradiction. Thereforénever is incremented past+ 1.

Clearlyj can never be incremented past 1 thanks to the loop condition. There-
fore, since in each iteration eithg¢is incremented; is incremented, or at least one
of the values imumdeps decremented, there can be at most nnZM,,) itera-
tions. In fact, assuming constant time queue operations (e.g. as in a singyle arr
implementation) the time spent in the main loopdén) + O(nnZM,,)), which
again should bé&(n) (see section 2.3). Thus the entire algorithmis:).

I now propose the following simple scheme: orderwith Nested Dissection, and then
run the above algorithm to make the ordering consistent with the multi-resolwsis. bThe
only worry is that the modification will destroy the good fill-reducing qualitieshef original
ordering. However, the bulk of the nodes should be at the finest lextttaus have trivial
supports, so the modification can’t change their relative order. The rwdes that can be
greatly affected by the ordering modification are the very coarse nedesh are in a very
small minority. Thus the potential damage is very limited.

3.9 Parallel Ordering and Construction

The only unresolved issue is parallelism in the construction and ordering.ougthmany
opportunities exist for limited fine-grain parallelism, probably the most practigpfoach is
coarse-grain, based on the successful parallel AINV describéd.in |

Begin by partitioning the graph oA into disconnected subgraphs (distributed to differ-
ent processors) and a separator set of the nodes separating ¢ghephigh Packages such as
Metis[24] provide good parallel routines to do this so that the subgraghoaghly balanced
in size and the separator is small. Conceptually the global ordering will psuthgraphs first
and the separator set last, thus restricting fill in the inverse factors and gnidldrsubgraph
computations independent.
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In each subgraph, the nodes can be ordered with Nested Dissectiomerather good
method, and the modification algorithm from the previous section run to makesistent
with the multi-resolution basis. In this case, some coarse nodes may be déxtonth fine de-
pendents in other subgraphs; these nodes must be moved to the segmrdtbrs modification
now ensures that the partition is also good for the transformed HMEQAM;P The mod-
ification can then continue in the separator set to make it consistent with the eudtistion
basis. While each subgraph ordering can be done independently eredifprocessors, doing
the separator set in parallel probably will be very challenging, so pedvits not too large
doing it serially on one processor should be acceptable.

As soon as the ordering of a subgraph is determined, serial outengir&tNV can be run
for those columns oW andZ: no information from other nodes is required. The bottleneck
is again the separator set, which must receive and combine informatiorafrtime subgraphs.
Possibly the best approach is to use the block dot-product form of Ahdiw [9] to get the
contributions from the subgraphs in parallel—each subgraph providgiadplock column, with
sparse blocks—and then continue with serial outer-product AINV @npoacessor. The exact
details of the implementation are left for future work.

3.10 The Relationship with Multigrid

Although the multi-resolution approximate inverse technique was motivated quiiéeeditly
from multigrid—using wavelets to compress the discrete Green'’s functioarrétthn using a
hierarchy of grids to damp all the different resolution components of tter efficiently—it
appears they are fundamentally very similar. In fact, the software dealogre for finding the
hierarchy of coarse nodes and the prediction operators could bevithazhly cosmetic changes
in an unstructured mesh node-nestatlltigrid package, and vice versa. The multi-resolution
basis part of the thesis can then be seen as more or less independerambbximate inverse
part, though of course some details of the basis are decided with conisidéoaimplementing
the approximate inverse.

A multigrid method is node-nested if the nodes in each coarse mesh angoales of the next finer mesh, so
the coarsening procedure consists of selecting a subset of the fihenoass to be coarse rather than introducing
new nodes.
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The relationship can be made more precise by interpreting the multi-resolupooxapate
inverse as an additive node-nested multigrid algorithm. For simplicity | onlyidenthe “two
grid” case, where there are only two levels in the hierarchy: the originodl@m and one coarse
problem. As usual for analysis, | assume that all the fine nodes areedrdefore all the coarse
nodes, with matrices partitioned accordingly.

The approximation ta\™" is MjQMET. Of course@ might be available only as a product
of matrices, but for this analysis assume it is explicitly known. Writing this out itrisnBorm

gives:

Q

A~ MlQmg"

_ (1 Pa (3’11 @12 I
I Q21 Qo2 P; 1
—_—

- (3)an (o) (F)an(1 o)
+ (;) Qi (P} 1)+ <P;“> Q: (P 1)

Now, define the mesh transfer operators: the prolong&ien (I}a) and the restrictioR =
(P;‘?)T. The prolongation takes a coarse mesh version of a function and rétermgerpolated
(predicted) fine mesh version. The restriction takes a fine mesh versadioétion and returns
a coarse mesh version—notice that this process is not simple injectiongsyiditsg of just the
coarse node values) but instead assigns to each coarse node adméaration of the coarse
node and its fine neighbours. The standard multigrid choice of taking tlrecties equal to
the transpose of the prolongation corresponds to taking= P .

While general multigrid is not constrained to this form for the prolongationrasttiction,

the only real assumptions underlying this form are:

e The restriction of a function at a particular coarse node should onlyndiepe the func-
tion values at that coarse node and possibly some fine nodes.

e The prolongation at a particular coarse node only depends on the vdhesdoarse mesh
version.
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Equivalently stated for the Galerkin (or Petrov-Galerkin) viewpoint of mrtligthe support
of a coarse mesh basis function should include only one coarse nodter these assump-
tions, the coarse part of the two operators becomes diagonal and tranidiky rescaled to the
identity. These seem quite reasonable assumptions to make; if the needranseger, there
is the possibility of simply generalizing the lifting scheme transform algorithm, cepahe
appropriate identity block with an invertible matrix.

Rewriting the approximation gives:
Al ~ I Qu (I 0) + PQo (I 0) + ! Q2R + PQuR
0 0

which can be viewed as additive multigrid. The coarse mesh correctioaspamds to the
PQQQR term (with QQZ playing the part of the coarse mesh solver). T]hégl(l 0) and
((1))61272 terms correspond to pre- and post-smoothing respectively, ar@)rﬁql(l 0) term
smooths just the fine nodes independently of the coarse node operageij8%] for an example
of approximate inverses used as smoothers in standard multigrid).
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Chapter 4

Implementation in One Dimension

4.1 Overview

One dimensional problems serve as a useful test of the method. Issheassine coarse/fine
splitting and the prediction are easier to deal with, and testing very fine méskes less

computer resources. Of course, approximate inverse methods wouwdd mewised for one-
dimensional problems in the real world, since other direct or special medwdeve optimally

efficient, robust solutions (at least if the problem isn't too ill-conditionddpwever, some of

the lessons gained in 1D can be brought to higher dimensional problems titeee is real

interest in using approximate inverses.

4.2 Discretization

In one dimension the operatdris of the form:

d d
,Cu—@ (Kau—bu) + cu

where all coefficients are scalars (possibly functions)oMithout loss of generality the equa-
tion Lu = f can be taken on the unit interval 1].
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For a finite volume discretization, choose poifits= 21 < 25 < --- < x, = 1 on the
interval, at which the solution will be approximated. Le&t,, be the midpoint between;
andz; ;. Define vertex-centred cells (known as finite volumes or control volufnes) these
points, with half-cells at the endpoints:

Cr = [z, 21p] =(0,214p]
¢ = [%’—1/2; xiJrl/Q] for i=2,...,n—1
Cn = [15n71/27 I‘n} = [.Tn,1/2, ]-}

Integrating the equation over an interior cell gives:

/i<Kiu—bu>+0udaz = /fda:
Cidl’ dx C;

d Tit1/2
[K—u—bu} —i—/ cudr = / fdzx
dl’ C; C;

T=T;—1/2

A mid-point approximation for the integrals and a second order finite diftEr@pproximation
for du/dz gives:

Kipp <%) — by pUipp
Ui — Ui—1 ~ (Tipp — Tiap)fi
— Ko e [ —2 T
i—1/2 (xi_l,i_l > + 0j1pUi—1p

+ (Tip — Tip)citi

7

The valueK; 5 could plausibly be taken a (z;,,5), but it turns out that a better choice
is some kind of mean value df on the interval between; andz;, ;. Continuity of the flux
or homogenization theory arguments show that the harmonic me&niwothis interval is the
correct value. A different intuitive reason for this can be found in thgsjral interpretation of
u as the concentration of some quantifythat diffuses at raté’; then K is the average speed
of the tiny particles ofU at a given point as they randomly move about. The average speed
on a path frome; to x;,1 is the harmonic mean of the speeds along the way: moving distance
dx takes timel /K (x) dz, so the total time igfi”l 1/K () dz, giving average speed; 1 —
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x;)/ f;j“ 1/K(x)dx. AssumingK is only known at the vertices, the natural approximation

IS: 1
Kinp =+
P I

K; K1

The valueb; 5, is handled differently—in the physical model, unlike theterm represent-
ing diffusion of randomly moving particle$, represents the deterministic underlying current
which convects the quantity. Again assume that only known at the vertices. There are two
cases to consider: whebeis the same sign at the vertices, and wheshanges sign. In the
first case, it is reasonable to appeal to smoothnesdan lack of a better idea, and estimate
bipp = (b; + bi+1)/2. In the second case, at some point betweeandzx;; eitherb = 0 or
b has a discontinuity spannirig this stagnation/source/sink point means there is no convective
connection between; andu;1, S0b; 1, should beD.

The termu, ;5 appearing in the convection term also requires thought. First order up-
streaming simply selects; . to be the upstream value whenb; ,» > 0 andu;; when
bit12 < 0. This is motivated by the physical reasoning that values @bwnstream should not
effect (via convection) any values that are upstream. It can be morematitally justified as
a sufficient condition for stability of the discretization, guaranteeing amntatpsr things that
the linear system will be an M-matrix (at leastif< 0). Upstreaming is used throughout this
thesis with no exceptions.

Diffusive flux (generalized Neumann) boundary conditions are edsgridle. For example,
if Kdu/dx-n = h at the left boundary, then there is just an extra source term when ititegra
the PDE ovelC; with the convective fludu(0) set to0 and the reaction term(0) set to0:

d d
— | K—u—bu = drx+ h
/01 dx < dzx ) 4 !
d L1412
[K—u—bu} = fdr+h
dux =0 C1

The above approximations can then be made. In fact, if the discretizatiencoodtructs the
equations interval by interval (not cell by cell) as is usually done, the diffigrences between
a diffusive flux boundary and an interior point is the slightly differerit-agdth, the condition
¢ = 0, and the additionakt term on the right-hand side.

