
Multi-Resolution
Approximate Inverses

by

Robert Edward Bridson

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 1999

c©Robert Edward Bridson 1999

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

ii

The University of Waterloo requires the signatures of all persons usingor photocopying this

thesis. Please sign below, and give address and date.

iii

Multi-Resolution Approximate

Inverses

This thesis presents a new preconditioner for elliptic PDE problems on unstructured meshes.

Using ideas from second generation wavelets, a multi-resolution basis is constructed to effec-

tively compress the inverse of the matrix, resolving the sparsity vs. quality problem of standard

approximate inverses. This finally allows the approximate inverse approachto scale well, giv-

ing fast convergence for Krylov subspace accelerators on a wide variety of large unstructured

problems. Implementation details are discussed, including ordering and construction of fac-

tored approximate inverses, discretization and basis construction in one and two dimensions,

and possibilities for parallelism. The numerical experiments in one and two dimensions con-

firm the capabilities of the scheme. Along the way I highlight many new avenuesfor research,

including the connections to multigrid and other multi-resolution schemes.

iv

Acknowledgements

I would like to first thank Wei-Pai Tang for his excellent ideas, support, and guidance. I’m

also indebted to Peter Forsyth for advice on discretization and multigrid, and very helpful sug-

gestions for revisions; to Sivabal Sivaloganathan for introducing me to Green’s functions and

reading the drafts; to Rob Zvan for getting me started on irregular meshes; toJustin Wan for

some fruitful conversations and sample meshes; to David Pooley for the barrier option pricing

problem; and of course to the Natural Sciences and Engineering Research Council of Canada

for their financial support. I especially want to thank my family for their much needed love and

encouragement throughout the last year and particularly the final hecticweeks.

v

Dedication

For Rowena.

vi

Contents

1 Preliminaries 1

1.1 Introduction . 1

1.2 Elliptic PDE’s . 2

1.3 Discretization . 4

1.4 Iterative Solvers . 4

1.5 Approximate Inverse Preconditioners .. 6

1.6 Discrete Green’s Functions . 7

1.7 Multi-Resolution Bases . 8

1.8 Related Methods . 10

1.9 Roadmap . 11

2 Constructing a Wavelet Basis 12

2.1 Overview . 12

2.2 Classical Wavelets . 13

2.3 The Lifting Scheme . 17

vii

2.4 The Multi-Resolution Property . 17

2.5 Compact Support . 19

2.6 Fast Transforms . 19

2.7 Noise Tolerance . 20

2.8 Additional Algorithm Features . 21

2.9 The Matrix Formulation . 22

3 The General Algorithm 24

3.1 Overview . 24

3.2 Using the Multi-Resolution Basis . 24

3.3 PDE-Interpolation . 27

3.4 Forgetting Moments . 29

3.5 Multiplying out the Transforms . 31

3.6 Computing the Approximate Inverse . 33

3.7 Improving AINV . 34

3.8 Ordering . 38

3.9 Parallel Ordering and Construction .42

3.10 The Relationship with Multigrid . 43

4 Implementation in One Dimension 46

4.1 Overview . 46

4.2 Discretization . 46

4.3 Basis construction . 50

viii

4.4 Test Problems . 50

4.5 Summary . 64

5 Implementation in Two Dimensions 67

5.1 Overview . 67

5.2 Discretization . 67

5.3 Basis Construction . 74

5.4 Automatic Mesh Coarsening . 77

5.5 Test Problems . 81

5.6 Summary . 110

6 Conclusions and Future Work 112

Bibliography 115

ix

List of Tables

4.1 Iterations for 1D problem 1 . 54

4.2 Iterations for 1D problem 2 (discontinuous heat problem) 56

4.3 Iterations for 1D problem 3 (convection) .. 58

4.4 Iterations for 1D problem 3 (stretched mesh) 60

4.5 Iterations for 1D problem 4 (indefinite diffusion-reaction) 62

4.6 Iterations for 1D problem 4, adaptive mesh63

4.7 Iterations for 1D problem 5 (combined difficulties)65

5.1 Iterations for 2D problem 1 (Poisson equation) 84

5.2 Iterations for 2D problem 2 (heat equation) 86

5.3 Iterations for 2D problem 3 (stretched mesh heat equation) 89

5.4 Iterations for 2D problem 4 (simple airfoil) 92

5.5 Iterations for 2D problem 5 (multi-segment airfoil) 93

5.6 Iterations for 2D problem 6 (discontinuous heat equation) 97

5.7 Iterations for 2D problem 7 (simple anisotropy)98

5.8 Iterations for 2D problem 8 (ANISO) . 102

x

5.9 Iterations for 2D problem 9 (model reactor) 103

5.10 Iterations for 2D problem 10 (simple convection) 105

5.11 Iterations for 2D problem 11 (circular convection) 107

5.12 Iterations for 2D problem 12 (option pricing), long timestep 109

5.13 Iterations for 2D problem 12, short timestep 110

xi

List of Figures

2.1 The D4 scaling and wavelet functions . 16

2.2 The forward transform for the lifting scheme. 18

2.3 The inverse transform for the lifting scheme.18

3.1 The multi-resolution approximate inverse algorithm. 26

3.2 The original dot-product form of AINV. 35

3.3 The outer-product form of AINV. .. 37

3.4 Modifying an ordering to respect the multi-resolution basis. 41

4.1 Solution of 1D problem 1 (simple heat problem). 53

4.2 The Green’s function for 1D problem 1 .54

4.3 Inverse of problem 1 matrix in different bases. 55

4.4 Solution of problem 2 (discontinuous heat problem). 57

4.5 Inverse of problem 2 matrix in different bases. 58

4.6 Solution of problem 3 (convection with a boundary layer). 59

4.7 Inverse of problem 3 matrix in different bases. 60

4.8 Solution of problem 4 (Indefinite Diffusion-Reaction). 61

xii

4.9 Inverse of problem 4 matrix in different bases. 62

4.10 Solution of problem 5 (combined difficulties). 64

4.11 Inverse of problem 5 matrix in different bases. 65

5.1 Edge swapping in triangulation . 69

5.2 Problems using centroids for finite volumes 70

5.3 Cells using circumcentres or midpoints . 71

5.4 Linear interpolation in 2D . 75

5.5 Remeshing for PDE-interpolation . 76

5.6 Remeshing around a fine node gone bad .77

5.7 An example of unweighted top-down coarsening79

5.8 An example of weighted top-down semi-coarsening80

5.9 Unstructured but uniform triangulation of the disc. 84

5.10 Solution of 2D problem 1 (Poisson equation). 85

5.11 Coarsening of uniform disc .86

5.12 Solution of 2D problem 2 (heat equation). 87

5.13 Stretched mesh on disc. 88

5.14 Solution of 2D problem 3 (stretched mesh heat equation). 89

5.15 Coarsening for stretched disc mesh .. 90

5.16 Mesh for 2D problem 4 (simple airfoil). 91

5.17 Solution of 2D problem 4. 92

5.18 Mesh for 2D problem 5 (multi-segment airfoil).94

xiii

5.19 Solution of 2D problem 5. 95

5.20 Mesh for problem 6 (discontinuous heat equation). 96

5.21 Solution of 2D problem 6. 96

5.22 Solution of 2D problem 7 (simple anisotropy). 98

5.23 Coarsening for simple anisotropy .99

5.24 Solution of 2D problem 8 (ANISO). 100

5.25 Coefficient-adaptive triangulation gone wrong. 101

5.26 Solution of 2D problem 9 (model reactor).103

5.27 Solutions to 2D problem 10 (simple convection) 104

5.28 Solution to 2D problem 11 (circular convection)106

5.29 Mesh for 2D problem 12 (option pricing) .109

xiv

Chapter 1

Preliminaries

1.1 Introduction

One of the biggest challenges facing scientific computing today is accuratelysolving partial

differential equations. Advances in computer performance help fuel thisdemand for higher

quality numerical solutions to problems from science, engineering, finance,etc. However, ef-

fectively using the increased power of workstations and supercomputers requires new methods:

algorithms that worked in the past often don’t scale well to the new architectures and bigger

problems.

This thesis proposes a new technique for solving the systems of linear equations which take

up so much of the time for elliptic PDE’s on unstructured meshes. Current approximate inverse

preconditioners do not scale well: there must be a trade-off between sparsity and quality in the

approximation, with the disparity quickly growing as the problem size increases. However, by

compressing the inverse with techniques from second generation wavelets, a sparseand high

quality preconditioner can be found, giving fast and scalable convergence for iterative methods.

Furthermore, the attractive parallelism of approximate inverses is retained.

The main effort in this work is to present the essential ideas and motivations behind multi-

resolution approximate inverses, with proofs of concept showing their capabilities in one and

two dimensions. This is not a theoretical treatise proving optimality of the method, nor is it

1

a blueprint for a high-performance implementation. I have instead striven for a practical and

intuitive middle route that will ease the way for progress in all directions.

1.2 Elliptic PDE’s

This thesis is concerned with the numerical solution of elliptic partial differential equations

(PDE’s). More specifically, second order linear scalar problems will beconsidered:

Lu = f on Ω (1.1)

whereΩ is the region of interest,f is some forcing function, and the differential operatorL is

of the form:

Lu = ∇ · (K∇u− bu) + cu

HereK is a positive definite second order tensor field,b is a vector field, andc is a scalar

field. Note that these coefficients may vary overΩ—in some applications, possibly with jump

discontinuities of several orders of magnitude.

One can physically interpret 1.1 as describing the concentrationu of some quantity—e.g.

heat, a chemical dissolved in fluid, neutrons, etc. The expression(K∇u − bu) is the “flux”,

measuring how fast and in what direction the quantity is flowing. TheK∇u term represents

diffusion, how the quantity naturally flows from regions of high concentration towards regions

of low concentration at a rate proportional to the gradient (though ifK is not a scalar multiple of

the identity, anisotropy in the underlying medium can distort this flow). Thebu term represents

theconvectionof the quantity by some underlying flow field—a current in the medium described

by b carries the quantity along with it. Thus∇ · (K∇u − bu) at a point gives the total change

in u at that point due to flow of the quantity. The final termcu representsreaction, where the

quantity is created (c > 0) or destroyed (c < 0) at a rate proportional to its concentration. In

the former case,c > 0, the problem may become indefinite or even ill-posed.

There are several special examples of elliptic equations which don’t exactly fall under this

interpretation. For example, irrotational, inviscid, incompressible fluid flow can be determined

by solving Laplace’s equation

∇2φ = ∇ · ∇φ = 0

2

for a potential functionφ, giving the velocity fieldv = ∇φ. Another example is the Helmholtz

equation arising in electromagnetics

∇2ψ + k2ψ = f

Of course, 1.1 is under-determined without appropriate boundary conditions. For example,

the value or derivatives ofu could be specified along the boundary. To be precise, letting the

boundary∂Ω of Ω be partitioned into∂ΩD, ∂ΩN , and∂ΩR, impose the following on 1.1:

u = gD on ∂ΩD

(K∇u) · n̂ = gN on ∂ΩN

(K∇u) · n̂+ au = gR on ∂ΩR

Here n̂ denotes the normal vector to the boundary. The first condition, whereu is specified,

is called a Dirichlet condition. The second condition, where the diffusive flux through the

boundary is specified, is the physical generalization of the Neumann boundary condition∇u ·

n̂ = g. The third, a linear combination of the first two, is the generalization of the Robin

condition∇u · n̂ + au = g. Note in particular that specifying the combined diffusive and

convective flux,(K∇u− bu) · n̂ = (K∇u) · n̂+ (−b · n̂)u, is a special case of this third type.

An important application of solving equations like 1.1 arises in the implicit numericalsolu-

tion of time-dependent parabolic partial differential equations, of the form:

∂u

∂t
= Lu on Ω, t ≥ 0

Another big application is non-linear elliptic problems, where each step of Newton’s method

will involve solving a linearized problem of the type 1.1, with the coefficients depending on the

solution from the previous step.

Finally, the problem 1.1 is also seen in inverse iteration methods for finding eigenvalues and

eigenfunctions of the operator, i.e. scalarsλ and functionsu such thatLu = λu.

3

1.3 Discretization

To numerically approximate the solution of the PDE, the equation 1.1 must bediscretized, re-

ducing it from an infinite dimensional linear system to a finite dimensional one. Typically this is

done by first determining a set of points (the “nodes”) in the region wherethe approximate val-

ues ofu are sought. A mesh is generated that connects those nodes, breaking upthe region into

small and simple subregions—e.g. sub-intervals in 1D, triangles or quadrilaterals in 2D, tetra-

hedra or prisms in 3D. For each node, a linear equation involving nearby nodes is determined

from the mesh, attempting to approximate the true equation 1.1 or the boundary condition at

that node. The resulting finite system of equations is then solved for the approximate values of

u at the nodes. The system will be written asAu = f , whereA is the matrix of coefficients of

the equations,u is the vector of unknown values ofu at the nodes, andf is the known right-hand

side vector arising fromf and the boundary conditions.

This thesis is concerned with problems on unstructured meshes, that is meshes that are not

regularly arranged grids. This is of particular interest for two reasons. First, most real life

problems involve regions of such geometric complexity that it is difficult to faithfully represent

them with a structured grid. Second, in most real life problems the magnitudes of the derivatives

of the solution, which govern the accuracy of the discretization, vary considerably: in regions

of rapid changes, more nodes are required for adequate accuracy.This “adaptive meshing” is

often difficult to manage with structured grids.

For discretizing a PDE on an unstructured mesh, either the finite volume method or the finite

element method is normally used. Particularly for difficult problems with discontinuities in the

coefficients, fairly low-order approximations using many nodes are preferred. In this case, the

finite element method can often be interpreted as a type of finite volume method or vice versa,

and so in fact often the two methods are used together. See sections 4.2 and5.2 for details.

1.4 Iterative Solvers

The meshes on which PDE’s are discretized are often very fine, using many nodes, in order to

give more accurate solutions. This gives rise to very large systems of equations to be solved.

Fortunately, the coefficient matrices are sparse: almost all the entries arezero. The traditional

4

approach of using Gaussian elimination to decompose the matrix into triangular factors, then

solving triangular systems, can be enhanced to exploit this sparsity. Modern “direct methods”

use sophisticated reorderings of the rows and columns to keep the storagerequirements for the

factors as low as possible, and clever data structure algorithms to reduce the factorization and

solution time to a minimum.

However, as problems have continued to grow and computer architecture changed, direct

methods have hit serious difficulties. Matrices with millions of rows are becomingcommon, and

at that size just storing the factors can be too expensive, let alone computing them! Furthermore,

Gaussian elimination and triangular solves can be difficult to effectively parallelize, resulting in

poor efficiency on todays high performance machines with tens, hundreds or even thousands of

processors.

Alternatives include “fast solvers,” which typically use the Fast FourierTransform to solve

certain PDE problems very efficiently. Unfortunately their use is generally restricted to some

special constant coefficient PDE’s discretized only on uniform Cartesian grids, which is inade-

quate for many applications.

The search for scalable algorithms for effectively solving very large problems, especially

on parallel computers, turns instead to “iterative methods”. The essential idea behind these

schemes is that starting with an initial guessu0 for the solution ofAu = f , refinements are

made to get better guessesu1, u2, The process is halted whenui is deemed accurate

enough, say when||Aui − f || < 10−6||Au0 − f ||.

There are many possibilities for determining better guesses at the solution. The most pop-

ular general purpose algorithms are called “Krylov subspace accelerators”. There are many

different schemes in this framework, but it is widely accepted that the choice of accelerator isn’t

crucial compared to the choice of preconditioner, explained below. In thisthesis I follow a pop-

ular choice of using the Conjugate Gradient method for symmetric positive definite matrices,

and the Biconjugate Gradient Stabilized (BiCGStab) method for all other problems. See [32]

for an exposition of these and other methods.

The advantages of these iterative methods are twofold: firstly, there are no large factors

needed—just the matrix and a few auxiliary vectors—and secondly, only easily parallelized

matrix-vector multiplies are used. On the other hand, the major disadvantage ofiterative meth-

ods is robustness. The rate of convergence to the correct solution depends upon the condition

5

number1 which is often so large that the accelerator simply won’t converge at all: finite pre-

cision arithmetic errors build up faster than the theoretical convergence. This is especially a

problem for large, highly nonuniform unstructured meshes: the conditionnumber increases not

only with the size of the problem, but also with the degree of irregularity in the mesh. For

problems with highly variable coefficients, or that show strong anisotropy,or that are indefinite

or close to indefinite, the condition number is still worse. It is generally agreed that not much

improvement can be made to the standard accelerators; the key is instead “preconditioning”.

A preconditioner in general is a pair of non-singular linear operatorsML andMR such that

MLAMR ≈ I. Note that they don’t have to be explicitly known in matrix form, instead being

implicitly represented by linear algorithms or products of matrices for example. Special cases

where one of the operators is just the identity (and so is ignored) are referred to as left or right

preconditioning. The key observation is that the systemAu = f is equivalent to the system

(MLAMR)v = MLf , u = MRv, but the second system should be much easier to solve

iteratively thanks to its improved condition number. The goal then is to find preconditioners

that are effective in improving the condition number, but that are cheap to compute, store, and

apply.

1.5 Approximate Inverse Preconditioners

One preconditioning strategy exemplified by ILU and Gauss-Seidel (see [32]) is to determine

very sparse approximations to the triangular factors ofA. Triangular solves can then be used

to approximate the application ofA−1, just as a direct method uses the exact factors to exactly

applyA−1, modulo rounding errors. Even though this can be much cheaper than fullGaussian

elimination, since the full factors need not be computed, the approach inherits the parallelism

problems of direct methods, and so much research has been devoted to alternative schemes.

Of particular interest today are approximate inverse preconditioners where A−1 is directly

approximated with a sparse matrix, or more generally, a product of sparsematrices. This re-

stores the attractive parallelism of accelerators, since to apply the preconditioner again only

easily parallelized matrix-vector multiplies are needed.