Generalized Robin boundary conditions then simply require the addition eftierm at
the boundary node (or taking= a). In the special case of full flux specificatiang (—b) - 7.
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Dirichlet boundary conditions, e.g(z,) = g, might be discretized “as is”: simply take the
equationu,, = g. However, there is a major problem with this approach. For example, @nsid
u” = 0 with «/(0) = 0 andu(1) = 1 discretized on a uniform mesh of three poifits1/2, 1}.
Putting the resulting linear equations in matrix form gives:

-2 2 0 U1
2 -4 2 ug | =10
0 1 us 1

Notice the PDE problem was self-adjoint, yet the matrix is not. In fact, thepresesof the
matrix doesn't represent a discretization of any related PDE, and the msidiition method is
bound to fail in compressing the rows of the inverse.

The solution is to only approximately enforce the Dirichlet condition, the ded8big
number” approach, by thinking of the Dirichlet condition as the limitas> oo of the Robin
condition(K Vu)-n+au = ag on the boundary or the PDE with extra reaction tefay-au =
ag in the interior. These conditions naturally give correct discretizationthéadjoint.

Begin with the normal flux conditions, or if the Dirichlet point is in the interior oé th
domain, the normal discretization—which as mentioned is usually handled bwitie code.
However, then increase the diagonal by a very large numberl@.%). and change the corre-
sponding entry in the right-hand side appropriately:

-2 2 0 uy 0
2 -4 2 u | = 0
0 2 —10%0 us —1010

It's true thatw,, now will only be approximately equal tg, but that should be so much more
accurate than the other approximations made that this is no cause for Woerynatrix on the
other hand is now symmetric; in general the transpose of the matrix will be retiistion of
the adjoint problem, exactly as desired.

At first sight this might seem to pose the danger of making the system baaldsand
ill-conditioned; however, even the simplest of preconditioners will carttes essentially ar-
tificial scaling problem. The real issue with this technique is evaluating cgemee in an
iterative method. When looking at the residah — f, the Dirichlet entries are disproportion-
ately weighted by the big number. Then reducing the norm of the residusdrog factor like
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10~ can often be accomplished simply by correcting the Dirichlet entries—evea ikt of
the approximate solution is completely wrong! Thus it is importaniriweightthe Dirichlet
entries of the residual—divide by the big number—before taking the uswal m evaluating
convergence.

4.3 Basis construction

Although it's not clear that this is necessarily the best idea, a naturatmeckar splitting the
nodes into coarse and fine subsets in 1D is to simply take every secondoayde and the rest
fine. As mentioned before, this is the original even/odd splitting proposeg#in Pne slight
modification for this application is to always choose Dirichlet nodes as eotrsir value isn't
naturally predictable from nearby nodes, plus as coarse nodes thpgréectly handled by the
simplest approximate inverse. The same thing applies to Robin condition nddefominant
Dirichlet part.

The simplest choices for prediction are linear interpolation between the tighlriring
coarse nodes, or cubic interpolation if another two nodes (one on @hase used. Off-
centered interpolation or extrapolation must be used for fine nodes oeaottime boundary.
A more sophisticated approach is to use PDE-interpolation (see sectiomAi8 naturally
handles fine flux condition boundary nodes in addition to the interior nodes.

The choices for the update step are nothikp £ 0), first two moments (up to linear)
preserved using the two neighbouring fine nodes, or first four momept® (Cubic) preserved
using an extra node on each side. Near boundaries the nodes usedsmir aff-center, as
with prediction.

4.4 Test Problems

The following five problems were selected to test a variety of the difficultidstieesometimes
encountered. Uniform meshes of various sizes were tested along witmemmeiform meshes
(where the nodes were moved to increase accuracy). Besides the rvaltiti@n approximate
inverses, standard basis AINV was tested for comparison.
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The following subsections give the details of the testing; section 4.5 summer&essults.

4.4.1 Testing Protocol

The methods listed in the tables are:

AINV(6): the standard basis inner-product AINV with drop tolerafice

e Mr.Lin(d): a multi-resolution basis with linear interpolation but no update, then outer-
product AINV with drop toleranceé.

e Mr.LinUpd(d): a multi-resolution basis with linear interpolation and moments up to linear
preserved with an update step, then outer-product AINV with drop todexa

e Mr.Cub(): cubic interpolation, no update, drop tolerarice
e Mr.CubUpd¢): cubic interpolation and moments up to cubic preserved, drop tolebance

e Mr.PDE(): PDE-interpolation, no update, drop tolerarce

For the multi-resolution bases, enough levels were allowed so that theesblengel had about
100 nodes.

The ordering was nested dissection for standard AINV, with the modificatigorithm
applied for multi-resolution bases with no update step. For the bases withdateugtep,
the basis-transformed matrix was actually multiplied out before nested dissectiering and
AINV.

The drop tolerances were chosen to give approximately the same total nofhmoszeros
(including prediction and update operators where applicable) for esdompditioner, about
7000 for a problem onl000 nodes (09000 for problem 5).

The symmetric definite problems were solved with CG and the preconditionéeisys
D2z (MTAM™)ZD 2. BiCGStab withD W (M,;" AM_')Z was used for the oth-
ers. Convergence was flagged when the 2-norm of the residual (\WwitthIet nodes rescaled
appropriately, as mentioned before) was decreased by a fadtor bbeginning from an initial
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guess of all zeros; if convergence wasn'’t reached after 500 itesatilbe problem was marked
unsolved with an asterisk (*).

After each iteration count in the tables, the “work per unknown” is includqzhrentheses:
the number of iterations times the number of nonzeros in the preconditioreglidiion and
update operators included), divided by the number of unknowns. Tigsaa somewhat fairer
comparison between different preconditioners and problems.

Timing counts are not included, as parts of the code run interpreted MAELAB and
other parts in C, some tuned for performance and others not, thus any tioutdy lme mis-
representative. This means in particular that the efficient use of caamemyesuperscalar or
superpipelined architecture, etc. is not measured at all. Howeverths pleconditioner opera-
tions essentially boil down to sparse matrix multiplication, which can be codgdtfectively,
no major problems are anticipated for a real implementation.

4.4.2 Problem 1. Simple Heat Problem
This is the simplest problem, a sample solve from a fully implicit method for the logaitien
on a uniform bar with heat applied in one spot:

' —0.1u=f

where

fz) =

-1 : 04<zx<05
0 : otherwise

and the boundary conditions are Dirichlet:
u(0) =u(l)=0
See 4.1 for a plot of the solution.

Figure 4.2 shows in 3D the negative of the discrete Green’s function (leesi of the
matrix) and figure 4.3 shows it in 2D in different bases, symmetrically scaldthve unit
diagonal (darker shading indicates larger magnitude). Note how in thegesthhasis many off-
diagonal entries are significantly large, suggesting difficulties for aroappate inverse. In the
multi-resolution bases most of the off-diagonal entries are nearly zecegeat the coarsest
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Figure 4.1: Solution of 1D problem 1 (simple heat problem).
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level in the bottom right corner)—with some exceptions for the cubic intetipolar those
with update steps. The iteration results in table 4.1 confirm the suspicion thixt¢be and
PDE-interpolation bases do the best jobs.

As justified earlier, preserving moments is not a good thing; the convergerslowed
enormously or lost altogether for larger problems. From now on, resultsases with updates
will not be included.

AINV in the standard basis is reasonably effective for smalbut the work per unknown
grows linearly—giving arO(n?) solution on a serial machine.

The cubic interpolation is a little disappointing. Though providing more efficgehitions
than the standard basis, with the work per unknown a very slow growimgtitun of n, it is
nowhere near as good as the linear and PDE-interpolation bases. Rgpigea higher order
prediction, it takes much more work (and a much higher drop tolerance inpihv®xmate
inverse, indicating poorer compression). The essential problem hératithe solutions are
not smooth enough to warrant the high order accuracy. | suspebtiglbah’t proven that just
as linear interpolation corresponds to PDE-interpolation for the Laplaciaimn(1D), cubic
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Figure 4.2: Negative of the discrete Green’s function for 1D problem 1.
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Table 4.1:CG iterations for 1D problem 1 (simple heat problem) to redine residual norm by0—5,
with flops per unknown in parentheses; no convergence iseddok *. Each preconditioner’s drop
tolerance) is chosen to give roughly the same number of nonzeros. See5iafpr details.

| Method() | n=1000 n=2000 7n=4000 7n=8000 |
AINV(0.03) 23 (157) 39 (269) 73 (506) 141 (980)
MrLin(5-10~%) | 3 (18) 3 (14) 3 (11) 3 (10)
Mr.LinUpd(0.07) | 44 (323) 74 (466) 102 (606)  *
Mr.Cub(0.063) 24 (165) 26 (171) 27 (170) 29 (179)
Mr.CubUpd(.3) | 231 (1937) * * *
Mr.PDE(L0~1) 2 (7) 2 () 2 (6) 2 (6)
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Figure 4.3: Inverse of problem 1 matrix in different bases.

Standard basis PDE-interpolation

Linear interpolation Linear interpolation + update

Cubic interpolation Cubic interpolation + update
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Table 4.2:CG iterations for 1D problem 2 (discontinuous heat problémjeduce the residual norm
by 106, with flops per unknown in parentheses; no convergence ikeddsy *. Each preconditioner’s
drop tolerancé is chosen to give roughly the same number of nonzeros. See5iafpr details.

| Method) | n=1000 1 =2000 n=4000 n=8000
AINV(0.01) 12 (82) 16 (118) 25 (197) *
MrLin(5-107%) | 3 (21) 3 (22) 3 (23) 3 (24)
Mr.Cub(.063) | 71 (486) 226 (1493) * *
Mr.PDE0-1%) | 2 (10) 3 (15) 3 (15) 3 (15)

interpolation corresponds to PDE-interpolation for the biharmonic ope¢atérin 1D), and
thus is clearly inappropriate for second order problems.

The highly desirable phenomenon of “grid-independent convergesicéear in the linear
and PDE-interpolation bases. Here the work per unknown stays cgngidang an optimal
O(n) solution on a serial machine and potentially optimal scalability on parallel machines

Linear interpolation does a remarkably good job, almost giving a directisnliHowever,
PDE interpolation does even better, accounting as it does for the reactivA-tet only is less
work required, but the smaller drop tolerance indicates better compression

4.4.3 Problem 2: Discontinuous Heat Problem

Problem 2 is identical to problem 1 except that the boundaries are ins(gatéue condition is
Neumann at steady state), the time step is larger (so the reaction tertfiidw), and there is
a jump discontinuity in the diffusion coefficient:

K(z) 1 : z£<0.5
xr) =
107 : 2>0.5

The solution is shown in figure 4.4, and the inverse of the matrix in differasgdin figure 4.5.
Table 4.2 gives the iteration results.

Now that the problem really isn't so smooth, the cubic interpolation method failfact,
the standard basis is better, although still not robust and still not scalilhg e linear and
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Figure 4.4: Solution of problem 2 (discontinuous heat problem).
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PDE-interpolation methods perform very well again, with grid-independenvergence, the
PDE method just a bit better.

4.4.4 Problem 3: Convection with a Boundary Layer

The next problem is not self-adjoint, dominated by strong convection:

d -6,/ o
%(10 v —(xr+1u)=f

-1 : <02
f(x)_{ 0 : 2>02

and the boundary conditions are Dirichlet:

where

A very sharp boundary layer is present at the right boundary—egustweighting is essential
for stability here in particular. See figure 4.6 for a plot of the solution, agurdi 4.7 for a
picture of the matrix inverse in different bases. The iteration results axersim table 4.3.
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Figure 4.5: Inverse of problem 2 matrix in different bases.

Standard basis PDE-interpolation

Linear interpolation Cubic interpolation

Table 4.3:Bi-CGstab iterations for 1D problem 3 (convection problemjeduce the residual norm by
109, with flops per unknown in parentheses; no convergence ikedasy *. Each preconditioner’s
drop tolerance is chosen to give roughly the same number of nonzeros. See5iafpr details.

| Method() | n=1000 n=2000 n=4000 n=8000 |
AINV(0.3) 5 45 7 (70) 7 (77) 9 (109
Mr.Lin(0.25) | 47 (335) 33 (205) 39 (237) 49 (288)
Mr.CubQ.4) |71 (492) 99 (687) 103 (718) 123 (859)
Mr.PDEQ.002) | 5 (33) 5 (29) 5 (28) 7 (44)
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Figure 4.6: Solution of problem 3 (convection with a boundary layer).
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As mentioned before, the linear and cubic prediction are centred, equatijimg down-
stream information as upstream information, and this really shows in theirqoowergence.
The standard basis is much superior.

However, despite having the additional overhead of the different adpoediction, the
PDE-interpolation method again works beautifully and shows grid-indepgrabnvergence.
The drop tolerance is still fairly low showing the superior compression.

To better resolve the boundary layer, | tried a nonuniform mesh suchhtaapacingAx
decreased cubically near the right boundary. This was much too difficutbnvergence with
either the standard basis or the cubic interpolation basis, so | have onlgeddie linear and
PDE-interpolation results in table 4.4.

Despite the increased difficulty, PDE-interpolation still works fine.
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Figure 4.7: Inverse of problem 3 matrix in different bases.

Standard basis PDE-interpolation

Linear interpolation Cubic interpolation

Table 4.4:Iterations for 1D problem 3 on a stretched mesh. Standaid dad cubic interpolation basis
methods didn’t converge at all.

| Method() | n=1000 ~n=2000 n=4000 n=8000 |
Mr.Lin(0.245) | 137 (1070) 99 (743) 289 (2081) 321 (2224)
Mr.PDE(.003) | 5 (35) 7 (45) 7 (43) 7 (43)
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Figure 4.8: Solution of problem 4 (Indefinite Diffusion-Reaction).
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4.45 Problem 4: Indefinite Diffusion-Reaction

Problem 4 is self-adjoint without any discontinuities, but is indefinite by vidithe reaction
term:

1073 +u=f
where
-1 : 04<zx<05
flz) = .
0 : otherwise

and the boundary conditions are the natural Robin conditions. Figuredu&she solution and
figure 4.9 the matrix inverse in different bases (the inverse is not scaldthsthe oscillations
are clearly apparent). Table 4.5 contains the iteration results.

Again the PDE-interpolation is a clear winner. The linear interpolation dodsrso badly
because the problem is self-adjoint, but is still much less effective.

For higher accuracy, | tried an adaptive mesh, where the uniform mashnedified to
improve the error based on the second derivative of the computed solamtidnthen smoothed
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Figure 4.9: Inverse of problem 4 matrix in different bases.

Standard basis PDE-interpolation

Linear interpolation Cubic interpolation

Table 4.5:CG iterations for 1D problem 4 (indefinite diffusion-react) to reduce the residual norm
by 106, with flops per unknown in parentheses; no convergence ikeddny *. Each preconditioner’s
drop tolerance is chosen to give roughly the same number of nonzeros. See5iafpr details.

| Methodg) | n=1000 n=2000 n=4000 n =s8000
AINV(0.035) 73 (531) 315 (1940) * *
Mr.Lin(4 - 10~%) 29 (209) 25 (205) 27 (110) 25 (88
Mr.Cub(0.07) 355 (2172)  * * *
Mr.PDE(L - 10719) 5 (35) 5 (38) 5 (41) 5 (29)
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Table 4.6: Iterations for 1D problem 4, adaptive mesh. The iteration dsdioliowed by the
flops per unknown in parentheses.

| Method) | n=1000 n=2000 n=4000 n =8000 |
AINV(0.035) 251 (1618) * * *
Mr.Lin(4 - 10%) 17 (119) 19 (99) 19 (78) 19 (68
Mr.Cub(0.07) * * * *
Mr.PDE(-108) | 5 (33) 5 (30) 7 (35 9 (38)

a little. The results are shown in table 4.6. The standard basis and cubiolatenp per-
form abysmally as with the previous nonuniform mesh, but probably themitse symmetry
of the PDE the linear interpolation doesn't do badly at all. In fact, the pedioce of linear
interpolation is improved dramatically, presumably because in the new meshinds the so-
lution error diminished, but also the prediction error which also relies onadbensl derivative.
The performance of PDE interpolation is decreased slightly (but still cemsig beats linear
interpolation), probably because not much improvement is made in predictimmvehile the
problem is now worse conditioned.

4.4.6 Problem5: Combined Difficulties

The final problem has a discontinuous diffusion coefficient, strongexdion that changes
direction, and an oscillating reaction term:

d
%(Ku’ — (J]z — 0.5] = 0.05)u) — sin(brx) = —1

where

K(z) 1 : z2<0.3
xr) =
1073 : £>0.3

with Neumann boundary conditions:

w'(0) =u'(1) =0
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Figure 4.10: Solution of problem 5 (combined difficulties).

12

10t

Figures 4.10 and 4.11 show the solution and the matrix inverse as befaraudgeof the
difficulty of this problem, | aimed fop000 nonzeros in the preconditioners when= 1000;
the results are given in table 4.7.

4.5 Summary

In one dimension, the multi-resolution basis with linear or PDE-interpolation is reujérior
to the standard basis, enabling fast grid-independent convergenteujh problems where
AINV wouldn’t otherwise converge at all.

It is clear that the update step and cubic interpolation are inappropriatie WMdkar inter-
polation sometimes works very well, it can have problems with really tough prebl®DE-
interpolation gives by far the fastest convergence for all problemgitastshould normally be
the first choice. In situations where the same mesh is re-used for mangmpeoWwith different
(but not too challenging) coefficients, it might be worthwhile to stick with lineéerpolation
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Figure 4.11: Inverse of problem 5 matrix in different bases.

Standard basis PDE-interpolation

Linear interpolation Cubic interpolation

Table 4.7:Bi-CGstab iterations for 1D problem 5 (combined difficuli¢o reduce the residual norm
by 106, with flops per unknown in parentheses; no convergence ikeddny *. Each preconditioner’s
drop tolerance is chosen to give roughly the same number of nonzeros. See5iafpr details.

| Methodg) | n=1000 7 =2000 n=4000 n =8000
AINV(0.11) 127 (1170) 487 (4296) * *
Mr.Lin(0.003) 15 (136) 11 (91) 15 (103) 13 (74
Mr.Cub(0.063) | 103 (898) * * *
Mr.PDE(@ - 10~%) 9 (83) 7 (57) 7 (49 9 (55)
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which need only be set up once, rather than recompute the PDE-interpdtateach problem,
but for robustness the PDE-interpolation is definitely best.
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Chapter 5

Implementation in Two Dimensions

5.1 Overview

In two dimensions, on unstructured meshes, the matrices to solve are notlavigewith any

method. This is an application of interest to the real world. The lessonsdrmmdimension
(stick with linear or PDE-interpolation, no update step) carry over, butpotation is trickier,
to say nothing of new challenges in partitioning the nodes into coarse anddiseand in
deciding the nonzero structure of the prediction operators.

5.2 Discretization

There are still many questions left as to the best way of discretizing ellipti@tgysron two di-
mensional unstructured meshes, beginning with the choice of mesh itsedorfRerapplications
there are packages which use meshes of quadrilaterals, which giyeropErties (e.g. near or-
thogonality) when close to rectangular. However, it is trivial to conveguiadrilateral mesh
to a triangle mesh by splitting each quadrilateral along a diagonal, and gawdtthations on
these triangles can maintain the qualities which make quadrilaterals attractivdinstipéace.
(It's generally impossible to go the other way, convert a triangle mesh inta@ridgteral mesh
without adding or moving points.) Triangles are very flexible, able to conmeeany collection
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of points in the plane even if the prescribed boundary is hon-conveall§sitriangles have the
advantage of simpler discretization. Therefore | have chosen to onlydeortsangle meshes.

There are then several choices for which triangulation should be uddtbugh the dis-
cretization scheme will work on any non-degenerate mesh, the accurtdey esult is highly
dependent on the quality of the mesh.

For elliptic problems, the Delaunay triangulation is the usual choice sincdutésaamong
other things:

e fast algorithms,

e good geometry (e.g. maximizing the minimum interior angle of any triangle in the mesh),
and

e good discretization properties (e.g. linear finite element discretizationgtddels equa-
tion produce M-matrices, thus strictly maintaining the maximum/minimum properties of
the original PDE).

Of course, Delaunay triangulation has its faults. For example, it doesattly control the

maximum angle and thus may still produce nearly degenerate triangles—thisarsialpr

problem for highly stretched meshes used in aerodynamics, and hastpdothp use of a
“MinMax” triangulation[3]. This issue hasn’t come up during the testingtfos thesis, so |
have not followed this possibility.

Another problem with Delaunay triangulation is that an M-matrix (and accogipgmax-
imum/minimum properties) is not guaranteed for elliptic PDE’s other than Laglacgiation,
particularly if the diffusion tensor is highly anisotropic. This suggests moudifyhe edge-
swapping optimization procedure (see figure 5.1) of some incremental igiaiangulation
algorithms to attempt to produce the desiregdmatrices in the discretization, rather than op-
timize geometry features: edges should be swapped to make off-diaganasén the matrix
more positive and the diagonal more negative. Delaunay triangulation igustetine special
case for Laplace’s equation. So-called “coefficient-adaptive triatign” shows promise for
simple problems, but lacks robustness for highly variable coefficientsvekfer, as demon-
strated later the results can be improved dramatically if the domain is first splitaupdparate
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Figure 5.1: Given two adjacent triangles forming a convex quadrilatedgk ewapping may
reconfigure the triangles as shown (swapping the diagonal) to locally optsoine property
of the triangulation.