1The condition number ofA, denoted byκ(A), is a measure of how far the matrix is from the identityI. It is

generally defined asκ(A) = ||A|| · ||A−1|| for some appropriate matrix norm.

6

Several algorithms have been proposed for constructing approximate inverses. These can

be loosely categorized first by their result: some algorithms produce a singlesparse matrix ap-

proximatingA−1—e.g. SPAI[22], Chow and Saad’s MR method[15, 16], Tang and Wan’s local

inverse[35]—and others produce factored approximations (approximate inverses of the trian-

gular factors)—e.g. FSAI[25], AINV[4]. The factored form has theadvantages of guaranteed

non-singularity, extra sparsity from good orderings, and apparently more effect per nonzero

thanks to its more implicit nature. However, the non-factored form has the advantages of ro-

bustness with respect to orderings—bad pivots are not an issue—and more parallel application.

The algorithms can secondly be classified according to their general approach: minimization

of the Frobenius norm of the error between the preconditioned matrix and the identity under

sparsity constraints (e.g. SPAI, FSAI), limited optimization of that error (e.g.Chow and Saad’s

MR method, Tang and Wan’s local inverse), or incomplete inversion algorithms (e.g. AINV).

There is much work to be done in improving these algorithms—implementation details,

parallelism in construction, finding good sparsity patterns, etc.—but it appears at the moment

that the factored, incomplete inversion algorithms are the most practical. The algorithm used in

this thesis is AINV.

1.6 Discrete Green’s Functions

One general method for analytically solving 1.1 is to find the Green’s function, a function

G : Ω× Ω→ R which satisfies:

LxG(x, y) = δ(x− y), for x, y ∈ Ω, (y held fixed) (1.2)

and suitable boundary conditions on∂Ω. Here the derivatives are with respect tox, andδ is the

Dirac delta distribution. Neglecting the boundary conditions for simplicity, the solution to 1.1

is:

u(x) =

∫

Ω
G(x, y)f(y) dy (1.3)

since then

L(u(x)) = L

∫

Ω
G(x, y)f(y) dy

7

=

∫

Ω
LxG(x, y)f(y) dy

=

∫

Ω
δ(x− y)f(y) dy

= f(x)

Suppose 1.1 has been discretized asAu = f , whereA approximatesL, u approximatesu

with ui ≈ u(xi), andf approximatesf with fi ≈ f(xi), again ignoring boundary conditions

for simplicity. With the matrixA−1 satisfying

AA−1 = I (1.4)

write the discrete solution as:

u = A−1f , i.e. ui =
∑

j

A−1
ij fj (1.5)

Note that the identity matrixI is the discrete Dirac delta:Iij = δij . The analogy between

1.2 and 1.4, and between 1.3 and 1.5 is then clear. The matrixA−1 is a discrete version of the

Green’s functionG.

For most elliptic problems the Green’s functionG is known to be nonzero on all ofΩ× Ω,

and possibly significantly large on a lot of that domain. If the discretizationA of the operator

L is of any value,A−1 must similarly be mostly nonzero with possibly many large entries.

Unfortunately this means a sparse yet high quality approximation is impossible in general—

there is no hope for scalable approximate inverses. That is, in the standard basis: the aim of this

thesis is to find a better basis where sparsity and quality aren’t mutually exclusive.

1.7 Multi-Resolution Bases

Before going further, I shall introduce some notation. TakeΩ to be the (bounded) domain of

interest. Suppose there aren pointsx1, . . . , xn ∈ Ω identified at which the value of some

functionf : Ω → R is known; call the vectorf = (f1, . . . , fn) ∈ R
n, wherefi = f(xi), the

discretized version off . Often the word “signal” is used instead of function.

8

The standard basis vectors forR
n are e1, . . . , en, with eij = δij ; for example,e2 =

(0, 1, 0, 0, . . . , 0). Thus expressing the discretized function asf = (f1, . . . , fn) = f1e
1 +

· · ·+ fne
n uses the standard basis. The coefficients off in a different basisv1, . . . ,vn are the

real numbersa1, . . . , an such thatf = a1v
1 + · · ·+anv

n. The dual basis consists of the vectors

w1, . . . ,wn such thatai = f ·wi. If the basis is orthogonal (vi · vj = δij) then the dual basis

is the basis itself; in general, the two are distinct but biorthogonal (vi ·wj = δij).

A multi-resolution basis is a choice of basis vectors that seeks to representsmooth functions

efficiently—if f is smooth, most of the coefficients in its multi-resolution representation will

be very close to zero. (This opens the way for data compression, as a very good approximation

to f is retained when only the few large coefficients are stored and the rest are assumed zero).

Smoothness essentially means that large changes in the function value only happen over large

length scales. In other words, most of the information in the signal is at a low resolution. Then

what is needed is a basis that includes a few vectors with variation over longlength scales,

spanning a low resolution subspace, and is filled up with other vectors that vary on shorter

length scales, giving the high resolution components. The coefficients forthe handful of low

resolution vectors will be large, but the coefficients for the high resolutionvectors, which form

the greater part of the basis, should be small. A natural way of adapting to different degrees of

smoothness in functions is to in fact have a whole spectrum or hierarchy ofdifferent resolution

vectors—hence the name multi-resolution.

The simplest multi-resolution basis is the Fourier basis, constructed from the functions

1, sin(x), cos(x), sin(2x), cos(2x), sin(3x), . . . on the interval[0, 2π], with a uniform spacing

of the pointsx1, . . . , xn usually assumed. This gives a spectrum of resolutions, withsin(kx) or

cos(kx) varying on a length scale ofO(1/k). Many theorems have been proved showing the

link between smoothness (precisely characterized by bounded derivatives of a certain order, for

example) and small coefficients for the high resolution components.

Unfortunately, the Fourier basis has a significant flaw: global smoothness is required. For

example, a single jump discontinuity in an otherwise extremely smooth function will give rel-

atively large coefficients even in the high resolutions. The problems that these singularities

can cause for the Fourier basis have again been precisely characterized in many theorems. In

our application, compression of discrete Green’s functions with multi-resolution bases, this is

devastating—there is a guaranteed singularity along the diagonal produced by the Dirac delta,

not to mention the possibility of singularities from discontinuous coefficients.

9

The remedy is “compact support”, or more generally, fast decay of the dual basis vectors.

If wi is zero or very small far away fromxi, the coefficientai will be completely or mostly

independent of the values off far away—and thus unaffected by distant singularities. Where

the function is smooth, the high resolution coefficients will be small.

Wavelets are an attractive class of multi-resolution bases with this compact support property.

They also are constructed to allow very fast transformation algorithms, converting a signal from

the standard basis to wavelet coefficients or vice versa inO(n) time, and to handle noisy signals.

The next chapter will deal with them more thoroughly.

1.8 Related Methods

Probably the first multi-resolution method for solving linear systems was multigrid[23]. The

most basic idea behind multigrid is instead of directly solving the original problem,“restrict”

the initial guess to a coarser grid, correct all the lower resolution errorsthere at lower cost, then

project the corrected solution back to the original grid and cheaply correct the remaining high

resolution errors—but do this recursively with a hierarchy of grids forgreater efficiency. This

works remarkably well for many problems, and is backed up with considerable theory showing

optimalO(n) complexity is achieved for some equations on regular grids. Extending multigrid

to more challenging PDE’s and to irregular meshes is a subject of current research.

This research began by considering how to improve the Wavelet Sparse Approximate In-

verse proposed in [14]. As will be elaborated in the next chapter, the weakness of this method

is its restriction to uniformly spaced regular grids that scale strictly by powersof two, due to

using classical wavelets (such as the Daubechies D4 wavelet[18]) for the multi-resolution basis.

The hierarchical basis technique[28] is similar to the technique proposed here—in fact, it

can be viewed as a special case where the mesh is well structured, the interpolation (see later)

is simple linear, and the approximate inverse is trivial.

There are also classes of algebraic multi-resolution methods, where the actual mesh and

PDE are forgotten and only the matrixA is available. Examples of this include algebraic

multigrid[31], BILUM[33], and repeated red-black ILU[8].

10

1.9 Roadmap

Chapter two begins with a brief review of classical wavelets. The main work isan exposition

of a popular construction of second generation wavelets, going into the details of the transform

algorithms and presenting new ideas about construction on unstructured meshes.

The general multi-resolution approximate inverse algorithm is laid out in chapter three,

complete with sections on interpolation, factored approximate inverse construction, and order-

ing.

Chapters four and five contain implementation details for one dimension and two dimen-

sions respectively. After going through the discretization and the multi-resolution basis con-

struction, test results are presented showing some of the capabilities of the algorithm.

Chapter six summarizes the main results of the thesis, and finishes with some openprob-

lems.

11

Chapter 2

Constructing a Wavelet Basis

2.1 Overview

From the mathematical side, wavelets and their name came about in an attempt to fix the sin-

gularity problem of the Fourier basis. Taking the full sine and cosine waves and modifying

them to get compact support produces smaller abbreviated waves, or “wave-lets”. From the

signal processing side, quadrature mirror filters, which apply a recursive sequence of low and

high-pass filters, gave a fastO(n) linear transform that could handle noisy signals, implicitly

defining a multi-resolution basis.

As the initial motivation for wavelets came from improving the Fourier basis or Fast Fourier

Transform, classical wavelets were developed in the same context: uniform sampling (with a

small multiple of a power of two sample points) in one dimension along an interval withperiodic

boundaries1. Higher dimensional wavelets on similarly structured Cartesian grids are formed

as tensor products of one dimensional wavelets.

However, the periodic boundary conditions necessary for the algorithmsand theory caused

problems for many applications—for example, wavelet transforming a typicalnon-periodic

photograph would implicitly find a jump discontinuity at the boundary, degradinganalysis and

1Just as with Fourier series, uniform sampling along the infinite real line is also studied but of course is of less

practical interest, and will not be considered here.

12

compression nearby. The restriction to powers of two and uniform sampling, and the simplistic

tensor product approach to higher dimensions, similarly grew inconvenient. While develop-

ments in classical wavelet theory could fix some of these problems, it became clear that a new

approach was required.

The general term for these new methods is second generation wavelets: bases that preserve

the multi-resolution, compact support, fast transform, and noise toleranceproperties but that

can be applied on irregular multi-dimensional domains with all kinds of boundary conditions.

The popular approach used in this research is the lifting scheme[34]; other possibilities include

Harten’s work[1].

2.2 Classical Wavelets

Classical wavelets, described in [18] for example, are constructed from two functions on the

real line, the scaling functionφ(x) and the wavelet functionψ(x). For this simple review, it

is assumed they are zero outside of the interval[0, 2N−1), whereN is some positive integer.

Define their periodic translates and dyadic (power of two) dilates:

φi
j(x) = φ(2ix−j mod2iq)

ψi
j(x) = ψ(2ix−j mod2iq)

for some integerq ≥ 2N−1. The modulo operation reduces the argument to a number in the

interval[0, 2iq) by subtracting multiples of2iq, making the functionsq-periodic.

Biorthogonal wavelets also implicitly have dual functionsφ̃(x) andψ̃(x), along with their

translates and dilates, for the dual basis. To keep things simple, I shall assume that an orthogonal

basis is constructed, sõφ(x) = φ(x) andψ̃(x) = ψ(x).

The lowest possible resolution, scaling level 0, is provided by the functions

φ0
0(x), φ0

1(x), . . . , φ0
q−1(x)

The next resolution, wavelet level 0, is given by

ψ0
0(x), ψ0

1(x), . . . , ψ0
q−1(x)

13

Higher resolutions consist of dilates of the wavelet function—wavelet level i contains the2iq

functions

ψi
0(x), . . . , ψi

2iq−1(x)

For n = 2kq sample points, the basis stops at wavelet levelk − 1 for a total ofq + q + 2q +

· · · + 2k−1q = 2kq = n discretized basis functions. For orthogonal wavelets these functions

should all be orthogonal, both in the continuous and discrete settings.

The multi-resolution property comes from the dilations: leveli functions handle features

with variations on a length scale ofO(2−i). Compact support comes from restrictingψ(x) = 0

outside[0, 2N−1) so thatψi
j(x) is nonzero only in the length2−i(2N−1) interval starting at

2−ij.

The fast transforms are derived from the dilation equations:

φ0
0(x) =

2N−1∑

j=0

ajφ
1
j (x)

ψ0
0(x) =

2N−1∑

j=0

bjφ
1
j (x)

for some constant coefficientsa0, . . . ,a2N−1 andb0, . . . , b2N−1 to be determined. Assume the

discrete input signalf has the continuous form

f(x) =

2kq−1∑

i=0

fi φ
k
i (x)

The levelk − 1 wavelet coefficients,δk−1
j for basis functionψk−1

j (x), can be easily computed

by:

δk−1
j =

∫ q

0
f(x)ψk−1

j (x) dx

=

∫ q

0

(
∑

i

fiφ
k
i (x)

)
ψk−1

j (x) dx

=
∑

i

fi

∫ q

0
φk

i (x)ψ
k−1
j (x) dx

=
∑

i

fi

∫ q

0
φk

i (x)

(
2N−1∑

r=0

brφ
k
2j+r

)
dx

14

=
∑

i

fi

2N−1∑

r=0

br

∫ q

0
φk

i (x)φ
k
2j+r dx

=
2N−1∑

r=0

brf2j+r

using orthogonality. Each coefficient then takes2N flops2 to compute. Temporary scaling level

k − 1 coefficients,µk−1
j for φk−1

j (x), can similarly be computed as:

µk−1
j =

2N−1∑

r=0

arf2j+r

with 2N flops. From these scaling levelk − 1 coefficients both sets of levelk − 2 coefficients

can be computed:

µk−2
j =

2N−1∑

r=0

arµ
k−1
2j+r

δk−2
j =

2N−1∑

r=0

brµ
k−1
2j+r

and the process recursively continues until the level 0 coefficients arefound. Including the tem-

porary scaling levels, there are a little less than2n coefficients computed at2N flops a-piece,

giving a total run-time of about4Nn for the forward transform. TypicallyN is very small, so

this is effectivelyO(n). Note also that at each level, all coefficients can be computed indepen-

dently in parallel, allowing an optimum parallel complexity ofO(logn). Using orthogonality,

a similar inverse transform algorithm can be derived with the same complexity.

From the signal processing viewpoint, thea coefficients define a low-pass filter, blurring out

the high resolution components of the signal and keeping just the smoother lowresolution part.

This is what gives the noise tolerance property: if a smooth signal is contaminated by high-

resolution noise, the low-pass filter cuts it out so lower levels only see the underlying smooth

signal without random artifacts, and can then properly process it. This concept is made precise

by the idea of moment preservation. Thej’th moment of a functionf is the value
∫
xjf(x) dx,

a generalization of the average value (whenj = 0). A faithful lower resolution representation

2Flop stands for floating point operation. A multiply and add are traditionally counted together as one flop.

15

Figure 2.1: The D4 scaling and wavelet functions

0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

2
phi(x)

x
0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

psi(x)

of the original signal is ensured by requiring that the firsts moments are preserved:

∫
xj

(
∑

i

µk−2
j φk−2

j (x)

)
dx =

∫
xjf(x) dx for j = 0, . . . , s− 1

Applying the dilation equation reduces this tos conditions on theb coefficients.

Theb coefficients define a complementary high-pass filter, differencing out thelower reso-

lution components and isolating the high resolution part. This can be made precise by the idea

of vanishing moments, requiring that the wavelet coefficients of the ideally smooth functions

1, x, x2, . . . , xs be zero. From orthogonality, this is equivalent to the moment preservation

condition on thea’s.

Other conditions to be imposed on thea andb coefficients result from requiring orthogo-

nality in this case, and possibly other desirable features. Of course, moreconditions require

more coefficients, i.e. largerN , which both slows down the transform algorithms and makes the

support larger and hence the basis more susceptible to damage from singularities. One common

choice, used in [14] for example, is the D4 wavelet of Daubechies[18],an orthogonal basis with

N = 2 and two preserved moments. See figure 2.1 for a picture of its fundamental functions.

At the core of classical wavelet theory are the dilation equations, which unfortunately are

16

also the root cause of all the restrictions: powers of two, periodic boundaries, uniform sampling,

etc. The key to second generation wavelets is to focus instead on the transform algorithm.

2.3 The Lifting Scheme

The lifting scheme[34] proposed by Sweldens is a way of constructing biorthogonal second gen-

eration wavelets—ones that retain the essential properties of multi-resolution, compact support,

fast transforms, and noise tolerance, but not the limitation to such regular domains.

The core of the lifting scheme is its transform algorithms, rather than what the basis func-

tions actually are. Of course, any invertible linear transformation can be viewed as a change-

of-basis, and it is possible to recover thej’th basis function simply by invertingej (and thej’th

dual basis function by transformingej).

Figures 2.2 and 2.3 give the general forms of the forward transform algorithm and inverse

transform algorithm respectively. Note that the resolution levels are in reverse from the follow-

ing section on classical wavelets, so level 0 is the highest resolution.

2.4 The Multi-Resolution Property

The lifting scheme is a natural way of arranging for small wavelet coefficients where the func-

tion is smooth—presumably at those points, the prediction will be very accurate, so the predic-

tion errorγj will be close to zero. This can also be naturally interpreted as the multi-resolution

property: the coarsest levelλj gives the lowest resolution view of the function, withγj giving

the next higher resolution details that were missed, thenγj−1 the further level of resolution

details that were missed, etc., finishing withγ1 giving the highest resolution details. Smooth

functions will naturally have near negligible high resolution details, hence small γ coefficients.

In order for this to be successful, theP at each level must be accurate of course. One of

the fundamental requirements for the partition into fine and coarse nodes is then that each fine

node should be easily predicted from the coarse nodes. Normally this will mean that there

should be coarse nodes in close proximity to every fine node—the fine and coarse nodes must

17

Figure 2.2: The forward transform for the lifting scheme.

• Start with the function valuesf1, . . . , fn at sample pointsx1, . . . , xn.