=

regions with roughly constant coefficients, the regions coefficienptaddy triangulated, and
then the full mesh stitched back together. Further research is definitelyadq

Once the mesh has been determined, there are two popular approachssrétizihg
Lu = f. The finite volume discretization used in 1D can be extended to 2D with the ap-
propriate definition of a cell around each vertex—an integral of the PHE a cell can be
reduced to a boundary integral which is straightforward to approximaseally a polygonal
region is made using the midpoints of the triangle edges along with some point irtehierin
of each triangle, such as the centroid. (Of course around bounddgsrhe cell is chopped in
half, just like the half-cells used at the boundaries in 1D.) Although the @ieritr a reasonable
choice and is quite popular, it may cause badly shaped cells inappropriaienivection prob-
lems: see figure 5.2 for an example. A much better choice is to use the circuejcehere
the perpendicular bisectors of the triangle meet—then the problem is that ¢chencintre is
outside the triangle for obtuse triangles. It is in general impossible to getngdtetion with
no obtuse triangles without adding extra points, so one possible remedyss theicircum-
centre for acute triangles, but the midpoint of the side closest to the circtirader obtuse
triangles. See figure 5.3 for an example. Another possibility not explaealib to use the cir-
cumcentres nevertheless—despite giving the non-intuitive property thattérface between
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Figure 5.2: An example of problems using centroids for finite volumes.

two cells sometimes doesn't intersect the line joining them, this has the advahtaate @lly
corresponding to a finite element method, and if a Delaunay triangulationds mrsking the
finite volumes the Voronoi cells.

The method of finite elements is the second popular choice. It is not as eadgrimret
physically, but its simple mathematical structure makes proofs of convergemnitgeneraliza-
tions to higher order approximations simpler. The Galerkin formulation of theadetksen-
tially approximates: as a linear combinatioE;T”:1 uj¢; of a finite set of basis functions;,
then seeks to solve the PDE in a weak sense by requjffintu¢; = [, f¢; for all i. This is
just a finite linear system for the coefficients Typically the basis functions are piecewise La-
grange polynomials, witk; equal tol at nodei and0 at other nodes so; represents the value
of u at nodes. If the diffusion term is integrated by parts, the differentiability requirenzent
the basis functions is reduced, and so actually the most popular choecfamd order elliptic
equations is piecewise Lagrange polynomials which are linear in each triangle
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Figure 5.3: An example of cells using circumcentres or midpoints.
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It can be shown that often the two methods give exactly the same (or almosartine)
discretization. In fact, proofs of convergence for finite volumes oftethg route of interpret-
ing the method as a finite elements with a particular choice of numerical quadfatuthe
integrals. It's similarly possible to interpret the linear/triangle finite element medkafinite
volume technique. Since finite volumes are particularly good at convectiowifag upstream
weighting to be easily implemented) whereas finite elements handle diffusion in kesang
more elegant way, many people exploit their compatibility in combining the techsidinés is
how | have chosen to discretize the PDE.

As noted in 1D, discontinuities in the diffusion coefficient must be handleefuldy. Un-
fortunately, it is not yet clear how to properly treat discontinuous arapatrdiffusion tensors
in 2D. For example, the simple-minded approach of taking component-wisghar means
is clearly wrong since it is not rotationally invariant. Return instead to theipalymtuition
of K measuring the average speed of randomly moving particles. The negatilierg of the
guantity —Vu represents the natural diffusive “force” (I use the term with hesitatenthe
physics of this argument haven't been clearly worked out) propellimtiches. The possibly
anisotropic resistance of the medium then results in an average veloeiti &fu.

Now, let; be the piecewise linear basis function for nadand approximate the solution
asu = Z?Zl uj¢;. The Galerkin condition for the diffusion term (ignoring the other terms for
now) gives the following for every;:

/ (V- KVu)g;drdy = / foi dx dy
Q Q

Integrating by parts:

/ (KVu)qSi-fzds—/(KVu)-Vqﬁidxdy:/fcbida;dy
[2/9] Q Q

As in 1D, the natural boundary conditions are based on the diffusixg fiiVw) - 1, and
so the boundary integral can be treated as a known quantity to subtnextife right-hand side
(or can simply be assumédor Dirichlet nodes). This reduces the problem to evaluating:

— Vojdedy = — i | -V drd
/Q(KVU) Vo, dx dy /Q Kv;uquj V¢, dx dy
- ]Z;uj (— /Q (KVo;) - Vi do dy)

72



Then the diffusion contribution to the matrix is:
Aij = — / (KV(;S]) . ngl d:L' dy
Q

Since eacly; is linear on each triangle, it is natural to break up this integral into integrais ov
each triangle where bothy and¢; are nonzero. Normally the full matrix is “assembled” in this
fashion, computing the submatrix of nonzero components from each triseyieately.

The problem is then reduced to evaluating
—/ (KV(%) . V(bl d(ﬂ dy
A

for some triangleA over which¢; and ¢, are nonzero. Note that that meanandj must

be vertices ofA\; for the moment, assume that4 j. As mentioned above the vecteVo;
represents the diffusive “force” propelling particles away from njdend sincéV ¢; is a vector
pointing in the direction of nodé the term can be interpreted as the average speed of particles
diffusing from nodej towards nodeé. Then what the terrshouldbe is not an arithmetic mean

of speeds over the triangle, but a harmonic mean over pathsjftomin the triangle. Noting
thatV¢; andV¢; are constant from linearity and assuming thais only known at the nodes,

the approximation is:

HM(—|A[(K;V ;) - Vi, —|A|(K; Vi) - V)

where HM is the harmonic mean and | is the area of triangle\. It is possible for non-
constantk that theK; and thek; speeds will have different signs, in which case the harmonic
mean is inappropriate and the arithmetic mean is used instead. Finally, just #&usierdpart

of the operator is zero for constant functions, the matrix should be percohstant vectors
(or equivalently, since the PDE conserves mass, the discretization sdeowlell). This means

Notice that reassuringly this scheme gives a self-adjoint matrix whénself-adjoint, and
for K constant it reverts to the standard, well-studied finite element approximatammon-
constantK this discretization scheme is debatable of course, but can be viewed dalga
first-order correct quadrature rule for the standard method’s ingegihais guaranteeing reason-
able behaviour—in any case, this is not a central issue for this thesis.
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For the convection term, define the cells with midpoints of edges and circurasemtr
nearest midpoints, as discussed before. Then integrating the coevectivover a cell gives:

/—V-(bu)dxdy = —/ ub-nds
Ci 801’

= - Z ub - A ds

cecdC; 9

where the summation is over the segmentmaking up the boundary of cefl;. The usual
approximations are made:

/c- =V - (bu) dr dy ~ — Z iz (b - ﬁ)ij+1/2uij+1/2
¢ =7

Here the summation is over nodggonnected to nodg o;; is the segment of the interface
between cells aroundandj, |o;;| its length, (b - 72);;4.1 an approximate value fdr- 7 along

o (with normal pointing from: towards;), andu;;1,, an approximate value far along the

5. Asin 1D, (b - 1)1 Can be taken to be either the averagé;ofi andb; - 7 if they have

the same sign, or zero if the sign changes. Similarly, the upstream choieg; fg is u; if
(b-7)ij4 > 0andu; otherwise. Upstream weighting is used without exception in this thesis.

Some confusion surrounds the reaction tetmFrom the pure finite element approach, the
contribution toA;; should bef,, c¢;¢;. However, since the support of thg's overlap, this will
be nonzero foy # 4, i.e. off the diagonal; besides spreading out the term in a somewhat non-
intuitive way, this has the undesirable effect of automatically losing\thmatrix property and
accompanying stability guarantees. The accepted remedy is called massgupgsantially
moving the off-diagonal contributions to the diagonal, which is nfgy\cgbi. Approximating
this with ¢; fQ ¢; allows a nice interpretation as a finite volume method, \ygmi being the
area of the cell formed (for example) in the midpoint and centroid construcklowever, the
better shaped cells used in the convection term don’t necessarily hagathésarea; there is a
somewhat disconcerting inconsistency in this approach that demander finstbstigation.

5.3 Basis Construction

The only requirements for the prediction operator are that it be realyoaedurate yet sparse;
in principle, unstructured interpolation methods such as distance weighteajag of nearby
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Figure 5.4: For simple linear interpolation, a triangular mesh of just the coades is first
constructed. For each fine node, the containing triangle is found, affid¢healue is predicted
from its coarse corners by the plane passing through them.
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points might be used. However, the effectiveness of linear and PDEpatddion in 1D suggest
that a structured approach is the best route to follow.

Linear interpolation works by triangulating the set of coarse nodes amdctbvestructing
the piecewise linear interpolant through those nodes. The predictedataduine node is the
appropriate linear combination of the values at the three coarse coffrtties @parse triangle
containing it: see figure 5.4. One of the benefits here is that the predictevatophas guaran-
teed sparsity: at most 3 nonzeros per fine node.

PDE-interpolation requires that a small mesh be constructed joining the fileetooearby
coarse nodes, upon which the PDE is re-discretized. This local mesh'tiogrinciple require
any global mesh triangulating the coarse nodes. However, a naturabapgdo constructing the
local meshes would be to begin with a global coarse mesh and, with an indegtni@ngulation
algorithm, insert the fine node and take the new triangles (see figure S\8hether hand,
particularly with stretched meshes, such an approach might connectehwofile to too many
coarse nodes, allowing problems not only for the sparsity of the predigtierator but also for
its accuracy if those connections are inappropriate: see figure 5.6 é&xaanple with Delaunay
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Figure 5.5: Remeshing for PDE-interpolation: add the fine node to theectr@aagle mesh,
and take the newly created triangles as the local mesh on which the PDE atidesitr
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retriangulation.

The solution | have implemented is limited retriangulation. Begin with the three coarse
nodes of the coarse triangle containing the fine node, just as with linegrafdggon. One could
then simply connect the fine node to these three and discretize on the residtiggdes, but
there are difficulties with degenerate triangles if the fine node happenedtodr very close to
an edge. (Although as mentioned before, it turns out that for Laplacgeiation, this simplifies
to linear interpolation.) Instead consider using the three additional coadss from the edge-
neighbouring triangles; apply the edge-swapping test of the Delaunegefficient-adaptive
optimization routine on each of the original coarse triangle’s edges, exgdmwundary edges
of course. Then the prediction operator again has guaranteed spatrsityst 6 nonzeros per
fine node.

Just as in 1D, Dirichlet nodes should be carried through without prediddowever, Neu-
mann boundary nodes pose somewhat of a problem. For linear predsiom, form of ex-
trapolation might be used; of course, extrapolation doesn't really finaogeneous Neumann
boundary condition, where the solution should be flat in the normal direcTiois wasn’t a big
issue in 1D, where there are at most two Neumann nodes, but for 2Dsaleaable proportion
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Figure 5.6: Remeshing around a fine node for PDE-interpolation gonéokéate and after.
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of the unknowns could be on Neumann boundaries. A slightly more reblsodloice is to
do 1D linear interpolation along the boundary curve, using the neighlgpudarse boundary
nodes.

For PDE-interpolation at Neumann boundary nodes, the only difficulty isifig out the
local retriangulation now that the node might not be contained in any ct@sgle, and that
even if it is, it shouldn’t be treated that way since in reality it is on the bonndehe obvious
solution is to begin with the two neighbouring coarse boundary nodes assibpothe third
node of their coarse triangle if the swapping test succeeds.

Since linear interpolation can be viewed as a special case of PDE-int#wpolédth the
Laplacian operator and very restricted retriangulation, but might benadgle to PDE-inter-
polation for some applications, a third possibility suggests itself: do the PDEpai&tion de-
scribed above with the Laplacian instead of the actual PDE. This simplifie®tieesomewhat
(no convection or reaction terms need to be discretized) and givestiwadithat are applicable
to many different problems. With more coarse nodes involved, hopefullgdberacy will be
improved over simple linear interpolation.

5.4 Automatic Mesh Coarsening

The remaining problem is to select the coarse nodes at each level. Thisaiemghng open
issue shared with unstructured multigrid; as will be seen in the test results)et®ds pre-
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sented here show promise but fall short of robustness. The simplatbaahat sometimes
is adopted is to expect the user to provide the hierarchy of coarse mepghbssibly the result
of an adaptive refinement process, where the coarse mesh is crestteddi nodes are added
where higher resolution is needed. Unfortunately, even if such a bigraxists, there may
be problems such as geometric smoothing operations changing the locatiodesf in finer
meshes or inadequacies in the quality of the hierarchy for a multi-resolutiés bas

A more attractive approach is automatic mesh coarsening, where justtigezénest mesh,
and possibly the matrix or PDE coefficients, the computer automatically cotssthechierar-
chy. The difficulty of course is making such a method robust over irregadéeshes and varied
coefficients.

One class of methods, which | call top-down approaches, begin with &t fimesh, select
a minimal set of nodes to be coarse that still allow good prediction for the rérganodes,
retriangulate the coarse nodes, and continue recursively. The sirapdgsple is that proposed
for multigrid in [12], where only the graph structure of the mesh is considdfedry second
boundary node is chosen to be coarse, and then a maximal indepeedisntteosen from the
interior nodes via a greedy algorithm on a breadth-first search framdomly chosen root node
(see figure 5.7 for an example). The maximality guarantees that each feeésnadjacent to at
least one coarse node, hopefully allowing good prediction. On the céimel; the independence
of the coarse nodes guarantees that there won't be too many of therlyraugird or a quarter
of the nodes for mostly regular meshes.

Some simple but important refinements to this independent set algorithm are ecsarak
that the fine nodes are contained inside the coarse boundary—oth#misgerpolation will
be technically difficult and probably inaccurate no matter what—and to allowstbeto specify
a few important points, such as corners of the domain, that should bénk&lptneshes. Note
that Dirichlet nodes may and should be eliminated from coarser meshesuterd size of
coarser meshes; they just shouldn’t be treated as fine nodes whible paedicted.

One difficulty caused by ignoring the geometry and the PDE is that stretchsideser
anisotropic problems may be handled incorrectly. If there is strong couplingendirection
the coarsening should only take place along that direction, since predicfing node from
weakly coupled nodes will inevitably fail. This technique is known as “serargening”, and
has proven to be invaluable for multigrid. To correct this deficiency in thegeddent set al-
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Figure 5.7: In top-down unweighted coarsening, every second laoynebde along with a
maximal independent set of interior nodes form the coarse nodes.aréegtriangulated, and
the process may continue recursively.
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gorithm, | propose a simple modification: pre-process the graph of the rdekdting weak
couplings. Discretize the PDE on the mesh to get a matriand to each directed edge— j

of the graph, attach the weigd;;| + |A;;|. This models the size of the PDE or adjoint inter-
polation coefficient when predictingfrom ¢ (recall that | use the same coarse node hierarchy
for the PDE and its adjoint). Then delete any directed edges;j with magnitude less than
half the maximum of any edge o Now, the independent set algorithm will only mark a node
as fine if there is a neighbouring coarse node giving a large PDE or atjtérpolation coeffi-
cient, i.e. if there is a coarse neighbour that can be used for effecedécion. To ensure this
happens at the boundary as well, any boundary nodes with a strongatim to an interior
node should be kept coarse. Note that the discretization and subsedqugping of small en-
tries is only used for constructing the hierarchy of meshesfor interpolation. See figure 5.8
for an example.

For problems with anisotropic coefficients, the retriangulation of the coerdes (in order
to generate the next level) may run into difficulties if simple Delaunay triangulaiased.
Coefficient-adaptive triangulation potentially can do a better job, as will be Bethe testing,
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Figure 5.8: In top-downweightedcoarsening, the maximal independent set of interior nodes
is chosen from a graph of the fine mesh with weak connections removere thi strong
connections are in bold; the second image shows the retriangulation seaoades. Notice
how coarsening is done only in the direction orthogonal to the stretching:marsening.
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serving to undo the anisotropies in the coefficients via cancelling anisatriopilee mesh.

Another class of coarsening algorithms, which | call the decrementabapipy begin with
the finest mesh and select nodes one by one, deleting and retriangula&aup step. The node
picked at each step should be the one easiest to predict; after enaleghhave been deleted,
the mesh is saved as the next coarsest level, and the process confinue@ample is of this
approach is given in [27]. The serial nature of these algorithms diagedrme however. If
a decremental algorithm were parallelized, say by eliminating many non-ititeyamdes at
each step, the result would probably be a somewhat obfuscated topaggroach anyhow.

A third class of coarsening algorithms | call the bottom-up approach. A patenob-
lem with the top-down approach is that the quality of the meshes may be ddgadeey get
coarser. Seemingly inconsequential details like specifying that the giedelyendent set algo-
rithm should work on a breadth-first search actually can have a bigtefiekind of instability
may be apparent: mistakes made at one level (e.g. marking an essentiait rsodee kind of
junction as fine) can be propagated down to lower levels. Another difficuilyhen to stop:
automatically identifying when the coarsest possible mesh (that will allow Lseduracy) has
been reached. A more robust alternative would be to choose the sbarsgh first, designed
to approximate the solution of the PDE as well as possible (and presumably gottsguc-
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tion, there would be a way to identify how useful the mesh is). The intermediatbeaén the
hierarchy can then be filled in by adding nodes that will allow good predictidimer levels.

One bottom-up method | have begun to investigate is to choose the coardestasoa set
of p-centres in the graph of the fine mesh (possibly weighted in a way similar toititatsded
above), i.e. a set gf nodes so that the graph distance between any other node and atcoarses
node is minimized. Unfortunately this is an NP-complete problem[19], but astietalgorithm
might prove effective. A plausible approach is to take an initial guess tfeegcoarsest level
from a top-down algorithm) and iteratively improve it with small, greedy adjustméoupling
this with a multi-level acceleration, as is done with spectacular success foifRfmmplete
problem of graph partitioning[24], might prove to be ideal.

5.5 Test Problems

The following two-dimensional test problems were chosen to be repréisentd the actual
problems faced in several different applications. They include irreguéshes, discontinuous
coefficients, anisotropy, and convection.

The following subsections give the details of the testing; section 5.6 summtr&zessults.

5.5.1 Testing Protocol
The methods listed in the tables are:

e ILUT(6): the drop-tolerance form of ILU, a popular and generally high qualis- p
conditioner for PDE problems. See [32] for details. The ordering is BevEuthill-
McKee[20, 11].

e AINV(0): the standard basis inner-product AINV with drop toleraicefter nested
dissection ordering.

e Mr.Lin(0): a multi-resolution basis with linear interpolation, based on unweighted-coars
ening. Outer-product AINV with drop toleranceis then used, with nested dissection
ordering modified for the multi-resolution basis.
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e Mr.Lap(d): a multi-resolution basis with Laplacian interpolation, based on unweighted
coarsening. Outer-product AINV with drop toleranitis then used, with modified nested
dissection ordering.

e Mr.PDE(): PDE-interpolation with unweighted coarsening; AINV with drop tolerance
0 after modified nested dissection ordering.

e +Mr.Lin(d), +Mr.Lap(®), +Mr.PDE(): the same as above, only with weighted coarsening
using Delaunay retriangulation.

e ++Mr.Lin(6), ++Mr.Lap(), ++Mr.PDE(): the same as above, with weighted coarsening
using coefficient-adaptive retriangulation.

e xMr.Lin(4), xMr.Lap(9), xMr.PDE()): the same as above, with weighted coarsening us-
ing coefficient-adaptive retriangulation applied separately to each regtbmear con-
stant coefficients, then stitched up into a global triangulation.

For the multi-resolution bases, enough levels were allowed so that theesblargel had about
100 nodes, except as noted in the problem commentary.

The drop tolerances were chosen to give roughly the same number adroserim each
preconditioner on the coarsest mesh tested for a particular problem.

The symmetric definite problems were solved with CG and the preconditiongeirsys
D2z (M AM™)ZD 2. BiCGStab withD ' W” (M ;" AM_!)Z was used for the oth-
ers. Convergence was flagged when the 2-norm of the residual (withlBt nodes rescaled
appropriately, as mentioned before) was decreased by a fadtor bbeginning from an initial
guess of all zeros; if convergence wasn’t reached after 100@idesathe problem was marked
unsolved with an asterisk (*).

After each iteration count in the tables, the “work per unknown” is includqzhrentheses:
the number of iterations times the number of nonzeros in the preconditioresli¢pon and
update operators included), divided by the number of unknowns. Thigsaa somewhat fairer
comparison between different preconditioners and problems. Howesbould be noted that
this may be somewhat misrepresentative, particularly as the matrix multiplies afxappte
inverses often can be better implemented than the triangular solves of ILIdlopérformance
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hardware; as shown in [4] for example, even when the number of flegsired by an ap-
proximate inverse is the same as ILU, the approximate inverse can still ruficgsigtly faster.
Unfortunately the code is still in the prototype stage, with some parts runningiiated in
MATLAB and others compiled in C or FORTRAN, so timing counts are not inciLidere.

The triangulation routines for coarsening were adapted from TRIPRGK|

5.5.2 Problem 1: Poisson equation on a uniform disc

This is Poisson’s equation on an unstructured but fairly uniform meshlafca(see figure 5.9.
To be precise, the PDE is:
Viu=f
where
0 : <0
Z, =
f(.) { -1 : x>0

and all boundaries are homogeneous Dirichlet. The solution is plotted ir figli©.

For the iterations both the simple independent set coarsening and the weéiglgpendent
set coarsening (figure 5.11) were used, stopping at around 1@8 iothe coarsest mesh. Table
5.1 gives the iteration results, with a plus sign before the bases with weiglotepleindent set
coarsening. For this problem, PDE-interpolation and Laplacian interpokatétie same thing,
so only one is listed.