• Let λ0
i = fi for all i, C0 = {x1, . . . , xn}, andj = 0.

• Begin loop:

• Split up the sample pointsCj into two disjoint subsets, the fine nodesF j+1 and the

coarse nodesCj+1.

• Predictλj
F , the values at the fine nodes, fromλj

C , the values at the coarse nodes,

with some linear prediction operatorP: λj
F ≈ Pλj

C .

• Store the wavelet coefficientγj+1
i = λj

i − (Pλj
C)i for each fine nodexi ∈ F

j+1.

• Update the value at each coarse node byλj+1
i = λj

i +(Uγj+1)i for eachxi ∈ C
j+1

so that the required moments will be preserved. This update operatorU must also

be linear.

• If |Cj+1| is small enough, below some constant, break out of the loop. Otherwise,

setj ← j + 1 and continue.

• Returnλj from the coarsest level along with the wavelet coefficientsγ1, . . . , γj from

each level.

Figure 2.3: The inverse transform for the lifting scheme.

• Start withλj and the wavelet coefficientsγ1, . . . , γj .

• Begin loop:

• Reconstructλj−1
C at the coarse nodes byλj−1

i = λj
i − (Uγj)i for eachxi ∈ C

j .

• Reconstructλj−1
F at the fine nodes byλj−1

i = γj
i + (Pλj−1

C)i for eachxi ∈ F
j .

• Continue withj ← j − 1 until j = 1.

• Returnfi = λ0
i for all i.

18

be fully intermingled. This might be achieved in one dimension, for example, by selecting

every even node to be coarse and every odd node to be fine.3 Continuing in one dimension,P

could then be defined to do linear interpolation between the two coarse nodessurrounding each

fine node. UsuallyP is defined to do polynomial interpolation through the surrounding coarse

nodes, which corresponds precisely to vanishing moments as discussed inthe previous section.

2.5 Compact Support

Compact support is arranged by making eachP andU a sparse matrix, so that the prediction at

each fine node and the update at each coarse node depend upon only asmall number of nearby

nodes. For example, linear-interpolatingP in one dimension satisfies this by only using the

two surrounding coarse nodes to predict at the fine node between. Thebasic goal of compact

support, containing the damage done by singularities, is naturally achieved inthis way: although

the prediction will likely be inaccurate near the singularity, the wavelet coefficientsγ further

away are completely independent of the function values at the singularity and thus cannot be

adversely affected.

2.6 Fast Transforms

Choosing theP andU operators very sparse also makes the transform algorithms fast. For

example, if each fine node is predicted from at mostq nearby coarse nodes, taking at mostq

flops, then the operationPλj
C will take at most|F j+1|q flops. Adding up the operations for

the entire transform, noting that the fine node sets are disjoint, we have a strict upper bound

of nq flops for the predict operations. Similarly if each coarse node is updated from at mostq

nearby fine nodes, the operationUγj+1 will take at most|Cj+1|q flops. The coarse node sets

are nested, not disjoint, but if we assume that the number of coarse nodesis at least halved at

each level (|Cj+1| ≤ |Cj |/2), then from the geometric sum we still have an upper bound ofnq

flops for all update operations. Therefore under these assumptions both transform algorithms

run inO(n) time, in fact bounded by2nq flops, twice as fast as classical wavelets.

3Based on this, Swelden’s original presentation of the scheme actually uses the terms even and odd instead of

coarse and fine throughout

19

2.7 Noise Tolerance

Just as with classical wavelets, the key to noise tolerance is moment preservation. The update

operatorU is chosen so that approximating the input function by zeroing out wavelet coeffi-

cients preserves its moments. Particularly on a multi-dimensional irregularly sampled domain,

the classical definition of moment isn’t necessarily meaningful, thus I forward the notion of

generalized momentsmj =
∫
Ω σj(x)f(x) dx for some smooth moment kernel functionsσj(x).

(The classical 1D choice isσj(x) = xj .) The discrete form is then:

mj =
n∑

i=1

Sjifi

for some appropriate discretizationSji ≈
∫
Ci
σj(x) dx with Ci a small cell aroundxi. Letting

m be the vector of moments, this can be written as

m = Sf

At each transform step, the original function isλj and the coarsened function is:

λj+1 = λj
C + Uγj+1

= λj
C + U(λj

F −Pλj
C)

= (I−UP)λj
C + Uλj

F

The approximate function reconstructed without wavelet coefficientsγj+1 is given by:

λ̃j
C = λj+1 −U0

= (I−UP)λj
C + Uλj

F

λ̃j
F = 0 + Pλ̃j

C

= P(I−UP)λj
C + PUλj

F

Splitting up the moment kernel matrixS into SF for the fine node columns andSC for the

coarse node columns, we then require:

Sλj = Sλ̃j

SFλ
j
F + SCλ

j
C = SF λ̃

j
F + SC λ̃

j
C

20

SFλ
j
F + SCλ

j
C = SF

(
P(I−UP)λj

C + PUλj
F

)

+ SC

(
(I−UP)λj

C + Uλj
F

)

(SF − SFPU− SCU)λj
F = (SFP− SFPUP− SCUP)λj

C

(SF − SFPU− SCU)λj
F = (SF − SFPU− SCU)Pλj

C

This is true automatically if the prediction is perfect, i.e. the function perfectly fitsour notion

of smoothness. However, this should be true forany function, irregardless of the independent

values ofλj
F andλj

C , so we must have:

SF − SFPU− SCU = 0

(SFP + SC)U = SF

This equation coupled with the sparsity constraints should determine the entriesof U.

Each column ofU can be computed independently, and actually only involves solving a

small submatrix ofSFP + SC thanks to the sparsity constraint. Note that for the submatrix to

be invertible it must be square, so the number ofγ coefficients used to update each coarse node

must equal the number of preserved moments.

Generalizing the notion of moment preservation even further, I here propose constructing

the small system independently for each coarse node, allowing differentsets of moments to be

locally preserved at different places. This might be desirable, for example, ifit is inconvenient

to arrange for all coarse nodes to use the same number ofγ coefficients in the update step.

2.8 Additional Algorithm Features

Another nice feature of these algorithms is that they can work in place:γj+1 can overwriteλj
F

andλj+1 can overwriteλj
C in the forward transform; vice versa for the inverse transform. In

particular, this is irregardless of the order in which the fine nodes are predicted and the order in

which the coarse nodes are updated.

These algorithms are also naturally parallel. Not only can each fine node bepredicted

simultaneously and each coarse node updated simultaneously, but assumingthat only nearby

21

neighbours are used for both operations only a small amount of local communication between

nodes is needed. Again assuming that the number of coarse nodes is halved at each level, there

are onlyO(logn) steps in the algorithms, so withO(n) processors it is theoretically possible to

do the transforms inO(logn) time.

2.9 The Matrix Formulation

The transform algorithms can also be described with matrix notation. Assume that the nodes

are ordered from finest to coarsest, namely withF1 first, thenF2, . . . , thenF j , and finallyCj

last. LetPi andUi be the prediction and update operators at stepi. Then the forward transform

can be written with the following product:




γ1

...

γj

λj




= Mf = Mj · · ·M2M1




fF1

...

fFj

fCj




Stepi of the transform is given byMi:




γ1

...

γi

λi




=




I

I

Ui I







I

I −Pi

I




︸ ︷︷ ︸
Mi




γ1

...

λi−1
F

λi−1
C




The inverse transform can similarly be written:

f = M−1




γ1

...

γj

λj




= M−1
1 M−1

2 · · ·M
−1
j




γ1

...

γj

λj




22

where the inverse transform at stepi is M−1
i :




γ1

...

λi−1
F

λi−1
C




=




I

I Pi

I







I

I

−Ui I




︸ ︷︷ ︸
M

−1

i




γ1

...

γi

λi




Of course, these matrices should be treated as sparse matrices, i.e. only thenonzeros and

their locations should be saved. Standard sparse matrix multiplication routines can then be used

to do the wavelet transform efficiently.

As will be the case in section 3.6, these algorithms can furthermore operate in sparse-sparse

mode, where the vector to be transformed is sparse too. The matrix formulationis then simplest

to use, since again standard sparse-sparse multiply routines can be used.

23

Chapter 3

The General Algorithm

3.1 Overview

As the preceding chapters have suggested, the basic idea behind the multi-resolution approx-

imate inverse is to construct, via the lifting scheme, a multi-resolution basis for compressing

the discrete Green’s function. Later chapters will deal with the details of basis construction for

one or two dimensional problems; this chapter will cover the details that are independent of

dimension.

3.2 Using the Multi-Resolution Basis

The goal is to compressA−1, obtaining an accurate but highly sparse approximate inverse from

just the large coefficients in its multi-resolution representation. However,A−1 is unknown of

course, so this is not just a simple matter of applying the transform algorithm.

Recall thatA−1 is the discrete version of the Green’s functionG(x, y), which is defined on

Ω×Ω. It is then natural to look for a basisΠ on (the discretized form of)Ω×Ω that is a tensor

product of two basesα andβ on Ω: Π = α ⊗ β. Each elementp ∈ Π is then a separable

functionpij = aibj with a ∈ α andb ∈ β. (In the continuous form,p(x, y) = a(x)b(y).)

24

Let the bases beα = {a1,a2, . . . ,an}, β = {b1,b2, . . . ,bn}, and their tensor product

Π = {p11,p21, . . . ,pn1, . . . ,pnn}, wherepkl
ij = ak

i b
l
j . To express the discrete Green’s function

in the basisΠ, find coefficientsQkl so that:

A−1
ij =

n∑

k=1

n∑

l=1

Qklp
kl
ij

=
n∑

k=1

n∑

l=1

Qkla
k
i b

l
j

=
n∑

k=1

ak
i

n∑

l=1

Qklb
l
j

In this last expression, viewingj as fixed, observe
∑n

l=1Qklb
l
j is thek’th coefficient of theα

basis representation of columnj of A−1. Then lettingj vary again,Qkl is thel’th coefficient of

theβ basis representation of thosek’th coefficients. IfMα is the forward transform operator

from the standard basis to theα basis,Mβ is the forward transform toβ, and theQkl are

arranged as ann× n matrix, this can be written more clearly as

Qkl = (Mβ(MαA−1)T)kl

or simply

Q = MαA−1MT
β

which is equivalent to

A−1 = M−1
α QM−T

β

Of course, the same result can be obtained by first viewingi as fixed and the rows ofA−1 being

compressed withβ.

The preconditioner is going to be a compressed form ofA−1, where smallΠ coefficients

have been dropped, i.e.M−1
α Q̃M−T

β for Q̃ a sparse approximation toQ. If the Π basis does a

good job, a very sparse yet high quality approximation will be possible. Notice that

Q = MαA−1MT
β = (M−T

β AM−1
α)−1

soQ̃ is in fact a sparse approximate inverse forM−T
β AM−1

α . All of these matrices are known,

so we now have a tractable proposition. The general outline of the algorithmis given in figure

3.1.

25

Figure 3.1: The multi-resolution approximate inverse algorithm.

• Compute the transform coefficients forα andβ through the lifting scheme.

• Compute a sparse approximate inverseQ̃ ≈ (M−T
β AM−1

α)−1.

• The preconditioner is thenM−1
α Q̃M−T

β ≈ A−1.

There is some flexibility in choosing the preconditioned system. In exact arithmetic with

Q̃ = Q, all of (M−1
α Q̃M−T

β)A, (Q̃M−T
β)A(M−1

α), (M−T
β)A(M−1

α Q̃), andA(M−1
α Q̃M−T

β)

are equal to the identity—and if̃Q is in factored form, even more possibilities exist. The choice

of which is best wheñQ 6= Q should generally be made according to howQ̃ is constructed;

see section 3.6 for details on the choice made for this thesis.

The preconditioned system must be non-singular, thus in particularQ̃ must be non-singular.

At the same time, we want̃Q to be very sparse; an obvious goal is then to makeQ as close as

possible to a diagonal matrix, with diagonal entries much larger than off-diagonal entries. (This

is especially the case for factored approximate inverse algorithms without pivoting.) Intuitively

speaking this should naturally be the case, since the Green’s function should be smooth off

the diagonal—allowing very small off-diagonalQ coefficients—but should have a singularity

along the diagonal caused by the Dirac delta—giving large diagonalQ coefficients. The next

few sections will outline how to best achieve this.

Notice that the basesα andβ can be constructed completely independently; not only can

the choices of prediction and update operators be different, but the hierarchy of fine/coarse

nodes can be completely different too. Later this flexibility in choosing different predictions

will be exploited, but throughout the rest of the thesis it will be assumed thatthe hierarchies

are the same. The first advantage of this restriction is that it is possible to speak about a coarse

node unambiguously; this much simplifies analysis of the algorithm. Also important for order-

ing the nodes prior to computing a factored approximate inverse, some degree of symmetry is

preserved—ifA is structurally symmetric, and the prediction and update operators forα andβ

have the same structure, thenM−T
β AM−1

α is structurally symmetric too.

26

3.3 PDE-Interpolation

Examine more closely what theα basis transform does in compressing the columns ofA−1.

SinceAA−1 = I, thej’th column ofA−1 is the solution ofAu = ej , which is the discretized

form of Lu(x) = δ(x − xj) (cf. section 1.6). Thus each column being transformed satisfies

Lu = 0 everywhere except at the diagonal.

A better choice than the usual polynomial interpolation forPα now presents itself, what I

call “PDE-interpolation”. When predicting the value at fine nodexi from nearby coarse nodes

xj1 , . . . , xjk
, treat it as a small PDE problemLu = 0 with an unknown atxi and specified

“boundary” values atxj1 , . . . ,xjk
. After defining a small mesh on these nodes, the discretization

routine can be called to give the linear equation approximatingLu = 0 at the fine node, and

this can be immediately solved since we know the values at all the other points. Inparticular, if

the discretization atxi is

0 = Lu ≈ aiiui + aij1uj1 + · · ·+ aijk
ujk

then the prediction should be

ui ≈ −
aij1

aii
uj1 − · · · −

aijk

aii
ujk

Of course, at boundary nodes the boundary condition should be discretized rather than the PDE.

Similar arguments can be made forβ, only sinceATA−T = I the rows ofA−1 are discrete

solutions of theadjoint problem. IfL is not self-adjoint, this makes a crucial difference.Pβ

should be generated by discretizingLu at the fine node and neighbouring coarse nodes, trans-

posing the resulting small matrix to get the discrete adjoint operator, andthensolving for the

fine node value.

For nearly self-adjoint problems, i.e. those with relatively weak convection, the extra storage

spent on distinctPα’s andPβ ’s might not be worth it, and the symmetrized equation should be

used instead. However, testing results in later chapters show the benefit of choosingPα 6= Pβ

for strong convection PDE’s.

Note that constructing the PDE-interpolation is only a constant factor more expensive than

linear interpolation—once the neighbouring nodes have been found, which can be done inO(1)

27

amortized time[12], there is onlyO(1) work left to do. Further note that the local mesh and

discretization need only be computed once; the coefficients−aij1/aii, . . . ,−aijk
/aii can then

be stored inPα for future use. The construction costs can be further amortized if there are many

solves to be done, and even if the PDE coefficients change between solves (as in a non-linear

problem or some time-dependent problems) at least the local mesh construction costs may be

amortized.

Reassuringly, PDE-interpolation often reduces to polynomial interpolation whenL is the

Laplacian operator∇2. In 1D for example, suppose the fine node is at pointxi with coarse

neighboursxi−1 to the left andxi+1 to the right. The normal second order discretization of

Lu = u′′ = 0 atxi is:

2ui+1

(xi+1−xi)(xi+1−xi−1)
−

2ui

(xi+1−xi)(xi−xi−1)
+

2ui−1

(xi−xi−1)(xi+1−xi−1)
= 0

Solving forui gives:

ui =

(
xi−xi−1

xi+1−xi−1

)
ui+1 +

(
xi+1−xi

xi+1−xi−1

)
ui−1

which is just linear interpolation.

The same thing happens in 2D for piecewise linear finite elements on triangles. If the fine

node is inside a triangle of three coarse nodes, linear interpolation in this triangle is equivalent to

splitting the triangle into three subtriangles, constructing the linear finite element discretization,

and solving for the fine node.

Notice that it is important that the discretization not be limited to fine meshes for stability

and accuracy; the interpolation will need to be carried out at the coarserlevels where the distance

between nodes is much larger than in the original mesh. For example, a schemelike upwinding

should be used for the convection term, and discontinuous coefficients must be handled physi-

cally correctly (e.g. with harmonic means in one dimension). Ideally the PDE coefficients them-

selves should be coarsened along with the mesh in some homogenization procedure—perhaps

taking appropriate averages of the coefficients at nearby fine nodes.I leave this coefficient

homogenization problem for future research.

The expense of setting up these local meshes, even when amortized, might not be worth-

while for simple problems, but the benefit should be clear for tough PDE’s.For example, if

28

there is strong convection, the naturally centrally weighted polynomial interpolants will give

equal weight to downstream values—a clear mistake—when the PDE-interpolant correctly em-

phasizes the upstream values. If the diffusion coefficient is discontinuous then solutions won’t

be smooth at the discontinuities, violating the assumption underlying polynomial interpolants,

but appropriate PDE-interpolation should still work.

As an addendum, other methods for improving on polynomial interpolation, algebraic in na-

ture, have arisen in multigrid, such as the energy minimization approach from [13] or “Blackbox

Multigrid” in [2]. It would be interesting to compare the performance and robustness of these

interpolations—whether the discretization approximations or the algebraic approximations are

better.

3.4 Forgetting Moments

It turns out that takingU = 0, so moments arenot preserved, appears to be the best choice.

The next chapter illustrates this with numerical experiments; this section provides a theoretical

justification.

In signal processing, the noise tolerance provided by preserving moments is crucial. The

functions being transformed often have random fluctuations due to background noise or errors

in the sampling process, so added to the underlying smooth signal is a high resolution error.

Without an update step in the transform the function values at the coarse nodes are unchanged

at lower resolutions, and so the high resolution error is carried down into alow resolution

error. Then at all levels the error would cause problems for the prediction, so despite the fact

that the signal really is smooth at lower resolutions, the lower resolution wavelet coefficients

won’t be small. The introduction of a sparse update step means moments are preserved locally,

maintaining local average values and thus smoothing out the function for lower resolutions. This

damps out the high resolution error so it can only harm the high resolution wavelet coefficients.

However, in this application there should be no high resolution fluctuations. The accuracy

of a solution generally is related to the size of its derivatives; small-scale oscillations would

make those large, indicating that the discretization is of little value and probably suffers from

instability. Therefore the real need for an update step is gone. It is true that some indefinite prob-

lems or problems with rapidly fluctuating coefficients will inherently give rise to solutions with

29

small-scale oscillations, in which case a multi-resolution method is bound to meet difficulties

at low resolutions, though in the latter case a coefficient homogenization procedure might help.

Perhaps here multi-resolution methods are simply not suitable; I leave this for future research.

Thus in the cases of interest, though it appears not to be crucially important,can the update

step still be of some use?

Write out the first step of the transformation with fine nodes ordered before coarse nodes

andA−1 decomposed as
(
BC
DE

)
:

(
I

Uα I

)(
I −Pα

I

)
A−1

︷ ︸︸ ︷(
B C

D E

)(
I

−PT
β I

)(
I UT

β

I

)

Carrying out the prediction step gives:
(

I

Uα I

)(
B−PαD−CPT

β + PαEPT
β C−PαE

D−EPT
β E

)(
I UT

β

I

)

Now, if the prediction operators are accurate forC andD from E (i.e.C−PαE ≈ 0 and

D−EPT
β ≈ 0), they necessarily are close to ideal PDE-interpolation, since in these off-diagonal

portions ofA−1 we haveLu = 0 everywhere. Then the predictionPαD or CPT
β for B will be

accurate except at the diagonal, whereLu = 1 instead of0. So the prediction error roughly will

be0 away from the diagonal, and1/aii (the coefficient in the rediscretization) on the diagonal.

If ∆ is the diagonal matrix with these coefficients on the diagonal, thenB − PαD ≈ ∆ and

B−CPT
β ≈ ∆. So the scheme will approximately give:

(
I

Uα I

)(
∆ 0

0 E

)(
I UT

β

I

)

Thus the predict step achieves exactly what is needed: a near diagonalmatrix. However, this is

the result if the update step is then applied:
(

∆ ∆UT
β

Uα∆ E + Uα∆UT
β

)

The attractive near zero blocks that were created by the prediction havebeen filled in with scaled

versions of the update matrices. Furthermore, the coarsened systemE has been perturbed in a

30

way that won’t necessarily improve later prediction, and will probably meanthat it is no longer

a discrete Green’s function of the PDE—making PDE-interpolation useless.The problem is

that there is an essential singularity on the diagonal that wewant to keep sharp—the error in

prediction at the diagonal is beneficial; the algorithm should maintain it at lowerresolutions,

rather than trying to blur it out with an update step.

Finally, it’s clear that including an update step adds expense in storage space and transfor-

mation time, not to mention complicating analysis of the algorithm. Therefore I shall assume

U = 0 from now on. Since moment preservation is an essential feature of wavelets, I have

adopted the name multi-resolution approximate inverse rather than wavelet approximate in-

verse.

3.5 Multiplying out the Transforms

A second look at the forward transform algorithm (figure 2.2) shows that without the update

step, the coarsened signalsλi are just sub-samplings of the original signalf , values unchanged.

In particular then, all theλi’s are immediately available, so the predictions are independent and

may be done simultaneously.

This fact may be seen by multiplying out the matrix product form of the forward transform:

M = Mj · · ·M2M1

For example, multiplying the first two steps together gives:

M2M1 =




I

I −P2

I







I −P1

I




=




I −P1

I −P2

I




31

The off-diagonal−P’s simply add, thanks to the diagonal identity blocks and the order of

multiplication. It’s simple to see how this continues, giving

M =




I −P1

I −P2

. . .

I −Pj

I




The forward transform is now reduced to a single sparse matrix multiply.

On the other hand, the inverse transform cannot be similarly reduced. Reconstructingλi

depends onγi+1 in the inverse transform algorithm (figure 2.3) even whenU = 0; the steps

must be done one after the other. From a matrix viewpoint, this can be seen in the fill-in that

results when the inverse transform is multiplied out, caused by the reversedorder of the factors.

For example, multiplyingM−1
1 M−1

2 gives:




I P1

I




︸ ︷︷ ︸
M

−1

1




I

I P2

I




︸ ︷︷ ︸
M

−1

2

=




I P1 ·
(I P2

I

)

I P2

I




Not only is the storage requirement increased when the matrices are multiplied out, but the time

required for the inverse transform similarly increases.

However, observe that the forward transform matrix is upper triangular, so the inverse trans-

form can be applied by the backwards substitution of a triangular solve. Infact, the inverse

transform algorithm can be interpreted as doing exactly this, but with the potential for paral-

lelism made explicit: nodes from the same level can be solved independently.

As an aside, recall from the previous section that the ideal action of the prediction steps is

to reduceA−1 to near diagonal form:MαA−1MT
β is almost a diagonal matrix̃∆, neglecting the

32

small sub-matrix of coarsest nodes. Then similarly the inverse is close to diagonal:

M−T
β AM−1

α ≈ ∆̃−1

SinceMT
β is lower triangular andMα is upper triangular, this can now be interpreted as an

incompleteLDU factorization:

A ≈MT
β ∆̃−1Mα

The transformation to the multi-resolution basis is now seen as an incomplete factorization pre-

conditioner, using triangular solves with approximate factors. This is analogous to BILUM[33]

or repeated red-black ILU[8], where the triangular factors are found with a multi-level algebraic

algorithm rather than the interpolation approach here. Inspired from this analogy, an interest-

ing extension to this thesis would be an algebraic version of the multi-resolution approximate

inverse preconditioner, where the prediction operators are determined algebraically from the

original matrixA.

However, return now to the problem of computing̃Q, realizing that the inverse transform

matrices are only available in factored form.

3.6 Computing the Approximate Inverse

AlthoughM−T
β , A, andM−1

α are known, their productM−T
β AM−1

α is not explicitly known—as

discussed in the previous section, even just multiplying out the inverse transforms will incur a

penalty. ThusQ̃ must be found with an approximate inverse algorithm that works when the

matrix is known only as a linear operator. Actually, a little more is known: the adjoint of the

operator

(M−T
β AM−1

α)T = M−T
α ATM−1

β

may be used in the algorithm as well.

This rules out the Frobenius norm minimization algorithms such as SPAI[22] and FSAI[25],

as well as Tang and Wan’s local inverse method[35], since they all require the ability to access

submatrices ofM−T
β AM−1

α . Chow and Saad’s MR method[15, 16] is a possibility as it only uses

the matrix as an operator. However, the impressive performance[5] of the incomplete inverse

33

factorization algorithms makes them the most attractive choice. I chose to adapt the AINV[4]

algorithm.

The original form of AINV is a column-oriented, left-looking, dot-product based algorithm

that constructs a factored approximate inverse via biconjugation, shown infigure 3.2. Given a

matrixB it returns upper triangular matricesW andZ along with a diagonal matrixD, where

the columns ofW andZ are approximatelyB-biconjugate:WTBZ ≈ D. It can be interpreted

as a generalization of the classical Gram-Schmidt orthogonalization algorithm,beginning with

the standard basis vectors and making themB-biconjugate.

AINV gives an approximation to theUDL factorization ofB−1, since the biconjugation

condition is equivalent to

B−1 ≈ ZD−1WT

However, the choice of preconditioned system should naturally follow the construction of the

preconditioner: eitherD−1(WTBZ) or (WTBZ)D−1. These choices guarantee a unit diago-

nal in the preconditioned system, which is often a good property.

Observe that the storage and work can be cut in half whenB is symmetric; thenW = Z,

so onlyZ need be computed. In addition, ifB is symmetric positive definite and the algorithm

is accurate enough,D should only have non-negative entries, soD−1/2 can be used. Then an

approximate inverse of the upper Cholesky factor isZD−1/2, and the preconditioned system

D−1/2ZTBZD−1/2 not only has a unit diagonal but is also symmetric positive definite, a definite

advantage in iterative methods.

The algorithm above works fine even ifB andBT are only available as operators; though

the rows and columns ofB are actually found explicitly by multiplying with the standard basis

vectors, only one row or column needs to be stored at a time, and each is required only once. Of

course, it is imperative to do these multiplies in sparse-sparse mode or else thealgorithm will

run very slowly.

3.7 Improving AINV

The problem with using this algorithm, elaborated in [9], is that the biconjugationj loops are

often doing too much work. As it stands the algorithm runs in at leastO(n2) time, even if much

34

Figure 3.2: The original dot-product form of AINV.

• TakeB, ann× n matrix, and some drop toleranceδ ≥ 0 as input.

• For i = 1, . . . , n

� Initialize columnsi of W andZ to thei’th standard basis vector

• SetWi = ei andZi = ei.

� Make columni of W biconjugate with previous columns

• Get rowi of B: r = (ei)TB = (BTei)T .

• For j = 1, . . . , i− 1

• Wi ←Wi −
rZj

Djj
Wj

� Make columni of Z biconjugate with previous columns

• Get columni of B: c = Bi = Bei.

• For j = 1, . . . , i− 1

• Zi ← Zi −
WT

j c

Djj
Zj

� Drop small entries to keepW andZ sparse

• Zero any above-diagonal entry ofWi or Zi with magnitude≤ δ.

� Find the “pivot” Dii

• SetDii = WT
i BZi.

• ReturnW, Z, andD.

35

less thanO(n2) nonzeros are input and output. Typically, the majority of the time spent in the

algorithm is wasted computing the sparse dot-productsrZj andWT
j c when they turn out to be

identically zero, due to the vectors having no nonzero entries in common.

There are inexpensive symbolic methods to cut down thej loops from (1, . . . ,i − 1) to

much smaller lists (especially if the nodes are ordered in a good manner—see the next section).

Unfortunately, these symbolic methods make crucial use of the nonzero structure of the matrix

B and its elimination tree[26] or related structures, which aren’t directly available here. The

structures of the factors inM−T
β AM−1

α are available, so it may be possible to recover these

symbolic methods and use the dot-product algorithm efficiently. However, Ileave this problem

for future research and instead turn to a different form of AINV.

Reversing the nesting of the loops, the algorithm can be rearranged into a right-looking

outer-product based method, shown in figure 3.3. The same comments about unit diagonals and

symmetry apply here. Note that the dropping strategy is slightly different: instead of zeroing

out small entries ofWi andZi after they have been fully computed, small updates simply are

not added.

The benefit of this formulation is that the inneri loops can be easily trimmed to just what is

needed: a loop over the non-zero values ofl or u. Normally l andu will be quite sparse so this

means big savings (especially for good orderings of the nodes—see the next section).

Another potential slow-down is the calculation ofl andu; if computed as dense vectors,

this takesO(n) time via the lifting scheme, making the whole algorithm at leastO(n2). This

can be avoided by doing them in sparse-sparse mode. Potentially even faster is a hybrid mode

described in [9] that uses efficient sparse-dense multiplies but keeps track of where nonzeros

are created for a fast “gather” operation back to a sparse result.

The down side of this formulation is that whereas the original form constructed the columns

of W andZ one at a time, here all of columnsj + 1, . . . ,n are being updated as the algorithm

proceeds. Dynamic linked list data structures are required to store the unfinished columns,

inevitably bringing up worries about efficiency—e.g. in [4], where a vector processor was used,

this outer-product form was dismissed as inappropriate. However, testscomparing this version

to the original with symbolic enhancements (for explicitly knownB), running on a modern

superscalar workstation, show that it is competitive. In fact, since the symbolic algorithms

36

Figure 3.3: The outer-product form of AINV.

• Take as inputB andδ.

• SetW = I andZ = I.

• For j = 1, . . . , n

• Setl = BZj

• Setu = BTWj

• SetDjj = uTZj

• For i = j + 1, . . . , n

• UpdateWi ← Wi − drop
(

li
Djj

Wj , δ
)

, where entries of the update vector

with magnitude≤ δ are dropped.

• For i = j + 1, . . . , n

• UpdateZi ← Zi − drop
(

ui
Djj

Zj , δ
)

.

• ReturnW, Z, andD.

37

cannot account for sparsity due to the dropping of small elements, but theouter-product form

automatically does, this version often is more efficient![9]

3.8 Ordering

Before using AINV, one more thing must be considered: the ordering of the nodes. In [6, 10] it

was made clear that ordering has a significant effect on the constructiontime of the approximate

inverse, and on the convergence of the preconditioned system. For fairly isotropic problems, the

heuristic of inverse factor fill reduction has proven to be very effective; ordering algorithms like

Nested Dissection, Minimum Degree, and Minimum Inverse Penalty[10] do a good job. These

often handle more difficult problems, but [10] showed that anisotropic matrices can be better

handled by algorithms sensitive to the numerical entries in the matrix. The question of how best

to deal with anisotropy still requires more research, so in this thesis I have ignored the issue.

I have chosen to work with Nested Dissection. Despite indications in [10] thatthere may be

slightly superior orderings for convergence, this is not well understood at all, whereas it is clear

that Nested Dissection is the best fill reduction and execution speed—particularly on parallel

machines—with good implementations like Metis[24].

Unfortunately there is a major difficulty to overcome before running the ordering algorithm:

M−T
β AM−1

α is known only in factored form, so the nonzero structure required is not explicitly

available.

Before going further, recall the graph theory notation often used in sparse matrix ordering.

With a givenn × n matrix B, associate the graphGB, or simplyG if the context makes it

clear, defined on nodes{1, . . . , n} with a directed edgei→ j if and only ifBij 6= 0. Thus the

nonzero structure ofB and the graphGB may be identified. As an abbreviation, writei→ j to

mean the statement that the directed edgei → j exists inG. The neighbourhood of a nodei is

the set ofj such thati→ j. A path is a sequence of distinct nodesi1, . . . , ik such thati1 → i2,

i2 → i3, . . . , andik−1 → ik, often writteni1 → · · · → ik, or simplyi1 ; ik. The transitive

closureG∗ of a graphG is one constructed on the same nodes but havingi→ j wheneveri ; j

in G. For a fuller treatment, see [20, 21].

As is shown in [21], assuming here and for the rest of this section that there is no felicitous

38

cancellation, the structure ofB−1 is given by the transitive closure of the graph ofGB. As was

mentioned before, when the forward transformMα is multiplied out (with no update steps), the

off-diagonal−P’s are just added—no fill-in occurs. Then the graph ofMα satisfiesi → j iff

at some leveli is a fine node whose prediction uses coarse nodej. Therefore the graph ofM−1
α

hasi→ j iff there is a chain of prediction dependenciesi ; j.

Define the support of a nodej to be the setsupp(j) of nodesi such that(M−1
α)ij 6= 0—this

is actually the support of thej’th multi-resolution basis function. From the transitive closure

characterization of inverses, observe that the supports have a nestedstructure: ifi ∈ supp(j)

thensupp(i) ⊂ supp(j). Notice that ifj is a fine node at the highest resolution level,supp(j) =

{j}, but that ifj is at the lowest resolution level its support may be very dense—more justifica-

tion never to multiply out the inverse transform!

Now examine the structure ofM−T
β AM−1

α . Assume thatA has symmetric structure (Aij 6=

0 iff Aji 6= 0) andMβ andMα have the same structure. Then the product has symmetric

structure, and one can speak unambiguously about coarse/fine nodesand the support of a node.

Observe

(M−T
β AM−1

α)ij =
n∑

k=1

n∑

l=1

(M−T
β)ikAkl(M

−1
α)lj

=
n∑

k=1

n∑

l=1

(M−1
β)kiAkl(M

−1
α)lj

Then(M−T
β AM−1

α)ij 6= 0 iff there exist nodesk and l with k ∈ supp(i), l ∈ supp(j), and

k → l in A. In other words,i→ j in the product iff their supports are adjacent inA. Using the

nested structure of the supports, it is then clear that the neighbourhood of any nodej contains

the neighbourhoods of all nodes insupp(j).

Now, the location of nonzeros in columni of the upper inverse triangular factorZ of a

symmetric structure matrixB can be characterized as follows.Zi has an entry for each node

before i and reachable fromi, via paths inB using nodes beforei. (One easy proof uses

induction and the dot-product form of AINV.)

Consider the effect of swapping the positions ofi 6= j in some ordering, wheni ∈ supp(j).

Clearly the number of nonzeros in columns inZ ordered before bothi andj or after both will

not be changed. However, the columns in between may be altered. Since theneighbourhood of

39

j contains the neighbourhood ofi, any nodes reachable on paths throughi are reachable through

j, but not necessarily the other way around. Therefore orderingi beforej can’t result in more

nonzeros inZ, but puttingj beforei might.

Thus any ordering of the nodes should respectj ordered after all other nodes insupp(j).

Sincesupp(j) is the set ofi such that(M−1
α)ij 6= 0, this is equivalent to requiring thati be

ordered beforej wheneveri ; j in Mα. This is clearly equivalent to orderingi beforej

wheneveri→ j in Mα, which can be enforced by the algorithm in figure 3.4.

Essentially the algorithm outputs the nodes in the existing order except when acoarse node

comes before any of its fine dependents. Then the coarse node is made to wait until all the

fine dependents have been ordered, at which point it’s put on a queueto be ordered as soon

as possible. The valuenumdep(i) serves as a counter of how many fine nodes dependent oni

have yet to be ordered—sincei is only put intop when this reaches zero, the ordering must be

consistent.