It is interesting to note that in 2D, the difference between the standarddrasihie multi-
resolution basis isn’t nearly as dramatic. The basic reason for this is th@rten’s function
decays linearly in 1D but logarithmically in 2D, making a sparse approximateseva the
standard basis more feasible (since more entries are close to zero), iwthi#éesame time the
prediction operators become denser and less attractive. FurthernioiejiwlD the optimal
interpolation actually becomes exact giving the cyclic reduction direct methpidnal inter-
polation in 2D still falls short of exact—fine nodes are no longer indeparafecsach other.

As the problem size increases, ILUT and standard basis AINV both stew doughly
like O(n??). The multi-resolution bases don’t quite achieve grid-independent ogewee, but
come very close. The weighted coarsening is superior to the unweighitefdyr tbhis problem
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Figure 5.9: Unstructured but uniform triangulation of the disc.
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Table 5.1:CG iterations for 2D problem 1 (Poisson equation) to redheedsidual norm by0—¢, with
flops per unknown in parentheses; no convergence is mark&ddach preconditioner’s drop tolerance
0 is chosen to give roughly the same number of nonzeros. NatdlthiT is generally slower than the
flop count suggests. See page 81 for details.

| Method¢) | n=1195 n=4939 n=20011 n=79531 |
ILUT(0.009) | 13(84) 24(164) 47(327) 92 (643)
AINV(0.08) | 32(200) 63 (417) 126(851) 251 (1724)
MrLin(0.12) | 23(147) 26(177) 32(222) 35 (240
MrLap(0.1) | 18(120) 21(149) 23(167) 26 (191
+MrLin(0.12) | 22(142) 26(176) 29(201) 37 (258
+Mr.Lap(0.1) | 19(122) 20(136) 21(145)  25(172
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Figure 5.10: Solution of 2D problem 1 (Poisson equation).
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the difference isn't terribly significant—the finest mesh and problem asehlly isotropic, so
there isn’t much opportunity for semi-coarsening. Clearly the denseligbien operators in
Laplacian interpolation are more effective than extra nonzeros in the@xipate inverse with
sparser linear interpolation, but both provide fast solutions.

5.5.3 Problem 2: heat equation on a uniform disc

This is just a step in an implicit solve of the heat equation on an unstructutéaiby uniform
mesh of a disc (see figure 5.9. To be precise, the PDE is:

VZu—0lu=f
where
0 : =<0
Z, =
f(@y) { -1 : x>0

and all boundaries are Robin (steady state Neumann plus the reactionderthé time deriva-
tive). The solution is plotted in figure 5.12, and iteration results are giverbia &a2.
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Figure 5.11: Coarsening of uniform disc (unweighted above, weigrekmhf.
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Table 5.2:CG iterations for 2D problem 2 (heat equation) to reduce ésédual norm byl0=%, with

flops per unknown in parentheses; no convergence is mark&ddach preconditioner’s drop tolerance
0 is chosen to give roughly the same number of nonzeros. NatdlthiT is generally slower than the
flop count suggests. See page 81 for details.

| Method) | n=1195 7=4939 n=20011 n="79531 |
ILUT(0.01) 22 (151) 41 (284) 79 (549) 154 (1069)
AINV(0.085) |54 (375) 108 (733) 218 (1462) 434 (2898)
MrLin(0.12) |36 (244) 40 (279) 46 (318) 53 (373
MrLap(0.1) |28 (195) 30 (216) 34 (250) 38 (278
Mr.PDE(0.1) |28 (194) 30 (214) 34 (246) 38 (274
+Mr.Lin(0.11) | 33 (239) 38 (277) 42 (308) 49 (359
+Mr.Lap(0.1) |27 (183) 29 (202) 31 (216) 35 (242
+Mr.PDE(0.09)| 26 (180) 28 (198) 30 (212) 34 (239
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Figure 5.12: Solution of 2D problem 2 (heat equation).
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There are no surprises here. PDE-interpolation is slightly better thandiaplenterpola-
tion, but the PDE is so close to the Laplacian the difference isn't remarkable

5.5.4 Problem 3: heat equation on a stretched mesh

This problem is also an implicit step of solving the same heat equation with nooedeneous
boundary conditions:
Vu - n = sign(cos(200))

wheref is the angle from the origin and the x-axis. The mesh is exponentially stretimvacds

the boundary—Dbeginning with the same uniform mesh as before, the newadistiom the
originis1 —257". See figures 5.13 and 5.14 for the mesh and the solution, and table 5.3 for the
iteration results.

Now the advantage of semi-coarsening begins to become apparent: seebfitfu for a
comparison of the coarser meshes in the hierarchies. The unweightedelppreserves the

87



Figure 5.13: Stretched mesh on disc.
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Figure 5.14: Solution of 2D problem 3 (stretched mesh heat equation).
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Table 5.3:CG iterations for 2D problem 3 (stretched mesh heat equgatiioreduce the residual norm
by 106, with flops per unknown in parentheses; no convergence ikeddiy *. Each preconditioner’s
drop tolerancé is chosen to give roughly the same number of nonzeros. NatdlthiT is generally

slower than the flop count suggests. See page 81 for details.

| Method() | n=1195 n=4939 n=20011 n=79531 |
ILUT(0.009) 22 (149) 42 (293) 73 (513) 153 (1071)
AINV(0.085) |61 (411) 125 (865) 215 (1415) 432 (2806)
Mr.Lin(0.13) 51 (339) 65 (446) 78 (532) 84 (566
MrLap(0.12) |35 (232) 36 (250) 43 (298) 46 (319
Mr.PDE(0.11) |35 (237) 34 (239) 40 (281) 44 (309
+Mr.Lin(0.095) | 29 (200) 32 (226) 38 (276) 42 (305
+Mr.Lap(0.075) | 21 (141) 23 (168) 25 (178) 28 (194
+Mr.PDE(0.075) 21 (141) 23 (166) 25 (174) 28 (189
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Figure 5.15: Sample coarsening hierarchies for stretched disc mesbiimed method above,
weighted method below)
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stretching in the coarser levels, causing near degenerate triangles bguhdary. On the
other hand, the weighted approach works to undo the anisotropy, leewirgiderably better
conditioned meshes from which more accurate interpolation is possible.

5.5.5 Problem 4: Laplace’s equation around a simple airfoll

The next problem is Laplace’s equati®« = 0 around a simple airfoil. There are homo-
geneous Neumann boundary conditions around each section of thi aimtba farfield wind
coming slightly from below is approximated by imposing the Dirichlet conditioa = + 0.3y
on the exterior boundary. See figure 5.16 for a plot of the mesh, whidgbhs/monuniform but
not stretched, and figure 5.17 for the solution. The mesh hierarchiesomastructed with the
trailing tip of the foil specified as a key point to keep coarse. Iteratiorlteeate given in table
5.4.
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Figure 5.16: Mesh for 2D problem 4 (simple airfoil).
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Figure 5.17: Solution of 2D problem 4.
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Table 5.4:CG iterations for 2D problem 4 (simple airfoil) to reduce tlesidual norm byl0—6, with
flops per unknown in parentheses; no convergence is mark&ddach preconditioner’s drop tolerance
0 is chosen to give roughly the same number of nonzeros. NatdltbT is generally slower than the
flop count suggests. See page 81 for details.

Methodg) | n=6691 |
ILUT(0.01) 49 (314)
AINV(0.09) | 144 (939)
Mr.Lin(0.12) | 62 (402)
Mr.Lap(0.12) 35 (242)
+Mr.Lin(0.11) | 36 (234)
+Mr.Lap(0.11)| 30 (203)
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Table 5.5:CG iterations for 2D problem 5 (multi-segment airfoil) taltee the residual norm by =,
with flops per unknown in parentheses; no convergence isedanl *. Each preconditioner’s drop
tolerance) is chosen to give roughly the same number of nonzeros. NatdltbT is generally slower
than the flop count suggests. See page 81 for details.

| Method) | n=8607 |
ILUT(0.004) | 43 (229)
AINV(0.08) | 170 (908)
MrLin(0.2) | 189 (1023)
Mr.Lap(0.4) 291 (1666)
+Mr.Lin(0.12) | 54 (299)
+Mr.Lap(0.25)| 44 (247)

5.5.6 Problem 5: Laplace’s equation around a multi-segmentigoil

This time a multi-segment airfoil with stretched mesh is used, making the problesitdecably
more difficult. Figure 5.18 shows the new mesh and figure 5.19 the solutiontrailihg
tips were kept coarse, and to allow for the complex geometry, the coagseais stopped at
about 200 nodes: adequately representing the geometry with fewes apdears too difficult.
Iteration results are given in table 5.5.

This is probably the best example of the importance of semi-coarseninguniteighted
independent set algorithm gives such a bad hierarchy that the sabdsis is better, and
the normally more accurate Laplacian interpolation is actually worse than linegpdtation.
However, the weighted independent set method gives reasonablergenge—perhaps not as
good as one might hope, but probably there is still considerable rooimfwovement in the
coarsening.
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Figure 5.18: Mesh for 2D problem 5 (multi-segment airfoil).
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Figure 5.19: Solution of 2D problem 5.

I

5.5.7 Problem 6: discontinuous coefficient heat equation

We now try introducing discontinuous coefficients in the heat problem omrdgrular mesh in
figure 5.20, generated with MATLAB's PDETOOL. The PDE is:

V- -KVu—103u=f

where
1 : L0
K(x, = -
(=:9) { 106 © 2>0
and f = —1 on the left disc but 0 elsewhere, with Neumann boundary conditions. fdrp s

corners of the mesh, apart from the tiny step in the bottom straight seatéokejat coarse.

For this problem, clearly linear interpolation is doing the wrong thing, and Icégianter-
polation is even worse. PDE-interpolation works very nicely still. The mesriy isotropic,
so semi-coarsening only helps a little.
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Figure 5.20: Mesh for problem 6 (discontinuous heat equation).
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Figure 5.21: Solution of 2D problem 6.
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Table 5.6:CG iterations for 2D problem 6 (discontinuous heat equatiorreduce the residual norm
by 106, with flops per unknown in parentheses; no convergence ikeddy *. Each preconditioner’s
drop tolerance is chosen to give roughly the same number of nonzeros. NatdltiT is generally
slower than the flop count suggests. See page 81 for details.

| Methodg) | n=1018 0 =7420 |
ILUT(0.009) 25 (145) 50 (310)
AINV(0.08) 66 (404) 140 (814

Mr.Lin(0.15) 287 (1964) *
Mr.Lap(0.3) 522 (3247) *
Mr.PDE(0.11) | 31 (202) 34 (225)
+Mr.Lin(0.2) 712 (4024) *
+Mr.Lap(0.4) * *
+Mr.PDE(0.11), 27 (178) 31 (206)

5.5.8 Problem 7: simple anisotropy

This is a rather simple constant coefficient problem on a uniform squasi, et the diffusion
tensor coefficient is highly anisotropic. The PDE is:
1
1000ug + uy = 2—05in(107ry)
with homogeneous Neumann boundariesgor 0.25 and the Dirichlet boundary condition
u = x for y < 0.25. See figure 5.22 for the solution.