The initialization loop, assuming sparse storage of the matrix, takes time on the order of

the number of nonzeros in the matrix, which should beO(n) as mentioned in section 2.3. The

complexity of the main loop is a little more difficult to prove:

First note that bothi and j begin at 1 and never are decremented. Letd =
∑n

i=1 numdep(i), so before the main loop beginsd = nnz(Mα) − n, the num-

ber of off-diagonal nonzeros inMα. Values innumdepare never incremented sod

never increases.

A node can only be marked as waiting in the final else clause, and sincei is incre-

mented there it can never be marked as waiting again. The only way an entry in

numdepcan be decremented to zero is if it had been marked as waiting, and when

it hits 0 its marked as not waiting, so it can never be decremented past0. Therefore

d is always non-negative.

Supposei is incremented pastn+ 1—this can only happen ifi = n+ 1 at the start

of an iteration with the queue empty. There must be some unordered nodes left, as

otherwisej would have been incremented pastn and the loop would have stopped.

If any of the unordered nodes hadnumdepequal to zero, they either would have

started at zero, in which case the first else clause would have been executed for that

40

Figure 3.4: Modifying an ordering to respect the multi-resolution basis.

• Take as input the structure ofMα or Mβ (multiplied out).

• For i = 1, . . . , n

• Setnumdep(i) = number of nodesj with j → i, not includingi itself.

• Setwaiting(i) to false.

• Initialize a queue with room forn entries, empty at first.

• Seti = 1, the first node to attempt to order.

• Setj = 1, the first index into the modified orderingp.

• While j ≤ n

• If the queue is not empty then

• Remove the first nodek from the front of the queue.

• Setpj = k andj ← j + 1.

• Consider, in order, eachl 6= k with k → l andwaiting(l) true; decrement

numdep(l), and if this is0 setwaiting(l) to false and appendl to the queue.

• Else ifnumdep(i) = 0 then

• Setpj = i, j ← j + 1, andi← i+ 1.

• Consider, in order, eachl 6= i with i → l andwaiting(l) true; decrement

numdep(l), and if this is0 setwaiting(l) to false and appendl to the queue.

• Else (numdep(i) > 0)

• Setwaiting(i) to true, andi← i+ 1.

• Return the modified orderingp.

41

value ofi, or they would have been decremented to zero and added to the queue—

in either case implying that they must now be ordered, a contradiction. Thus all the

unordered nodes have positivenumdepcounters. However, some unordered node

v must be from the finest resolution level of all unordered nodes, and socannot

have any unordered dependent fine nodes—and so must havenumdep(v) = 0, a

contradiction. Thereforei never is incremented pastn+ 1.

Clearlyj can never be incremented pastn+ 1 thanks to the loop condition. There-

fore, since in each iteration eitherj is incremented,i is incremented, or at least one

of the values innumdepis decremented, there can be at mostn + nnz(Mα) itera-

tions. In fact, assuming constant time queue operations (e.g. as in a simple array

implementation) the time spent in the main loop isO(n) + O(nnz(Mα)), which

again should beO(n) (see section 2.3). Thus the entire algorithm isO(n).

I now propose the following simple scheme: orderA with Nested Dissection, and then

run the above algorithm to make the ordering consistent with the multi-resolution basis. The

only worry is that the modification will destroy the good fill-reducing qualities ofthe original

ordering. However, the bulk of the nodes should be at the finest level and thus have trivial

supports, so the modification can’t change their relative order. The onlynodes that can be

greatly affected by the ordering modification are the very coarse nodes,which are in a very

small minority. Thus the potential damage is very limited.

3.9 Parallel Ordering and Construction

The only unresolved issue is parallelism in the construction and ordering. Although many

opportunities exist for limited fine-grain parallelism, probably the most practicalapproach is

coarse-grain, based on the successful parallel AINV described in [7].

Begin by partitioning the graph ofA into disconnected subgraphs (distributed to differ-

ent processors) and a separator set of the nodes separating the subgraphs. Packages such as

Metis[24] provide good parallel routines to do this so that the subgraphs are roughly balanced

in size and the separator is small. Conceptually the global ordering will put thesubgraphs first

and the separator set last, thus restricting fill in the inverse factors and making the subgraph

computations independent.

42

In each subgraph, the nodes can be ordered with Nested Dissection or some other good

method, and the modification algorithm from the previous section run to make it consistent

with the multi-resolution basis. In this case, some coarse nodes may be discovered with fine de-

pendents in other subgraphs; these nodes must be moved to the separatorset. This modification

now ensures that the partition is also good for the transformed matrixM−T
β AM−1

α . The mod-

ification can then continue in the separator set to make it consistent with the multi-resolution

basis. While each subgraph ordering can be done independently on different processors, doing

the separator set in parallel probably will be very challenging, so provided it’s not too large

doing it serially on one processor should be acceptable.

As soon as the ordering of a subgraph is determined, serial outer-product AINV can be run

for those columns ofW andZ: no information from other nodes is required. The bottleneck

is again the separator set, which must receive and combine information fromall the subgraphs.

Possibly the best approach is to use the block dot-product form of AINVfrom [9] to get the

contributions from the subgraphs in parallel—each subgraph providing one block column, with

sparse blocks—and then continue with serial outer-product AINV on one processor. The exact

details of the implementation are left for future work.

3.10 The Relationship with Multigrid

Although the multi-resolution approximate inverse technique was motivated quite differently

from multigrid—using wavelets to compress the discrete Green’s function rather than using a

hierarchy of grids to damp all the different resolution components of the error efficiently—it

appears they are fundamentally very similar. In fact, the software developed here for finding the

hierarchy of coarse nodes and the prediction operators could be usedwith only cosmetic changes

in an unstructured mesh node-nested1 multigrid package, and vice versa. The multi-resolution

basis part of the thesis can then be seen as more or less independent of the approximate inverse

part, though of course some details of the basis are decided with consideration for implementing

the approximate inverse.

1A multigrid method is node-nested if the nodes in each coarse mesh are alsonodes of the next finer mesh, so

the coarsening procedure consists of selecting a subset of the fine mesh nodes to be coarse rather than introducing

new nodes.

43

The relationship can be made more precise by interpreting the multi-resolution approximate

inverse as an additive node-nested multigrid algorithm. For simplicity I only consider the “two

grid” case, where there are only two levels in the hierarchy: the original problem and one coarse

problem. As usual for analysis, I assume that all the fine nodes are ordered before all the coarse

nodes, with matrices partitioned accordingly.

The approximation toA−1 isM−1
α Q̃M−T

β . Of courseQ̃ might be available only as a product

of matrices, but for this analysis assume it is explicitly known. Writing this out in matrix form

gives:

A−1 ≈ M−1
α Q̃M−T

β

=

(
I Pα

I

)(
Q̃11 Q̃12

Q̃21 Q̃22

)

︸ ︷︷ ︸
eQ

(
I

PT
β I

)

=

(
I

0

)
Q̃11

(
I 0

)
+

(
Pα

I

)
Q̃21

(
I 0

)

+

(
I

0

)
Q̃12

(
PT

β I

)
+

(
Pα

I

)
Q̃22

(
PT

β I

)

Now, define the mesh transfer operators: the prolongationP =
(
Pα

I

)
and the restrictionR =

(
Pβ

I

)T
. The prolongation takes a coarse mesh version of a function and returnsthe interpolated

(predicted) fine mesh version. The restriction takes a fine mesh version ofa function and returns

a coarse mesh version—notice that this process is not simple injection (sub-sampling of just the

coarse node values) but instead assigns to each coarse node a linear combination of the coarse

node and its fine neighbours. The standard multigrid choice of taking the restriction equal to

the transpose of the prolongation corresponds to takingPα = Pβ .

While general multigrid is not constrained to this form for the prolongation andrestriction,

the only real assumptions underlying this form are:

• The restriction of a function at a particular coarse node should only depend on the func-

tion values at that coarse node and possibly some fine nodes.

• The prolongation at a particular coarse node only depends on the value inthe coarse mesh

version.

44

Equivalently stated for the Galerkin (or Petrov-Galerkin) viewpoint of multigrid, the support

of a coarse mesh basis function should include only one coarse node. Under these assump-

tions, the coarse part of the two operators becomes diagonal and can betrivially rescaled to the

identity. These seem quite reasonable assumptions to make; if the need arises, however, there

is the possibility of simply generalizing the lifting scheme transform algorithm, replacing the

appropriate identity block with an invertible matrix.

Rewriting the approximation gives:

A−1 ≈

(
I

0

)
Q̃11

(
I 0

)
+ PQ̃21

(
I 0

)
+

(
I

0

)
Q̃12R+ PQ̃22R

which can be viewed as additive multigrid. The coarse mesh correction corresponds to the

PQ̃22R term (with Q̃22 playing the part of the coarse mesh solver). ThePQ̃21(I 0) and(
I
0

)
Q̃12R terms correspond to pre- and post-smoothing respectively, and the

(
I
0

)
Q̃11(I 0) term

smooths just the fine nodes independently of the coarse node operations (see [35] for an example

of approximate inverses used as smoothers in standard multigrid).

45

Chapter 4

Implementation in One Dimension

4.1 Overview

One dimensional problems serve as a useful test of the method. Issues such as the coarse/fine

splitting and the prediction are easier to deal with, and testing very fine meshestakes less

computer resources. Of course, approximate inverse methods would never be used for one-

dimensional problems in the real world, since other direct or special methods achieve optimally

efficient, robust solutions (at least if the problem isn’t too ill-conditioned).However, some of

the lessons gained in 1D can be brought to higher dimensional problems where there is real

interest in using approximate inverses.

4.2 Discretization

In one dimension the operatorL is of the form:

Lu =
d

dx

(
K

d

dx
u− bu

)
+ cu

where all coefficients are scalars (possibly functions ofx). Without loss of generality the equa-

tionLu = f can be taken on the unit interval[0, 1].

46

For a finite volume discretization, choose points0 = x1 < x2 < · · · < xn = 1 on the

interval, at which the solution will be approximated. Letxi+1/2 be the midpoint betweenxi

andxi+1. Define vertex-centred cells (known as finite volumes or control volumes)from these

points, with half-cells at the endpoints:

C1 = [x1, x1+1/2] = [0, x1+1/2]

Ci = [xi−1/2, xi+1/2] for i = 2, . . . , n− 1

Cn = [xn−1/2, xn] = [xn−1/2, 1]

Integrating the equation over an interior cell gives:

∫

Ci

d

dx

(
K

d

dx
u− bu

)
+ cu dx =

∫

Ci

f dx

[
K

d

dx
u− bu

]xi+1/2

x=xi−1/2

+

∫

Ci

cu dx =

∫

Ci

f dx

A mid-point approximation for the integrals and a second order finite difference approximation

for du/dx gives:





Ki+1/2

(
ui+1 − ui

xi+1−xi

)
− bi+1/2ui+1/2

−Ki−1/2

(
ui − ui−1

xi−xi−1

)
+ bi−1/2ui−1/2

+ (xi+1/2 − xi−1/2)ciui





≈ (xi+1/2 − xi−1/2)fi

The valueKi+1/2 could plausibly be taken asK(xi+1/2), but it turns out that a better choice

is some kind of mean value ofK on the interval betweenxi andxi+1. Continuity of the flux

or homogenization theory arguments show that the harmonic mean ofK in this interval is the

correct value. A different intuitive reason for this can be found in the physical interpretation of

u as the concentration of some quantityU that diffuses at rateK; thenK is the average speed

of the tiny particles ofU at a given point as they randomly move about. The average speed

on a path fromxi to xi+1 is the harmonic mean of the speeds along the way: moving distance

dx takes time1/K(x) dx, so the total time is
∫ xi+1

xi
1/K(x) dx, giving average speed(xi+1 −

47

xi)/
∫ xi+1

xi
1/K(x) dx. AssumingK is only known at the vertices, the natural approximation

is:

Ki+1/2 =
1

1
2(1

Ki
+ 1

Ki+1
)

The valuebi+1/2 is handled differently—in the physical model, unlike theK term represent-

ing diffusion of randomly moving particles,b represents the deterministic underlying current

which convects the quantity. Again assume thatb is only known at the vertices. There are two

cases to consider: whereb is the same sign at the vertices, and whereb changes sign. In the

first case, it is reasonable to appeal to smoothness inb for lack of a better idea, and estimate

bi+1/2 = (bi + bi+1)/2. In the second case, at some point betweenxi andxi+1 eitherb = 0 or

b has a discontinuity spanning0; this stagnation/source/sink point means there is no convective

connection betweenui andui+1, sobi+1/2 should be0.

The termui+1/2 appearing in the convection term also requires thought. First order up-

streaming simply selectsui+1/2 to be the upstream valueui whenbi+1/2 > 0 andui+1 when

bi+1/2 < 0. This is motivated by the physical reasoning that values ofu downstream should not

effect (via convection) any values that are upstream. It can be more mathematically justified as

a sufficient condition for stability of the discretization, guaranteeing amongst other things that

the linear system will be an M-matrix (at least ifc ≤ 0). Upstreaming is used throughout this

thesis with no exceptions.

Diffusive flux (generalized Neumann) boundary conditions are easy tohandle. For example,

if Kdu/dx · n̂ = h at the left boundary, then there is just an extra source term when integrating

the PDE overC1 with the convective fluxbu(0) set to0 and the reaction termc(0) set to0:
∫

C1

d

dx

(
K

d

dx
u− bu

)
=

∫

C1

f dx+ h

[
K

d

dx
u− bu

]x1+1/2

x=0

=

∫

C1

f dx+ h

The above approximations can then be made. In fact, if the discretization code constructs the

equations interval by interval (not cell by cell) as is usually done, the onlydifferences between

a diffusive flux boundary and an interior point is the slightly different cell-width, the condition

c = 0, and the additionalh term on the right-hand side.

Generalized Robin boundary conditions then simply require the addition of theau term at

the boundary node (or takingc = a). In the special case of full flux specification,a ∝ (−b) · n̂.

48

Dirichlet boundary conditions, e.g.u(xn) = g, might be discretized “as is”: simply take the

equationun = g. However, there is a major problem with this approach. For example, consider

u′′ = 0 with u′(0) = 0 andu(1) = 1 discretized on a uniform mesh of three points{0,1/2, 1}.

Putting the resulting linear equations in matrix form gives:


−2 2 0

2 −4 2

0 0 1






u1

u2

u3


 =




0

0

1




Notice the PDE problem was self-adjoint, yet the matrix is not. In fact, the transpose of the

matrix doesn’t represent a discretization of any related PDE, and the multi-resolution method is

bound to fail in compressing the rows of the inverse.

The solution is to only approximately enforce the Dirichlet condition, the so-called “big

number” approach, by thinking of the Dirichlet condition as the limit asa → ∞ of the Robin

condition(K∇u)·n̂+au = ag on the boundary or the PDE with extra reaction termLu+au =

ag in the interior. These conditions naturally give correct discretizations forthe adjoint.

Begin with the normal flux conditions, or if the Dirichlet point is in the interior of the

domain, the normal discretization—which as mentioned is usually handled by the same code.

However, then increase the diagonal by a very large number (e.g.1010) and change the corre-

sponding entry in the right-hand side appropriately:


−2 2 0

2 −4 2

0 2 −1010






u1

u2

u3


 =




0

0

−1010




It’s true thatun now will only be approximately equal tog, but that should be so much more

accurate than the other approximations made that this is no cause for worry.The matrix on the

other hand is now symmetric; in general the transpose of the matrix will be a discretization of

the adjoint problem, exactly as desired.

At first sight this might seem to pose the danger of making the system badly scaled and

ill-conditioned; however, even the simplest of preconditioners will correct this essentially ar-

tificial scaling problem. The real issue with this technique is evaluating convergence in an

iterative method. When looking at the residualAu− f , the Dirichlet entries are disproportion-

ately weighted by the big number. Then reducing the norm of the residual bysome factor like

49

10−6 can often be accomplished simply by correcting the Dirichlet entries—even if the rest of

the approximate solution is completely wrong! Thus it is important tounweightthe Dirichlet

entries of the residual—divide by the big number—before taking the usual norm in evaluating

convergence.

4.3 Basis construction

Although it’s not clear that this is necessarily the best idea, a natural scheme for splitting the

nodes into coarse and fine subsets in 1D is to simply take every second nodecoarse and the rest

fine. As mentioned before, this is the original even/odd splitting proposed in [34]. One slight

modification for this application is to always choose Dirichlet nodes as coarse: their value isn’t

naturally predictable from nearby nodes, plus as coarse nodes they are perfectly handled by the

simplest approximate inverse. The same thing applies to Robin condition nodes with dominant

Dirichlet part.

The simplest choices for prediction are linear interpolation between the two neighbouring

coarse nodes, or cubic interpolation if another two nodes (one on each side) are used. Off-

centered interpolation or extrapolation must be used for fine nodes on or near the boundary.

A more sophisticated approach is to use PDE-interpolation (see section 3.3),which naturally

handles fine flux condition boundary nodes in addition to the interior nodes.

The choices for the update step are nothing (U = 0), first two moments (up to linear)

preserved using the two neighbouring fine nodes, or first four moments (up to cubic) preserved

using an extra node on each side. Near boundaries the nodes used must also be off-center, as

with prediction.

4.4 Test Problems

The following five problems were selected to test a variety of the difficulties that are sometimes

encountered. Uniform meshes of various sizes were tested along with somenonuniform meshes

(where the nodes were moved to increase accuracy). Besides the multi-resolution approximate

inverses, standard basis AINV was tested for comparison.

50

The following subsections give the details of the testing; section 4.5 summarizesthe results.

4.4.1 Testing Protocol

The methods listed in the tables are:

• AINV(δ): the standard basis inner-product AINV with drop toleranceδ.

• Mr.Lin(δ): a multi-resolution basis with linear interpolation but no update, then outer-

product AINV with drop toleranceδ.

• Mr.LinUpd(δ): a multi-resolution basis with linear interpolation and moments up to linear

preserved with an update step, then outer-product AINV with drop toleranceδ.

• Mr.Cub(δ): cubic interpolation, no update, drop toleranceδ.