For the multi-resolution bases, the corners of the mesh are kept coarshows in fig-
ures 5.23 unweighted coarsening, the semi-coarsening with Delaunapgetation, and semi-
coarsening with coefficient-adaptive retriangulation are tested—this lasaiked with two
plusses in front of the method in table 5.22. Note that while semi-coarseningpgfigtunay re-
triangulation begins with the correct choices of coarse nodes, on timelanuthe out-of-phase
placement of coarse nodes causes the Delaunay algorithm to genepgpraate triangles.
The mistake is amplified in coarser levels, a fundamental problem with the tep-agproach.

The unweighted coarsening does a terrible job, while the semi-coarseewiifgatve. How-
ever, coefficient-adaptive retriangulation is much more effective—it agpeot just by a con-
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Table 5.7:CG iterations for 2D problem 7 (simple anisotropy) to redtie residual norm by0~¢,
with flops per unknown in parentheses; no convergence isedabnl *. Each preconditioner’s drop
tolerance) is chosen to give roughly the same number of nonzeros. NatdlthiT is generally slower

Figure 5.22: Solution of 2D problem 7 (simple anisotropy).

0.8+
0.6+
0.4+
0.2

than the flop count suggests. See page 81 for details.

| Method) | =900 n=3600 n=14400 |
ILUT(3.2-107%) | 21 (128) 38 (224) 65 (380)
AINV(0.01) 31 (167) 59 (396) 114 (828)
Mr.Lin(0.3) 488 (2623) 605 (3399) 592 (3422
Mr.Lap(0.45) 433 (2387) 541 (3230) 525 (3243)
Mr.PDE(0.4) 314 (1695) 340 (1993) 354 (2146)
+Mr.Lin(0.01) 23 (144) 47 (366) 81 (656)
+Mr.Lap(0.55) | 488 (2553) 610 (3505) 752 (4451)
+Mr.PDE(0.008) | 19 (118) 35 (269) 59 (460)
++Mr.Lin(0.01) | 15 (79) 21 (122) 32 (195)
++Mr.Lap(0.55) | 458 (2400) 770 (4408)  *

++Mr.PDE(0.008)| 13 (65) 18 (100) 24 (137)
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Figure 5.23: Coarsening for simple anisotropy (in order from top: uriwtedy weighted with

Delaunay retriangulation, weighted with coefficient-adaptive retriangulatio
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Figure 5.24: Solution of 2D problem 8 (ANISO).

stant factor, but actually improving the scalability. However, grid-indepenconvergence is
still not achieved. As always, PDE-interpolation is the best method (th@ailghwith an in-
appropriate hierarchy). It is interesting to note that for semi-coarsgl@gr interpolation is
better than Laplacian interpolation here: though both make the mistake of gguraj weight

to weakly coupled nodes in thedirection, the Laplacian prediction confounds the mistake by
including more weakly couples nodes.

5.5.9 Problem 8: ANISO

The ANISO problem[17] is a highly anisotropic discontinuous coefficieabjem. It splits the
unit square into quarters, the south-west and north-east quartisfgisg 1000w, + uy, = f
and the other two satisfying, + 1000u, = f. The right-hand side and boundary conditions
are the same as in problem 7. See figure 5.24 for the solution.

Unweighted coarsening is useless here too. However, the discontingitiese the edge-
swapping routine so much that coefficient-adaptive retriangulation is wweese—see figure
5.25 for an example of what goes wrong. However, adaptively retniatigpg each quarter
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Figure 5.25: Coefficient-adaptive triangulation gone wrong.

separately works well, as can be seen in table 5.8 where this method is labéitiestians.

As expected for an anisotropic problem, the Laplacian interpolation is terfBIE-interp-
olation is best, with linear close behind. However, even these work vemypon the Delaunay
retriangulated coarsened hierarchy; the advantage over the stdrad#sds only realized with
the more sophisticated hierarchy. This underscores the over-ridingtampaf good coarsen-
ing: it is the most sensitive and difficult part of the multi-resolution scheme.

5.5.10 Problem 9: a model reactor

The final self-adjoint problem is an indefinite problem that loosely modealsrowe diffusion
and reaction. There are 21 circular rods of radius 0.2 arranged neatlgisc of radius 0.9,
with an outer shield going out to radius 1. The PDE is:

V- KVu+cu=f

101



Table 5.8:CG iterations for 2D problem 8 (ANISO) to reduce the residuzim by 10~6, with flops
per unknown in parentheses; no convergence is marked bych f@conditioner’s drop tolerandéds
chosen to give roughly the same number of nonzeros. Notdltbdt is generally slower than the flop
count suggests. See page 81 for details.

| Method() | =900 n=3600 n=14400 |
ILUT(3.7-10% | 21 (110) 47 (256) 82 (429)
AINV/(0.006) 39 (207) 66 (459) 113 (950)

+MrLin(0.15) | 133 (706) 336 (2098) 410 (2158)
+Mr.Lap(0.45) | 399 (2096) 415 (2381) 486 (2894)
+Mr.PDE(0.15) | 126 (656) 306 (1716) 341 (1784)
«Mr.Lin(0.01) 14 (77) 16 (89) 20 (118)
«Mr.Lap(0.4) | 333 (1800) 382 (2217) 428 (2583)
«Mr.PDE(0.01) | 13 (69) 14 (76) 17 (94)

whereK = 1 andc = 0.3 in the rods,K = 0.005 andc = —0.2 in the disc, andk = 10~°
andc = 0 in the outer shield. The right-hand sigés —1 inside the reactor an@on the shield.
All boundary nodes are homogeneous Neumann. See figure 5.26 twlthion.

The multi-resolution basis convergence is disappointing. PDE-interpoldilbprevides
a better solution than the standard basis, but it's still rather slow. The disaies and lo-
cally indefinite regions in the rods cause catastrophic difficulties for therlized Laplacian
interpolation.

Surprisingly, the semi-coarsening is less effective than the unweighéegarong, a further
indication that this might be the real issue in unstructured multi-resolution metandghat
either the top-down approach needs to be made much more sophisticatéflereatthpproach
should be adopted.

5.5.11 Problem 10: simple convection

This is a convection-diffusion equation ori@) x 100 square grid:
0.01V?u — V- (bu) = f
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Figure 5.26: Solution of 2D problem 9 (model reactor).
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Table 5.9:CG iterations for 2D problem 9 (model reactor) to reduce #gédual norm byl0~¢, with
flops per unknown in parentheses; no convergence is mark&ddach preconditioner’s drop tolerance
0 is chosen to give roughly the same number of nonzeros. NatdlthiT is generally slower than the
flop count suggests. See page 81 for details.

| Method) | n=4195 0 =16613 n=066121 |

ILUT(0.009) 78 (546) 132 (963) 256 (1840)
AINV(0.08) 181 (1260) 355 (2473) 744 (5136)

Mr.Lin(0.15) * * *
Mr.Lap(0.3) * * *
Mr.PDE(0.11) | 89 (666) 141 (1031) 132 (945)
+Mr.Lin(0.2) * * *
+Mr.Lap(0.4) * * *

+Mr.PDE(0.11)| 112 (860) 154 (1143) 227 (1621)
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Figure 5.27: Solutions to 2D problem 10 (simple convection)

0 0.5 1

where
b(xz,y) = (e*,0)

with Dirichlet conditions at the sides of the square and Neumann conditiotiseotop and
bottom:

u(0,y) = sign(cos(10my))
u(l,y) = 0
uy(z,0) = uy(xz,1) = 0

A slightly more difficult problem arises whenis taken to vary withy:
b= (e"(1— (2y — 1)?),0)
Figure 5.27 shows the solutions, and table 5.10 has the results for the tlerpso

The somewhat mixed results are further evidence that though PDE-ilsttopavorks well,
coarsening needs further research for robustness; the linearagtatlan interpolation behave
inconsistently, probably indicating some subtle troubles.
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Table 5.10:Bi-CGstab iterations for 2D problem 10 (simple convectitmyeduce the residual norm
by 106, with flops per unknown in parentheses; no convergence ikeddsy *. Each preconditioner’s
drop tolerance is chosen to give roughly the same number of nonzeros. NatdltiT is generally
slower than the flop count suggests. See page 81 for details.

| Method() | bi=e¢" bi=e"(1-(2y—1)%) |
ILUT(0.015) 17 (154) 29 (260)
AINV(0.1) 75 (777) *
Mr.Lin(0.2) * 69 (584)
Mr.Lap(0.2) 91 (740) 191 (1504)

Mr.PDE(0.25) |71 (796) 31 (340)
++Mr.Lin(0.13) | 93 (1020) 31 (342)
++Mr.Lap(0.12) | * 65 (627)

++Mr.PDE(0.12)| 17 (216) 23 (273)

5.5.12 Problem 11: circular convection

This is a rather more difficult problem, as the streamlines are not straighblineather closed
circles. The PDE is on the unit disc:

Viu -V - (bu) —107%u = f

where
b(x,y) = (—1000y, 1000x)
and
-1 : =<0
T,1y) =
f@.y) { 0 : >0

with the natural Robin boundary conditions. This is essentially one time-stegaficabody
rotation. The discretization is on the uniform triangulation of the disc frortieegrroblems,
with solution shown in figure 5.28

Like many anisotropic problems, this should be easier since it essentialligisonisa set of
very weakly coupled one dimensional problems. The difficulty is that autommibods have
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Figure 5.28: Solution to 2D problem 11 (circular convection)
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Table 5.11:Bi-CGstab iterations for 2D problem 11 (circular conven)ito reduce the residual norm
by 106, with flops per unknown in parentheses; no convergence ikeddsy *. Each preconditioner’s
drop tolerance is chosen to give roughly the same number of nonzeros. NatdltiT is generally
slower than the flop count suggests. See page 81 for details.

| Methodg) | n=1195 n=4939 n=19627 n=T8763 |
ILUT(0.01) 33 (360) 53 (604) 111 (1229) *
AINV(0.12) 77 (833) 275 (2694) 755 (6532)  *

Mr.Lin(0.23) | 103 (1103) 933 (9620) 255 (2150) 691 (4896)
Mr.PDE(0.32) | 73 (750) 135 (1411) 297 (2970) 879 (8554)
+MrLin(0.18) | 69 (709) 157 (1402) 389 (3216)  *
+Mr.PDE(0.23)| 71 (739) 177 (1774) 497 (4900)  *

to detect this; if they treat the problem incorrectly very bad things candrapphe additional
twist in this problem is that the one-dimensional problems are periodic, siecgrgamlines
are closed; this means for example thais far from triangular, making life more difficult for
factored preconditioners.