• Mr.CubUpd(δ): cubic interpolation and moments up to cubic preserved, drop toleranceδ.

• Mr.PDE(δ): PDE-interpolation, no update, drop toleranceδ.

For the multi-resolution bases, enough levels were allowed so that the coarsest level had about

100 nodes.

The ordering was nested dissection for standard AINV, with the modificationalgorithm

applied for multi-resolution bases with no update step. For the bases with an update step,

the basis-transformed matrix was actually multiplied out before nested dissection ordering and

AINV.

The drop tolerances were chosen to give approximately the same total number of nonzeros

(including prediction and update operators where applicable) for each preconditioner, about

7000 for a problem on1000 nodes (or9000 for problem 5).

The symmetric definite problems were solved with CG and the preconditioned system

D−1/2ZT (M−TAM−1)ZD−1/2. BiCGStab withD−1WT (M−T
β AM−1

α)Z was used for the oth-

ers. Convergence was flagged when the 2-norm of the residual (with Dirichlet nodes rescaled

appropriately, as mentioned before) was decreased by a factor of10−6 beginning from an initial

51

guess of all zeros; if convergence wasn’t reached after 500 iterations, the problem was marked

unsolved with an asterisk (*).

After each iteration count in the tables, the “work per unknown” is includedin parentheses:

the number of iterations times the number of nonzeros in the preconditioner (prediction and

update operators included), divided by the number of unknowns. This allows a somewhat fairer

comparison between different preconditioners and problems.

Timing counts are not included, as parts of the code run interpreted underMATLAB and

other parts in C, some tuned for performance and others not, thus any timing could be mis-

representative. This means in particular that the efficient use of cache memory, superscalar or

superpipelined architecture, etc. is not measured at all. However, as allthe preconditioner opera-

tions essentially boil down to sparse matrix multiplication, which can be coded very effectively,

no major problems are anticipated for a real implementation.

4.4.2 Problem 1: Simple Heat Problem

This is the simplest problem, a sample solve from a fully implicit method for the heat equation

on a uniform bar with heat applied in one spot:

u′′ − 0.1u = f

where

f(x) =

{
−1 : 0.4 ≤ x ≤ 0.5

0 : otherwise

and the boundary conditions are Dirichlet:

u(0) = u(1) = 0

See 4.1 for a plot of the solution.

Figure 4.2 shows in 3D the negative of the discrete Green’s function (the inverse of the

matrix) and figure 4.3 shows it in 2D in different bases, symmetrically scaled tohave unit

diagonal (darker shading indicates larger magnitude). Note how in the standard basis many off-

diagonal entries are significantly large, suggesting difficulties for an approximate inverse. In the

multi-resolution bases most of the off-diagonal entries are nearly zero (except at the coarsest

52

Figure 4.1: Solution of 1D problem 1 (simple heat problem).

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

x

level in the bottom right corner)—with some exceptions for the cubic interpolation or those

with update steps. The iteration results in table 4.1 confirm the suspicion that thelinear and

PDE-interpolation bases do the best jobs.

As justified earlier, preserving moments is not a good thing; the convergence is slowed

enormously or lost altogether for larger problems. From now on, results for bases with updates

will not be included.

AINV in the standard basis is reasonably effective for smalln, but the work per unknown

grows linearly—giving anO(n2) solution on a serial machine.

The cubic interpolation is a little disappointing. Though providing more efficientsolutions

than the standard basis, with the work per unknown a very slow growing function ofn, it is

nowhere near as good as the linear and PDE-interpolation bases. Despitegiving a higher order

prediction, it takes much more work (and a much higher drop tolerance in the approximate

inverse, indicating poorer compression). The essential problem here isthat the solutions are

not smooth enough to warrant the high order accuracy. I suspect buthaven’t proven that just

as linear interpolation corresponds to PDE-interpolation for the Laplacian (u′′ in 1D), cubic

53

Figure 4.2: Negative of the discrete Green’s function for 1D problem 1.

20
40

60
80

100

20
40

60
80

100
0

0.05

0.1

0.15

0.2

0.25

Table 4.1:CG iterations for 1D problem 1 (simple heat problem) to reduce the residual norm by10−6,

with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s drop

toleranceδ is chosen to give roughly the same number of nonzeros. See page 51 for details.

Method(δ) n = 1000 n = 2000 n = 4000 n = 8000

AINV(0.03) 23 (157) 39 (269) 73 (506) 141 (980)

Mr.Lin(5 · 10−8) 3 (18) 3 (14) 3 (11) 3 (10)

Mr.LinUpd(0.07) 44 (323) 74 (466) 102 (606) *

Mr.Cub(0.063) 24 (165) 26 (171) 27 (170) 29 (179)

Mr.CubUpd(0.3) 231 (1937) * * *

Mr.PDE(10−10) 2 (7) 2 (7) 2 (6) 2 (6)

54

Figure 4.3: Inverse of problem 1 matrix in different bases.

Standard basis PDE−interpolation

Linear interpolation Linear interpolation + update

Cubic interpolation Cubic interpolation + update

55

Table 4.2:CG iterations for 1D problem 2 (discontinuous heat problem)to reduce the residual norm

by 10−6, with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s

drop toleranceδ is chosen to give roughly the same number of nonzeros. See page 51 for details.

Method(δ) n = 1000 n = 2000 n = 4000 n = 8000

AINV(0.01) 12 (82) 16 (118) 25 (197) *

Mr.Lin(5 · 10−8) 3 (21) 3 (22) 3 (23) 3 (24)

Mr.Cub(0.063) 71 (486) 226 (1493) * *

Mr.PDE(10−10) 2 (10) 3 (15) 3 (15) 3 (15)

interpolation corresponds to PDE-interpolation for the biharmonic operator(u′′′′ in 1D), and

thus is clearly inappropriate for second order problems.

The highly desirable phenomenon of “grid-independent convergence” is clear in the linear

and PDE-interpolation bases. Here the work per unknown stays constant, giving an optimal

O(n) solution on a serial machine and potentially optimal scalability on parallel machines.

Linear interpolation does a remarkably good job, almost giving a direct solution. However,

PDE interpolation does even better, accounting as it does for the reaction term—not only is less

work required, but the smaller drop tolerance indicates better compression.

4.4.3 Problem 2: Discontinuous Heat Problem

Problem 2 is identical to problem 1 except that the boundaries are insulated(so the condition is

Neumann at steady state), the time step is larger (so the reaction term is−10−2u), and there is

a jump discontinuity in the diffusion coefficient:

K(x) =

{
1 : x ≤ 0.5

10−6 : x > 0.5

The solution is shown in figure 4.4, and the inverse of the matrix in different bases in figure 4.5.

Table 4.2 gives the iteration results.

Now that the problem really isn’t so smooth, the cubic interpolation method fails.In fact,

the standard basis is better, although still not robust and still not scaling well. The linear and

56

Figure 4.4: Solution of problem 2 (discontinuous heat problem).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

x

PDE-interpolation methods perform very well again, with grid-independent convergence, the

PDE method just a bit better.

4.4.4 Problem 3: Convection with a Boundary Layer

The next problem is not self-adjoint, dominated by strong convection:

d

dx
(10−6u′ − (x+ 1)u) = f

where

f(x) =

{
−1 : x < 0.2

0 : x ≥ 0.2

and the boundary conditions are Dirichlet:

u(0) = u(1) = 0

A very sharp boundary layer is present at the right boundary—upstream weighting is essential

for stability here in particular. See figure 4.6 for a plot of the solution, and figure 4.7 for a

picture of the matrix inverse in different bases. The iteration results are shown in table 4.3.

57

Figure 4.5: Inverse of problem 2 matrix in different bases.

Standard basis PDE−interpolation

Linear interpolation Cubic interpolation

Table 4.3:Bi-CGstab iterations for 1D problem 3 (convection problem)to reduce the residual norm by

10−6, with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s

drop toleranceδ is chosen to give roughly the same number of nonzeros. See page 51 for details.

Method(δ) n = 1000 n = 2000 n = 4000 n = 8000

AINV(0.3) 5 (45) 7 (70) 7 (77) 9 (109)

Mr.Lin(0.25) 47 (335) 33 (205) 39 (237) 49 (288)

Mr.Cub(0.4) 71 (492) 99 (687) 103 (718) 123 (859)

Mr.PDE(0.002) 5 (33) 5 (29) 5 (28) 7 (44)

58

Figure 4.6: Solution of problem 3 (convection with a boundary layer).

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

x

As mentioned before, the linear and cubic prediction are centred, equally weighting down-

stream information as upstream information, and this really shows in their poorconvergence.

The standard basis is much superior.

However, despite having the additional overhead of the different adjoint prediction, the

PDE-interpolation method again works beautifully and shows grid-independent convergence.

The drop tolerance is still fairly low showing the superior compression.

To better resolve the boundary layer, I tried a nonuniform mesh such thatthe spacing∆x

decreased cubically near the right boundary. This was much too difficultfor convergence with

either the standard basis or the cubic interpolation basis, so I have only included the linear and

PDE-interpolation results in table 4.4.

Despite the increased difficulty, PDE-interpolation still works fine.

59

Figure 4.7: Inverse of problem 3 matrix in different bases.

Standard basis PDE−interpolation

Linear interpolation Cubic interpolation

Table 4.4:Iterations for 1D problem 3 on a stretched mesh. Standard basis and cubic interpolation basis

methods didn’t converge at all.

Method(δ) n = 1000 n = 2000 n = 4000 n = 8000

Mr.Lin(0.245) 137 (1070) 99 (743) 289 (2081) 321 (2224)

Mr.PDE(0.003) 5 (35) 7 (45) 7 (43) 7 (43)

60

Figure 4.8: Solution of problem 4 (Indefinite Diffusion-Reaction).

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

4.4.5 Problem 4: Indefinite Diffusion-Reaction

Problem 4 is self-adjoint without any discontinuities, but is indefinite by virtueof the reaction

term:

10−3u′′ + u = f

where

f(x) =

{
−1 : 0.4 ≤ x ≤ 0.5

0 : otherwise

and the boundary conditions are the natural Robin conditions. Figure 4.8 shows the solution and

figure 4.9 the matrix inverse in different bases (the inverse is not scaled so that the oscillations

are clearly apparent). Table 4.5 contains the iteration results.

Again the PDE-interpolation is a clear winner. The linear interpolation doesn’t do so badly

because the problem is self-adjoint, but is still much less effective.

For higher accuracy, I tried an adaptive mesh, where the uniform mesh was modified to

improve the error based on the second derivative of the computed solution, and then smoothed

61

Figure 4.9: Inverse of problem 4 matrix in different bases.

Standard basis PDE−interpolation

Linear interpolation Cubic interpolation

Table 4.5:CG iterations for 1D problem 4 (indefinite diffusion-reaction) to reduce the residual norm

by 10−6, with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s

drop toleranceδ is chosen to give roughly the same number of nonzeros. See page 51 for details.

Method(δ) n = 1000 n = 2000 n = 4000 n = 8000

AINV(0.035) 73 (531) 315 (1940) * *

Mr.Lin(4 · 10−4) 29 (209) 25 (205) 27 (110) 25 (88)

Mr.Cub(0.07) 355 (2172) * * *

Mr.PDE(1 · 10−10) 5 (35) 5 (38) 5 (41) 5 (29)

62

Table 4.6: Iterations for 1D problem 4, adaptive mesh. The iteration countis followed by the

flops per unknown in parentheses.

Method(δ) n = 1000 n = 2000 n = 4000 n = 8000

AINV(0.035) 251 (1618) * * *

Mr.Lin(4 · 10−4) 17 (119) 19 (99) 19 (78) 19 (68)

Mr.Cub(0.07) * * * *

Mr.PDE(1 · 10−8) 5 (33) 5 (30) 7 (35) 9 (38)

a little. The results are shown in table 4.6. The standard basis and cubic interpolation per-

form abysmally as with the previous nonuniform mesh, but probably thanksto the symmetry

of the PDE the linear interpolation doesn’t do badly at all. In fact, the performance of linear

interpolation is improved dramatically, presumably because in the new mesh not only is the so-

lution error diminished, but also the prediction error which also relies on the second derivative.

The performance of PDE interpolation is decreased slightly (but still consistently beats linear

interpolation), probably because not much improvement is made in prediction error while the

problem is now worse conditioned.

4.4.6 Problem 5: Combined Difficulties

The final problem has a discontinuous diffusion coefficient, strong convection that changes

direction, and an oscillating reaction term:

d

dx
(Ku′ − (|x− 0.5| − 0.05)u)− sin(5πx) = −1

where

K(x) =

{
1 : x ≤ 0.3

10−3 : x > 0.3

with Neumann boundary conditions:

u′(0) = u′(1) = 0

63

Figure 4.10: Solution of problem 5 (combined difficulties).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

x

Figures 4.10 and 4.11 show the solution and the matrix inverse as before. Because of the

difficulty of this problem, I aimed for9000 nonzeros in the preconditioners whenn = 1000;

the results are given in table 4.7.

4.5 Summary

In one dimension, the multi-resolution basis with linear or PDE-interpolation is muchsuperior

to the standard basis, enabling fast grid-independent convergence for tough problems where

AINV wouldn’t otherwise converge at all.

It is clear that the update step and cubic interpolation are inappropriate. While linear inter-

polation sometimes works very well, it can have problems with really tough problems. PDE-

interpolation gives by far the fastest convergence for all problems tested and should normally be

the first choice. In situations where the same mesh is re-used for many problems with different

(but not too challenging) coefficients, it might be worthwhile to stick with linearinterpolation

64

Figure 4.11: Inverse of problem 5 matrix in different bases.

Standard basis PDE−interpolation

Linear interpolation Cubic interpolation

Table 4.7:Bi-CGstab iterations for 1D problem 5 (combined difficulties) to reduce the residual norm

by 10−6, with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s

drop toleranceδ is chosen to give roughly the same number of nonzeros. See page 51 for details.

Method(δ) n = 1000 n = 2000 n = 4000 n = 8000

AINV(0.11) 127 (1170) 487 (4296) * *

Mr.Lin(0.003) 15 (136) 11 (91) 15 (103) 13 (74)

Mr.Cub(0.063) 103 (898) * * *

Mr.PDE(4 · 10−4) 9 (83) 7 (57) 7 (49) 9 (55)

65

which need only be set up once, rather than recompute the PDE-interpolation for each problem,

but for robustness the PDE-interpolation is definitely best.

66

Chapter 5

Implementation in Two Dimensions

5.1 Overview

In two dimensions, on unstructured meshes, the matrices to solve are no longer trivial with any

method. This is an application of interest to the real world. The lessons fromone dimension

(stick with linear or PDE-interpolation, no update step) carry over, but interpolation is trickier,

to say nothing of new challenges in partitioning the nodes into coarse and finesets and in

deciding the nonzero structure of the prediction operators.

5.2 Discretization

There are still many questions left as to the best way of discretizing elliptic operators on two di-

mensional unstructured meshes, beginning with the choice of mesh itself. Forsome applications

there are packages which use meshes of quadrilaterals, which give niceproperties (e.g. near or-

thogonality) when close to rectangular. However, it is trivial to convert aquadrilateral mesh

to a triangle mesh by splitting each quadrilateral along a diagonal, and good discretizations on

these triangles can maintain the qualities which make quadrilaterals attractive in thefirst place.

(It’s generally impossible to go the other way, convert a triangle mesh into a quadrilateral mesh

without adding or moving points.) Triangles are very flexible, able to connectup any collection

67

of points in the plane even if the prescribed boundary is non-convex. Finally, triangles have the

advantage of simpler discretization. Therefore I have chosen to only consider triangle meshes.

There are then several choices for which triangulation should be used.Although the dis-

cretization scheme will work on any non-degenerate mesh, the accuracy of the result is highly

dependent on the quality of the mesh.

For elliptic problems, the Delaunay triangulation is the usual choice since it features, among

other things:

• fast algorithms,

• good geometry (e.g. maximizing the minimum interior angle of any triangle in the mesh),

and

• good discretization properties (e.g. linear finite element discretizations of Laplace’s equa-

tion produce M-matrices, thus strictly maintaining the maximum/minimum properties of

the original PDE).

Of course, Delaunay triangulation has its faults. For example, it doesn’t directly control the

maximum angle and thus may still produce nearly degenerate triangles—this is a particular

problem for highly stretched meshes used in aerodynamics, and has prompted the use of a

“MinMax” triangulation[3]. This issue hasn’t come up during the testing forthis thesis, so I

have not followed this possibility.

Another problem with Delaunay triangulation is that an M-matrix (and accompanying max-

imum/minimum properties) is not guaranteed for elliptic PDE’s other than Laplace’s equation,

particularly if the diffusion tensor is highly anisotropic. This suggests modifying the edge-

swapping optimization procedure (see figure 5.1) of some incremental Delaunay triangulation

algorithms to attempt to produce the desiredM -matrices in the discretization, rather than op-

timize geometry features: edges should be swapped to make off-diagonal entries in the matrix

more positive and the diagonal more negative. Delaunay triangulation is thenjust the special

case for Laplace’s equation. So-called “coefficient-adaptive triangulation” shows promise for

simple problems, but lacks robustness for highly variable coefficients. However, as demon-

strated later the results can be improved dramatically if the domain is first split up into separate

68

Figure 5.1: Given two adjacent triangles forming a convex quadrilateral, edge swapping may

reconfigure the triangles as shown (swapping the diagonal) to locally optimizesome property

of the triangulation.

regions with roughly constant coefficients, the regions coefficient-adaptively triangulated, and

then the full mesh stitched back together. Further research is definitely required.

Once the mesh has been determined, there are two popular approaches to discretizing

Lu = f . The finite volume discretization used in 1D can be extended to 2D with the ap-

propriate definition of a cell around each vertex—an integral of the PDE over a cell can be

reduced to a boundary integral which is straightforward to approximate. Usually a polygonal

region is made using the midpoints of the triangle edges along with some point in the interior

of each triangle, such as the centroid. (Of course around boundary nodes the cell is chopped in

half, just like the half-cells used at the boundaries in 1D.) Although the centroid is a reasonable

choice and is quite popular, it may cause badly shaped cells inappropriate for convection prob-

lems: see figure 5.2 for an example. A much better choice is to use the circumcentre, where

the perpendicular bisectors of the triangle meet—then the problem is that the circumcentre is

outside the triangle for obtuse triangles. It is in general impossible to get a triangulation with

no obtuse triangles without adding extra points, so one possible remedy is to use the circum-

centre for acute triangles, but the midpoint of the side closest to the circumcentre for obtuse

triangles. See figure 5.3 for an example. Another possibility not explored here is to use the cir-

cumcentres nevertheless—despite giving the non-intuitive property that the interface between

69

Figure 5.2: An example of problems using centroids for finite volumes.

two cells sometimes doesn’t intersect the line joining them, this has the advantage of naturally

corresponding to a finite element method, and if a Delaunay triangulation is used, making the

finite volumes the Voronoi cells.

The method of finite elements is the second popular choice. It is not as easy tointerpret

physically, but its simple mathematical structure makes proofs of convergence and generaliza-

tions to higher order approximations simpler. The Galerkin formulation of the method essen-

tially approximatesu as a linear combination
∑n

j=1 ujφj of a finite set of basis functionsφj ,

then seeks to solve the PDE in a weak sense by requiring
∫
Ω Luφi =

∫
Ω fφi for all i. This is

just a finite linear system for the coefficientsui. Typically the basis functions are piecewise La-

grange polynomials, withφi equal to1 at nodei and0 at other nodes soui represents the value

of u at nodei. If the diffusion term is integrated by parts, the differentiability requirementon

the basis functions is reduced, and so actually the most popular choice forsecond order elliptic

equations is piecewise Lagrange polynomials which are linear in each triangle.

70

Figure 5.3: An example of cells using circumcentres or midpoints.

71

It can be shown that often the two methods give exactly the same (or almost thesame)

discretization. In fact, proofs of convergence for finite volumes often go the route of interpret-

ing the method as a finite elements with a particular choice of numerical quadrature for the

integrals. It’s similarly possible to interpret the linear/triangle finite element methodas a finite

volume technique. Since finite volumes are particularly good at convection (allowing upstream

weighting to be easily implemented) whereas finite elements handle diffusion in a simpler and

more elegant way, many people exploit their compatibility in combining the techniques. This is

how I have chosen to discretize the PDE.

As noted in 1D, discontinuities in the diffusion coefficient must be handled carefully. Un-

fortunately, it is not yet clear how to properly treat discontinuous anisotropic diffusion tensors

in 2D. For example, the simple-minded approach of taking component-wise harmonic means

is clearly wrong since it is not rotationally invariant. Return instead to the physical intuition

of K measuring the average speed of randomly moving particles. The negative gradient of the

quantity−∇u represents the natural diffusive “force” (I use the term with hesitation,as the

physics of this argument haven’t been clearly worked out) propelling particles. The possibly

anisotropic resistance of the medium then results in an average velocity of−K∇u.

Now, letφi be the piecewise linear basis function for nodei, and approximate the solution

asu =
∑n

j=1 ujφj . The Galerkin condition for the diffusion term (ignoring the other terms for

now) gives the following for everyφi:
∫

Ω
(∇ ·K∇u)φi dx dy =

∫

Ω
fφi dx dy

Integrating by parts:
∫

∂Ω
(K∇u)φi · n̂ ds−

∫

Ω
(K∇u) · ∇φi dx dy =

∫

Ω
fφi dx dy

As in 1D, the natural boundary conditions are based on the diffusive flux (K∇u) · n̂, and

so the boundary integral can be treated as a known quantity to subtract from the right-hand side

(or can simply be assumed0 for Dirichlet nodesi). This reduces the problem to evaluating:

−

∫

Ω
(K∇u) · ∇φi dx dy = −

∫

Ω


K∇

n∑

j=1

ujφj


 · ∇φi dx dy

=
n∑

j=1

uj

(
−

∫

Ω
(K∇φj) · ∇φi dx dy

)

72

Then the diffusion contribution to the matrix is:

Aij = −

∫

Ω
(K∇φj) · ∇φi dx dy

Since eachφi is linear on each triangle, it is natural to break up this integral into integrals over

each triangle where bothφi andφj are nonzero. Normally the full matrix is “assembled” in this

fashion, computing the submatrix of nonzero components from each triangleseparately.

The problem is then reduced to evaluating

−

∫

4

(K∇φj) · ∇φi dx dy

for some triangle4 over whichφi andφj are nonzero. Note that that meansi and j must

be vertices of4; for the moment, assume thati 6= j. As mentioned above the vector−∇φj

represents the diffusive “force” propelling particles away from nodej, and since∇φi is a vector

pointing in the direction of nodei, the term can be interpreted as the average speed of particles

diffusing from nodej towards nodei. Then what the termshouldbe is not an arithmetic mean

of speeds over the triangle, but a harmonic mean over paths fromj to i in the triangle. Noting

that∇φi and∇φj are constant from linearity and assuming thatK is only known at the nodes,

the approximation is:

HM(−|4|(Kj∇φj) · ∇φi,−|4|(Ki∇φi) · ∇φj)

where HM is the harmonic mean and|4| is the area of triangle4. It is possible for non-

constantK that theKi and theKj speeds will have different signs, in which case the harmonic

mean is inappropriate and the arithmetic mean is used instead. Finally, just as the diffusion part

of the operator is zero for constant functions, the matrix should be zero for constant vectors

(or equivalently, since the PDE conserves mass, the discretization shouldas well). This means

Aii = −
∑

j 6=iAij .

Notice that reassuringly this scheme gives a self-adjoint matrix whenK is self-adjoint, and

for K constant it reverts to the standard, well-studied finite element approximation.For non-

constantK this discretization scheme is debatable of course, but can be viewed as a particular

first-order correct quadrature rule for the standard method’s integrals, thus guaranteeing reason-

able behaviour—in any case, this is not a central issue for this thesis.

73

For the convection term, define the cells with midpoints of edges and circumcentres or

nearest midpoints, as discussed before. Then integrating the convective term over a cell gives:
∫

Ci

−∇ · (bu) dx dy = −

∫

∂Ci

ub · n̂ ds

= −
∑

σ∈ ∂Ci

∫

σ
ub · n̂ ds

where the summation is over the segmentsσ making up the boundary of cellCi. The usual

approximations are made:
∫

Ci

−∇ · (bu) dx dy ≈ −
∑

i→j

|σij |(b · n̂)ij+1/2uij+1/2

Here the summation is over nodesj connected to nodei, σij is the segment of the interface

between cells aroundi andj, |σij | its length,(b · n̂)ij+1/2 an approximate value forb · n̂ along

σij (with normal pointing fromi towardsj), anduij+1/2 an approximate value foru along the

σij . As in 1D,(b · n̂)ij+1/2 can be taken to be either the average ofbi · n̂ andbj · n̂ if they have

the same sign, or zero if the sign changes. Similarly, the upstream choice foruij+1/2 is ui if

(b · n̂)ij+1/2 > 0 anduj otherwise. Upstream weighting is used without exception in this thesis.

Some confusion surrounds the reaction termcu. From the pure finite element approach, the

contribution toAij should be
∫
Ω cφiφj . However, since the support of theφi’s overlap, this will

be nonzero forj 6= i, i.e. off the diagonal; besides spreading out the term in a somewhat non-

intuitive way, this has the undesirable effect of automatically losing theM -matrix property and

accompanying stability guarantees. The accepted remedy is called mass-lumping, essentially

moving the off-diagonal contributions to the diagonal, which is now
∫
Ω cφi. Approximating

this with ci
∫
Ω φi allows a nice interpretation as a finite volume method, with

∫
Ω φi being the

area of the cell formed (for example) in the midpoint and centroid construction. However, the

better shaped cells used in the convection term don’t necessarily have thissame area; there is a

somewhat disconcerting inconsistency in this approach that demands further investigation.

5.3 Basis Construction

The only requirements for the prediction operator are that it be reasonably accurate yet sparse;

in principle, unstructured interpolation methods such as distance weighted averages of nearby

74

Figure 5.4: For simple linear interpolation, a triangular mesh of just the coarsenodes is first

constructed. For each fine node, the containing triangle is found, and thefine value is predicted

from its coarse corners by the plane passing through them.

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6
coarse coarse

coarse

coarse

fine

fine
fine

fine

fine

fine
fine

fine

fine

Locate the containing coarse triangle

0.2
0.4

0.6
0.2

0.4
0.6

0

0.2

0.4

0.6
coarse

coarse

fine

linear interpolation at fine node

coarse

points might be used. However, the effectiveness of linear and PDE-interpolation in 1D suggest

that a structured approach is the best route to follow.

Linear interpolation works by triangulating the set of coarse nodes and then constructing

the piecewise linear interpolant through those nodes. The predicted valueat a fine node is the

appropriate linear combination of the values at the three coarse corners of the coarse triangle

containing it: see figure 5.4. One of the benefits here is that the prediction operator has guaran-

teed sparsity: at most 3 nonzeros per fine node.

PDE-interpolation requires that a small mesh be constructed joining the fine node to nearby

coarse nodes, upon which the PDE is re-discretized. This local mesh doesn’t in principle require

any global mesh triangulating the coarse nodes. However, a natural approach to constructing the

local meshes would be to begin with a global coarse mesh and, with an incremental triangulation

algorithm, insert the fine node and take the new triangles (see figure 5.5). On the other hand,

particularly with stretched meshes, such an approach might connect the fine node to too many

coarse nodes, allowing problems not only for the sparsity of the predictionoperator but also for

its accuracy if those connections are inappropriate: see figure 5.6 for an example with Delaunay

75

Figure 5.5: Remeshing for PDE-interpolation: add the fine node to the coarse triangle mesh,

and take the newly created triangles as the local mesh on which the PDE is discretized.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fine node

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

retriangulation.

The solution I have implemented is limited retriangulation. Begin with the three coarse

nodes of the coarse triangle containing the fine node, just as with linear interpolation. One could

then simply connect the fine node to these three and discretize on the resultingtriangles, but

there are difficulties with degenerate triangles if the fine node happened to be on or very close to

an edge. (Although as mentioned before, it turns out that for Laplace’sequation, this simplifies

to linear interpolation.) Instead consider using the three additional coarse nodes from the edge-

neighbouring triangles; apply the edge-swapping test of the Delaunay orcoefficient-adaptive

optimization routine on each of the original coarse triangle’s edges, excepting boundary edges

of course. Then the prediction operator again has guaranteed sparsity, at most 6 nonzeros per

fine node.

Just as in 1D, Dirichlet nodes should be carried through without prediction. However, Neu-

mann boundary nodes pose somewhat of a problem. For linear prediction,some form of ex-

trapolation might be used; of course, extrapolation doesn’t really fit a homogeneous Neumann

boundary condition, where the solution should be flat in the normal direction. This wasn’t a big

issue in 1D, where there are at most two Neumann nodes, but for 2D a considerable proportion

76

Figure 5.6: Remeshing around a fine node for PDE-interpolation gone bad: before and after.

of the unknowns could be on Neumann boundaries. A slightly more reasonable choice is to

do 1D linear interpolation along the boundary curve, using the neighbouring coarse boundary

nodes.

For PDE-interpolation at Neumann boundary nodes, the only difficulty is figuring out the

local retriangulation now that the node might not be contained in any coarsetriangle, and that

even if it is, it shouldn’t be treated that way since in reality it is on the boundary. The obvious

solution is to begin with the two neighbouring coarse boundary nodes and possibly the third

node of their coarse triangle if the swapping test succeeds.

Since linear interpolation can be viewed as a special case of PDE-interpolation with the

Laplacian operator and very restricted retriangulation, but might be preferable to PDE-inter-

polation for some applications, a third possibility suggests itself: do the PDE-interpolation de-

scribed above with the Laplacian instead of the actual PDE. This simplifies the code somewhat

(no convection or reaction terms need to be discretized) and gives predictions that are applicable

to many different problems. With more coarse nodes involved, hopefully theaccuracy will be

improved over simple linear interpolation.

5.4 Automatic Mesh Coarsening

The remaining problem is to select the coarse nodes at each level. This is a challenging open

issue shared with unstructured multigrid; as will be seen in the test results, themethods pre-

77

sented here show promise but fall short of robustness. The simplest solution that sometimes

is adopted is to expect the user to provide the hierarchy of coarse meshes—possibly the result

of an adaptive refinement process, where the coarse mesh is created first and nodes are added

where higher resolution is needed. Unfortunately, even if such a hierarchy exists, there may

be problems such as geometric smoothing operations changing the location of nodes in finer

meshes or inadequacies in the quality of the hierarchy for a multi-resolution basis.

A more attractive approach is automatic mesh coarsening, where just giventhe finest mesh,

and possibly the matrix or PDE coefficients, the computer automatically constructs the hierar-

chy. The difficulty of course is making such a method robust over irregular meshes and varied

coefficients.

One class of methods, which I call top-down approaches, begin with the finest mesh, select

a minimal set of nodes to be coarse that still allow good prediction for the remaining nodes,

retriangulate the coarse nodes, and continue recursively. The simplestexample is that proposed

for multigrid in [12], where only the graph structure of the mesh is considered. Every second

boundary node is chosen to be coarse, and then a maximal independent set is chosen from the

interior nodes via a greedy algorithm on a breadth-first search from a randomly chosen root node

(see figure 5.7 for an example). The maximality guarantees that each fine node is adjacent to at

least one coarse node, hopefully allowing good prediction. On the other hand, the independence

of the coarse nodes guarantees that there won’t be too many of them, roughly a third or a quarter

of the nodes for mostly regular meshes.

Some simple but important refinements to this independent set algorithm are to make sure

that the fine nodes are contained inside the coarse boundary—otherwisethe interpolation will

be technically difficult and probably inaccurate no matter what—and to allow theuser to specify

a few important points, such as corners of the domain, that should be keptin all meshes. Note

that Dirichlet nodes may and should be eliminated from coarser meshes to reduce the size of

coarser meshes; they just shouldn’t be treated as fine nodes which canbe predicted.

One difficulty caused by ignoring the geometry and the PDE is that stretched meshes or

anisotropic problems may be handled incorrectly. If there is strong coupling inone direction

the coarsening should only take place along that direction, since predictinga fine node from

weakly coupled nodes will inevitably fail. This technique is known as “semi-coarsening”, and

has proven to be invaluable for multigrid. To correct this deficiency in the independent set al-

78

Figure 5.7: In top-down unweighted coarsening, every second boundary node along with a

maximal independent set of interior nodes form the coarse nodes. Theyare retriangulated, and

the process may continue recursively.

gorithm, I propose a simple modification: pre-process the graph of the mesh,deleting weak

couplings. Discretize the PDE on the mesh to get a matrixA, and to each directed edgei → j

of the graph, attach the weight|Aij | + |Aji|. This models the size of the PDE or adjoint inter-

polation coefficient when predictingj from i (recall that I use the same coarse node hierarchy

for the PDE and its adjoint). Then delete any directed edgesi → j with magnitude less than

half the maximum of any edge toj. Now, the independent set algorithm will only mark a node

as fine if there is a neighbouring coarse node giving a large PDE or adjoint interpolation coeffi-

cient, i.e. if there is a coarse neighbour that can be used for effective prediction. To ensure this

happens at the boundary as well, any boundary nodes with a strong connection to an interior

node should be kept coarse. Note that the discretization and subsequent dropping of small en-

tries is only used for constructing the hierarchy of meshes,not for interpolation. See figure 5.8

for an example.

For problems with anisotropic coefficients, the retriangulation of the coarsenodes (in order

to generate the next level) may run into difficulties if simple Delaunay triangulationis used.

Coefficient-adaptive triangulation potentially can do a better job, as will be seen in the testing,

79

Figure 5.8: In top-downweightedcoarsening, the maximal independent set of interior nodes

is chosen from a graph of the fine mesh with weak connections removed. Here the strong

connections are in bold; the second image shows the retriangulation of coarse nodes. Notice

how coarsening is done only in the direction orthogonal to the stretching: semi-coarsening.

0.655 0.66 0.665 0.67 0.675 0.68 0.685

−0.035

−0.03

−0.025

−0.02

−0.015

0.655 0.66 0.665 0.67 0.675 0.68 0.685

−0.035

−0.03

−0.025

−0.02

−0.015

serving to undo the anisotropies in the coefficients via cancelling anisotropies in the mesh.

Another class of coarsening algorithms, which I call the decremental approach, begin with

the finest mesh and select nodes one by one, deleting and retriangulating at each step. The node

picked at each step should be the one easiest to predict; after enough nodes have been deleted,

the mesh is saved as the next coarsest level, and the process continues.An example is of this

approach is given in [27]. The serial nature of these algorithms discouraged me however. If

a decremental algorithm were parallelized, say by eliminating many non-interacting nodes at

each step, the result would probably be a somewhat obfuscated top-down approach anyhow.

A third class of coarsening algorithms I call the bottom-up approach. A potential prob-

lem with the top-down approach is that the quality of the meshes may be degraded as they get

coarser. Seemingly inconsequential details like specifying that the greedyindependent set algo-

rithm should work on a breadth-first search actually can have a big effect. A kind of instability

may be apparent: mistakes made at one level (e.g. marking an essential nodeat some kind of

junction as fine) can be propagated down to lower levels. Another difficultyis when to stop:

automatically identifying when the coarsest possible mesh (that will allow useful accuracy) has

been reached. A more robust alternative would be to choose the coarsest mesh first, designed

to approximate the solution of the PDE as well as possible (and presumably in thisconstruc-

80

tion, there would be a way to identify how useful the mesh is). The intermediate meshes in the

hierarchy can then be filled in by adding nodes that will allow good predictionat finer levels.