The results for the multi-resolution approximate inverse are disappointingt Hack the
number of coarse levels to a maximum of two to improve convergence, and thisiles still
better than the standard basis, it loses scalability. Allowing more levels slowsrgence. The
problem is that the coarsening and interpolation should happen only alersgré&am-lines; at
low resolutions the stream-lines are very curved so retriangulation is bioudol the wrong
thing. A convection-aware coefficient-adaptive triangulation might do thehat | have left
this for future work.

Table 5.11 gives the iteration results, for unweighted and weighted coags@vith Delau-
nay retriangulation). The Laplacian interpolation basis is completely unsuitidstproblem,
and thus is not included. It is clear that the coarsening is a major difficulbyrter-intuitively,
the PDE-interpolation works better with the unweighted coarsening than witiweighted
scheme.
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5.5.13 Problem 12: barrier option pricing

The final problem comes from computational finance, a two-asset baptien pricing problem
in [29]. The PDE, in conservative formis:

0
MV (KVu— bu) + cu
or
with coefficients given by:
1 2202 TYPo102
K(‘r7y) = 3 ! 2 9
2\ zypoioa  y°o;
—z(r — 0% — poy102/2)
b(z,y) = ;
—y(r — o3 — po102/2)
c= —3r—+ U% + 0% + poio2
Herer = —t is backwards timeg andy are the prices of the underlying assets, ando,,

p, andr are constants describing the stochastic evolution of prices. In this exampte(.4,

oo = 0.2, r = 0.05, andp = —0.5. The payoff function (initial condition) is a basket call,
u(z,y, 7 = 0) = max(%(x + y) — 100,0), except for this example | assume the barrier is
applied immediately before, setting= 0 outside of a small ellipse. The boundary conditions
are Dirichlet,u — x/2 asz — oo andu — y/2 asy — oc.

The domain is the squafe, 200] x [0, 200], with an unstructured mesh that is refined around
the boundary of the barrier—see figure 5.29. Iteration counts for anl fwifiaimplicit timestep
of size A7 = 0.01 years (a fairly long step of about half a week) are given in table 5.12,
and for a timestep of sizAT+ = 0.0001 years (a more typical step of roughly 50 minutes) in
table 5.13, both with the unweighted coarsening and the weighted coarseittinDelaunay
retriangulation.

For the long timestep, there is considerable correlation between distarst ridde makes
the multi-resolution method more effective than the standard basis, thougly daly with
PDE-interpolation—linear or Laplacian interpolation fail. For the largesbler, the superior
scaling of PDE interpolation beats even ILUT in flop count.

!Although the original equation is non-conservative, and perhapddsbettreated as such, it is simpler for the
current discretization code to deal with the conservative form
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Figure 5.29: Mesh for 2D problem 12 (option pricing)
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Table 5.12:Bi-CGstab iterations for 2D problem 12 (option pricing) lvlong timestep to reduce the
residual norm byi0~6, with flops per unknown in parentheses; no convergence ikaddry *. Each
preconditioner’'s drop toleranckis chosen to give roughly the same number of nonzeros. Nate th
ILUT is generally slower than the flop count suggests. See gador details.

)

| Method() | n=3495 0 =13905 n=55473 |
ILUT(0.01) 11 (112) 23 (247) 37 (398)
AINV/(0.08) 25 (256) 55 (625) 85 (1013
Mr.Lin(0.14) 80 (877) 157 (1563) *
Mr.Lap(0.15) | 129 (1276) 331 (3287) *
Mr.PDE(0.35) | 31 (314) 33 (344) 37 (390)
+Mr.Lin(0.13) | 165 (1644) 217 (2232) *
+Mr.Lap(0.2) | 141 (1408) 481 (3795) *
+Mr.PDE(0.24)| 21 (210) 29 (296) 29 (296)
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Table 5.13: Bi-CGstab iterations for 2D problem 12 (option pricing) with stiorestep to
reduce the residual norm =%, with flops per unknown in parentheses; no convergence is
marked by *. Each preconditioner’s drop toleraiide chosen to give roughly the same number
of nonzeros. Note that ILUT is generally slower than the flop count ssigg See page 81 for
details.

Method) | n=3495 n=13905 n=:55473 |
ILUT(0.0002) | 5 (50) 5 (71) 5 (101)
AINV(0.003) 5 (50) 5 (93) 5 (177)

Mr.Lin(0.25) | 583 (6002) * *
Mr.lap(0.3) | 585 (5992) * *
Mr.PDE(0.28) | 15 (145) 15 (153) 19 (201
+Mr.Lin(0.28) | 557 (5606) * *
+Mr.Lap(0.33)| * * *

+Mr.PDE(0.2)| 11 (106) 13 (130) 15 (153

However, for the short timestep the matrix is very diagonally dominant; there isddtle
relation for the multi-resolution basis to exploit, yet fast decay in the Grdantion to the
benefit of the standard basis. Even with PDE-interpolation, the basisararssare essentially
a waste of storage that could be better spent on the approximate invérsegh the flop counts
show that the multi-resolution method is scaling better and might be more efféatilsrger
problems.

5.6 Summary

Every test problem was successfully solved with PDE-interpolation apisbppate coarsening
in the multi-resolution basis: no other method showed this level of robustiesthermore,

the multi-resolution method almost always outperformed the standard methéessteon the
largest meshes: their greater scalability is apparent, often running an afrdhagnitude or
more faster. (The exceptions are the strongly diagonally dominant matrisegyadrom the

short timesteps in problem 12.)
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It's true the standard methods were more competitive in 2D than in 1D, with Ilddiises
giving the best flop counts for smaller meshes. However, as mentionecthikfs performance
measure should be taken with a grain of salt since applying the ILUT pdécorer is often
more expensive than the approximate inverses, particularly on parallélimeac The fairer
comparison with standard AINV always came out in favour of the multi-rémsiumethods,
again apart from problem 12.

The downside of the multi-resolution methods is their sensitivity with respect tautee
matic mesh coarsening. Particularly for the anisotropic problems, appepéemi-coarsening
with coefficient-adaptive triangulation (which often required the domain thrsiepartitioned
into regions of roughly constant coefficients for robustness) is drud@vever, these problems
were solved with ease once a good hierarchy was found. The only teallyling issue was
with the nontrivial convection in problem 11, which featured closed amdetlistreamlines.
The current automatic mesh coarsening algorithms could not find a goatdiigr so even
though standard methods did worse, the multi-resolution results were stibfardptimal.

111



Chapter 6

Conclusions and Future Work

| have presented a new preconditioner for elliptic PDE’s, based on thefdesing second gen-
eration wavelets to compress the inverse for approximation with sparse mafrtds resolves
the inherent scalability problem of existing approximate inverses: in theatdbdsis, sparsity
and quality become increasingly compatible as the problem size grows. Alengaih| have
pointed out where algorithms are naturally parallel. The test results shofothaany fairly
difficult problems the method scales well, much better than the standard basixiamate
inverse, and even for small problems often gives significantly betterecgexce.

The key points brought home are:

e Wavelets are a natural choice for approximate inverses, but only wherents arenot
preserved with an update step.

¢ Interpolation should be chosen carefully with knowledge of the problenenegl, PDE-
interpolation is essential for robust convergence. Methods that anerhagder than the
PDE are useless.

e Good automatic coarsening is crucial, perhaps more important than the cifiditer-
polation. Simple approaches are bound to fail for tough problems with amsotr
discontinuities; finding a robust algorithm, especially for convection probjés still an
open problem.
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Along the way, several interesting questions have been raised. | wililsianmarize them
here.

The parallels to multigrid and other methods would make a comparative studyseiiyl.
In particular, the theoretical machinery used for analyzing the conmeegef multigrid proba-
bly can be put to good use here, and similarly the new perspective of essipg the discrete
Green'’s function might lead to new results for other multi-resolution techriq@ a prac-
tical level, the multi-resolution components of the software are compatible witb-nested
multigrid, so code may be re-used (and the two techniques could be conuiaaetty).

Developing an algebraic multi-resolution approximate inverse where théctoedopera-
tors are derived directly from the matrix might make for simpler and more tamde—the
issue of retriangulation in coarsening might be avoided in particular.

Adapting approximate inverse algorithms other than AINV (e.g. Chow and'S&R
method) may be very useful. In particular, other approaches have rnatueahparallelism
in the construction phase, though perhaps not showing as good gencetrrates.

The particle model that served as an intuition for harmonic weighting of thestliff term
deserves more thought—perhaps a discretization based directly on thdyingl statistical
mechanics rather than via the continuum approximation of the PDE will giveoanegs and
powerful solution to the inconsistencies aal hocnature of the current schemes. Coefficient
homogenization for coarsening might also fall naturally out of this rekearc

Coefficient-adaptive triangulation was used to great effect in a cordreliting, but the
present implementation’s instability for variable coefficients is clear, as waha difficulties
of convection problems.

The bottom-up approach in automatic unstructured mesh coarsening néedsitsidered
along with improvements to the weighted top-down approach suggestedrhegetical work
on the best possible node placement for the coarsest mesh couldantoize with adaptive
meshing research. This also leads the way to the question of what is tlhestqawssiblaseful
representation of a given problem.

Probably the most telling weakness with the method as it stands is the restricticaddp s
problems. Most real-life problems involve systems of PDE’s, often with scaniables fol-
lowing an elliptic or parabolic nature and others with a hyperbolic charastecdlled mixed
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systems). From an abstract viewpoint, the general scheme of the multiti@s@pproximate
inverse appears to apply here, but the problem of good interpolation engydlienging, to say
nothing of coefficient dependent coarsening.

Another obvious direction is in implementing the method for higher order PDE&isar
cretizations. (This arises in structural analysis, flux limiter methods foremion problems,
etc.) There doesn’t appear to be any great difficulty in doing this, butpiokation again could
pose problems, especially determining the coarse nodes used to predéhade.

A third and perhaps most challenging direction is the implementation for 3D pnsble
Here Green’s functions decay even faster (reducing the need for msititition compression),
interpolation operators are necessarily denser and more expensivanstructured meshing
is frought with technical difficulties to name only a few problems. Although sinmiatti-
resolution methods can be proven to give “optim@l’n) convergence even for 3D problems,
the constant factor obscured by tenotation is often so large that other preconditioners are
more effective for the problem sizes of interest today. It may be thagthouwulti-resolution
bases have a role to play, they will only be useful for really big problemg—perhaps coars-
ening should be stopped at hundreds of thousands of nodes. @e¢some 3D problems have
anisotropy or strong convection that essentially reduce them to sets kifyeeapled lower di-
mensional problems, albeit potentially with very complicated geometry; multi-riésoloneth-
ods appear to have more potential here.

Finally, although theoretically the algorithms presented in this thesis shouldééoatin
effectively in parallel, this is a far cry from a working parallel implementatibhe creation of
a truly scalable, parallel high performance multi-resolution approximatesaveill be a real
test of the method.
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