One bottom-up method I have begun to investigate is to choose the coarsest nodes as a set

of p-centres in the graph of the fine mesh (possibly weighted in a way similar to that discussed

above), i.e. a set ofp nodes so that the graph distance between any other node and a coarsest

node is minimized. Unfortunately this is an NP-complete problem[19], but a heuristic algorithm

might prove effective. A plausible approach is to take an initial guess (e.g.the coarsest level

from a top-down algorithm) and iteratively improve it with small, greedy adjustments. Coupling

this with a multi-level acceleration, as is done with spectacular success for theNP-complete

problem of graph partitioning[24], might prove to be ideal.

5.5 Test Problems

The following two-dimensional test problems were chosen to be representative of the actual

problems faced in several different applications. They include irregular meshes, discontinuous

coefficients, anisotropy, and convection.

The following subsections give the details of the testing; section 5.6 summarizesthe results.

5.5.1 Testing Protocol

The methods listed in the tables are:

• ILUT(δ): the drop-tolerance form of ILU, a popular and generally high quality pre-

conditioner for PDE problems. See [32] for details. The ordering is Reverse Cuthill-

McKee[20, 11].

• AINV(δ): the standard basis inner-product AINV with drop toleranceδ, after nested

dissection ordering.

• Mr.Lin(δ): a multi-resolution basis with linear interpolation, based on unweighted coars-

ening. Outer-product AINV with drop toleranceδ is then used, with nested dissection

ordering modified for the multi-resolution basis.

81

• Mr.Lap(δ): a multi-resolution basis with Laplacian interpolation, based on unweighted

coarsening. Outer-product AINV with drop toleranceδ is then used, with modified nested

dissection ordering.

• Mr.PDE(δ): PDE-interpolation with unweighted coarsening; AINV with drop tolerance

δ after modified nested dissection ordering.

• +Mr.Lin(δ), +Mr.Lap(δ), +Mr.PDE(δ): the same as above, only with weighted coarsening

using Delaunay retriangulation.

• ++Mr.Lin(δ), ++Mr.Lap(δ), ++Mr.PDE(δ): the same as above, with weighted coarsening

using coefficient-adaptive retriangulation.

• ?Mr.Lin(δ), ?Mr.Lap(δ), ?Mr.PDE(δ): the same as above, with weighted coarsening us-

ing coefficient-adaptive retriangulation applied separately to each regionwith near con-

stant coefficients, then stitched up into a global triangulation.

For the multi-resolution bases, enough levels were allowed so that the coarsest level had about

100 nodes, except as noted in the problem commentary.

The drop tolerances were chosen to give roughly the same number of nonzeros in each

preconditioner on the coarsest mesh tested for a particular problem.

The symmetric definite problems were solved with CG and the preconditioned system

D−1/2ZT (M−TAM−1)ZD−1/2. BiCGStab withD−1WT (M−T
β AM−1

α)Z was used for the oth-

ers. Convergence was flagged when the 2-norm of the residual (with Dirichlet nodes rescaled

appropriately, as mentioned before) was decreased by a factor of10−6 beginning from an initial

guess of all zeros; if convergence wasn’t reached after 1000 iterations, the problem was marked

unsolved with an asterisk (*).

After each iteration count in the tables, the “work per unknown” is includedin parentheses:

the number of iterations times the number of nonzeros in the preconditioner (prediction and

update operators included), divided by the number of unknowns. This allows a somewhat fairer

comparison between different preconditioners and problems. However, it should be noted that

this may be somewhat misrepresentative, particularly as the matrix multiplies of approximate

inverses often can be better implemented than the triangular solves of ILU on high performance

82

hardware; as shown in [4] for example, even when the number of flops required by an ap-

proximate inverse is the same as ILU, the approximate inverse can still run significantly faster.

Unfortunately the code is still in the prototype stage, with some parts running interpreted in

MATLAB and others compiled in C or FORTRAN, so timing counts are not included here.

The triangulation routines for coarsening were adapted from TRIPACK[30].

5.5.2 Problem 1: Poisson equation on a uniform disc

This is Poisson’s equation on an unstructured but fairly uniform mesh of adisc (see figure 5.9.

To be precise, the PDE is:

∇2u = f

where

f(x, y) =

{
0 : x ≤ 0

−1 : x > 0

and all boundaries are homogeneous Dirichlet. The solution is plotted in figure 5.10.

For the iterations both the simple independent set coarsening and the weighted independent

set coarsening (figure 5.11) were used, stopping at around 100 nodes in the coarsest mesh. Table

5.1 gives the iteration results, with a plus sign before the bases with weighted independent set

coarsening. For this problem, PDE-interpolation and Laplacian interpolationare the same thing,

so only one is listed.

It is interesting to note that in 2D, the difference between the standard basisand the multi-

resolution basis isn’t nearly as dramatic. The basic reason for this is that the Green’s function

decays linearly in 1D but logarithmically in 2D, making a sparse approximate inverse in the

standard basis more feasible (since more entries are close to zero), while at the same time the

prediction operators become denser and less attractive. Furthermore, while in 1D the optimal

interpolation actually becomes exact giving the cyclic reduction direct method, optimal inter-

polation in 2D still falls short of exact—fine nodes are no longer independent of each other.

As the problem size increases, ILUT and standard basis AINV both slow down roughly

like O(n3/2). The multi-resolution bases don’t quite achieve grid-independent convergence, but

come very close. The weighted coarsening is superior to the unweighted, but for this problem

83

Figure 5.9: Unstructured but uniform triangulation of the disc.

Table 5.1:CG iterations for 2D problem 1 (Poisson equation) to reduce the residual norm by10−6, with

flops per unknown in parentheses; no convergence is marked by*. Each preconditioner’s drop tolerance

δ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally slower than the

flop count suggests. See page 81 for details.

Method(δ) n = 1195 n = 4939 n = 20011 n = 79531

ILUT(0.009) 13 (84) 24 (164) 47 (327) 92 (643)

AINV(0.08) 32 (200) 63 (417) 126 (851) 251 (1724)

Mr.Lin(0.12) 23 (147) 26 (177) 32 (222) 35 (240)

Mr.Lap(0.1) 18 (120) 21 (149) 23 (167) 26 (191)

+Mr.Lin(0.12) 22 (142) 26 (176) 29 (201) 37 (258)

+Mr.Lap(0.1) 19 (122) 20 (136) 21 (145) 25 (172)

84

Figure 5.10: Solution of 2D problem 1 (Poisson equation).

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

the difference isn’t terribly significant—the finest mesh and problem are basically isotropic, so

there isn’t much opportunity for semi-coarsening. Clearly the denser prediction operators in

Laplacian interpolation are more effective than extra nonzeros in the approximate inverse with

sparser linear interpolation, but both provide fast solutions.

5.5.3 Problem 2: heat equation on a uniform disc

This is just a step in an implicit solve of the heat equation on an unstructured but fairly uniform

mesh of a disc (see figure 5.9. To be precise, the PDE is:

∇2u− 0.1u = f

where

f(x, y) =

{
0 : x ≤ 0

−1 : x > 0

and all boundaries are Robin (steady state Neumann plus the reaction term from the time deriva-

tive). The solution is plotted in figure 5.12, and iteration results are given in table 5.2.

85

Figure 5.11: Coarsening of uniform disc (unweighted above, weighted below).

Table 5.2:CG iterations for 2D problem 2 (heat equation) to reduce the residual norm by10−6, with

flops per unknown in parentheses; no convergence is marked by*. Each preconditioner’s drop tolerance

δ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally slower than the

flop count suggests. See page 81 for details.

Method(δ) n = 1195 n = 4939 n = 20011 n = 79531

ILUT(0.01) 22 (151) 41 (284) 79 (549) 154 (1069)

AINV(0.085) 54 (375) 108 (733) 218 (1462) 434 (2898)

Mr.Lin(0.12) 36 (244) 40 (279) 46 (318) 53 (373)

Mr.Lap(0.1) 28 (195) 30 (216) 34 (250) 38 (278)

Mr.PDE(0.1) 28 (194) 30 (214) 34 (246) 38 (274)

+Mr.Lin(0.11) 33 (239) 38 (277) 42 (308) 49 (359)

+Mr.Lap(0.1) 27 (183) 29 (202) 31 (216) 35 (242)

+Mr.PDE(0.09) 26 (180) 28 (198) 30 (212) 34 (239)

86

Figure 5.12: Solution of 2D problem 2 (heat equation).

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

4.85

4.9

4.95

5

5.05

5.1

5.15

5.2

There are no surprises here. PDE-interpolation is slightly better than Laplacian interpola-

tion, but the PDE is so close to the Laplacian the difference isn’t remarkable.

5.5.4 Problem 3: heat equation on a stretched mesh

This problem is also an implicit step of solving the same heat equation with non-homogeneous

boundary conditions:

∇u · n̂ = sign(cos(20θ))

whereθ is the angle from the origin and the x-axis. The mesh is exponentially stretchedtowards

the boundary—beginning with the same uniform mesh as before, the new distance r̄ from the

origin is1− 25−r. See figures 5.13 and 5.14 for the mesh and the solution, and table 5.3 for the

iteration results.

Now the advantage of semi-coarsening begins to become apparent: see figure 5.15 for a

comparison of the coarser meshes in the hierarchies. The unweighted approach preserves the

87

Figure 5.13: Stretched mesh on disc.

88

Figure 5.14: Solution of 2D problem 3 (stretched mesh heat equation).

−1

0

1

−1

0

1
−4

−2

0

2

4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Table 5.3:CG iterations for 2D problem 3 (stretched mesh heat equation) to reduce the residual norm

by 10−6, with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s

drop toleranceδ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally

slower than the flop count suggests. See page 81 for details.

Method(δ) n = 1195 n = 4939 n = 20011 n = 79531

ILUT(0.009) 22 (149) 42 (293) 73 (513) 153 (1071)

AINV(0.085) 61 (411) 125 (865) 215 (1415) 432 (2806)

Mr.Lin(0.13) 51 (339) 65 (446) 78 (532) 84 (566)

Mr.Lap(0.12) 35 (232) 36 (250) 43 (298) 46 (319)

Mr.PDE(0.11) 35 (237) 34 (239) 40 (281) 44 (309)

+Mr.Lin(0.095) 29 (200) 32 (226) 38 (276) 42 (305)

+Mr.Lap(0.075) 21 (141) 23 (168) 25 (178) 28 (194)

+Mr.PDE(0.075) 21 (141) 23 (166) 25 (174) 28 (189)

89

Figure 5.15: Sample coarsening hierarchies for stretched disc mesh (unweighted method above,

weighted method below)

stretching in the coarser levels, causing near degenerate triangles by theboundary. On the

other hand, the weighted approach works to undo the anisotropy, leavingconsiderably better

conditioned meshes from which more accurate interpolation is possible.

5.5.5 Problem 4: Laplace’s equation around a simple airfoil

The next problem is Laplace’s equation∇2u = 0 around a simple airfoil. There are homo-

geneous Neumann boundary conditions around each section of the airfoil, and a farfield wind

coming slightly from below is approximated by imposing the Dirichlet conditionu = x+ 0.3y

on the exterior boundary. See figure 5.16 for a plot of the mesh, which is highly nonuniform but

not stretched, and figure 5.17 for the solution. The mesh hierarchies were constructed with the

trailing tip of the foil specified as a key point to keep coarse. Iteration results are given in table

5.4.

90

Figure 5.16: Mesh for 2D problem 4 (simple airfoil).

zoom 9x

zoom 230x zoom 340x

91

Figure 5.17: Solution of 2D problem 4.

0.48 0.5 0.52 0.54

0.47

0.48

0.49

0.5

0.51

0.52

Table 5.4:CG iterations for 2D problem 4 (simple airfoil) to reduce theresidual norm by10−6, with

flops per unknown in parentheses; no convergence is marked by*. Each preconditioner’s drop tolerance

δ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally slower than the

flop count suggests. See page 81 for details.

Method(δ) n = 6691

ILUT(0.01) 49 (314)

AINV(0.09) 144 (939)

Mr.Lin(0.12) 62 (402)

Mr.Lap(0.12) 35 (242)

+Mr.Lin(0.11) 36 (234)

+Mr.Lap(0.11) 30 (203)

92

Table 5.5:CG iterations for 2D problem 5 (multi-segment airfoil) to reduce the residual norm by10−6,

with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s drop

toleranceδ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally slower

than the flop count suggests. See page 81 for details.

Method(δ) n = 8607

ILUT(0.004) 43 (229)

AINV(0.08) 170 (908)

Mr.Lin(0.2) 189 (1023)

Mr.Lap(0.4) 291 (1666)

+Mr.Lin(0.12) 54 (299)

+Mr.Lap(0.25) 44 (247)

5.5.6 Problem 5: Laplace’s equation around a multi-segment airfoil

This time a multi-segment airfoil with stretched mesh is used, making the problem considerably

more difficult. Figure 5.18 shows the new mesh and figure 5.19 the solution. Alltrailing

tips were kept coarse, and to allow for the complex geometry, the coarsening was stopped at

about 200 nodes: adequately representing the geometry with fewer nodes appears too difficult.

Iteration results are given in table 5.5.

This is probably the best example of the importance of semi-coarsening. Theunweighted

independent set algorithm gives such a bad hierarchy that the standard basis is better, and

the normally more accurate Laplacian interpolation is actually worse than linear interpolation.

However, the weighted independent set method gives reasonable convergence—perhaps not as

good as one might hope, but probably there is still considerable room forimprovement in the

coarsening.

93

Figure 5.18: Mesh for 2D problem 5 (multi-segment airfoil).

−10 −5 0 5 10
−10

−5

0

5

10

0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.62 0.64 0.66 0.68 0.7 0.72

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

zoom 150x

0.67 0.672 0.674 0.676 0.678

−0.03

−0.028

−0.026

−0.024

−0.022

zoom 2000x

94

Figure 5.19: Solution of 2D problem 5.

5.5.7 Problem 6: discontinuous coefficient heat equation

We now try introducing discontinuous coefficients in the heat problem on theirregular mesh in

figure 5.20, generated with MATLAB’s PDETOOL. The PDE is:

∇ ·K∇u− 10−3u = f

where

K(x, y) =

{
1 : x ≤ 0

10−6 : x > 0

andf = −1 on the left disc but 0 elsewhere, with Neumann boundary conditions. The sharp

corners of the mesh, apart from the tiny step in the bottom straight section, are kept coarse.

For this problem, clearly linear interpolation is doing the wrong thing, and Laplacian inter-

polation is even worse. PDE-interpolation works very nicely still. The mesh is fairly isotropic,

so semi-coarsening only helps a little.

95

Figure 5.20: Mesh for problem 6 (discontinuous heat equation).

−1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

Figure 5.21: Solution of 2D problem 6.

−2
−1

0
1

2 −0.5

0

0.5

1

0

2

4

6

8

96

Table 5.6:CG iterations for 2D problem 6 (discontinuous heat equation) to reduce the residual norm

by 10−6, with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s

drop toleranceδ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally

slower than the flop count suggests. See page 81 for details.

Method(δ) n = 1918 n = 7420

ILUT(0.009) 25 (145) 50 (310)

AINV(0.08) 66 (404) 140 (814)

Mr.Lin(0.15) 287 (1964) *

Mr.Lap(0.3) 522 (3247) *

Mr.PDE(0.11) 31 (202) 34 (225)

+Mr.Lin(0.2) 712 (4024) *

+Mr.Lap(0.4) * *

+Mr.PDE(0.11) 27 (178) 31 (206)

5.5.8 Problem 7: simple anisotropy

This is a rather simple constant coefficient problem on a uniform square mesh, but the diffusion

tensor coefficient is highly anisotropic. The PDE is:

1000ux + uy =
1

20
sin(10πy)

with homogeneous Neumann boundaries fory > 0.25 and the Dirichlet boundary condition

u = x for y ≤ 0.25. See figure 5.22 for the solution.

For the multi-resolution bases, the corners of the mesh are kept coarse. Asshown in fig-

ures 5.23 unweighted coarsening, the semi-coarsening with Delaunay retriangulation, and semi-

coarsening with coefficient-adaptive retriangulation are tested—this last ismarked with two

plusses in front of the method in table 5.22. Note that while semi-coarsening withDelaunay re-

triangulation begins with the correct choices of coarse nodes, on the boundary the out-of-phase

placement of coarse nodes causes the Delaunay algorithm to generate inappropriate triangles.

The mistake is amplified in coarser levels, a fundamental problem with the top-down approach.

The unweighted coarsening does a terrible job, while the semi-coarsening iseffective. How-

ever, coefficient-adaptive retriangulation is much more effective—it appears not just by a con-

97

Figure 5.22: Solution of 2D problem 7 (simple anisotropy).

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

Table 5.7:CG iterations for 2D problem 7 (simple anisotropy) to reducethe residual norm by10−6,

with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s drop

toleranceδ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally slower

than the flop count suggests. See page 81 for details.

Method(δ) n = 900 n = 3600 n = 14400

ILUT(3.2 · 10−4) 21 (128) 38 (224) 65 (380)

AINV(0.01) 31 (167) 59 (396) 114 (828)

Mr.Lin(0.3) 488 (2623) 605 (3399) 592 (3422)

Mr.Lap(0.45) 433 (2387) 541 (3230) 525 (3243)

Mr.PDE(0.4) 314 (1695) 340 (1993) 354 (2146)

+Mr.Lin(0.01) 23 (144) 47 (366) 81 (656)

+Mr.Lap(0.55) 488 (2553) 610 (3505) 752 (4451)

+Mr.PDE(0.008) 19 (118) 35 (269) 59 (460)

++Mr.Lin(0.01) 15 (79) 21 (122) 32 (195)

++Mr.Lap(0.55) 458 (2400) 770 (4408) *

++Mr.PDE(0.008) 13 (65) 18 (100) 24 (137)

98

Figure 5.23: Coarsening for simple anisotropy (in order from top: unweighted, weighted with

Delaunay retriangulation, weighted with coefficient-adaptive retriangulation)

99

Figure 5.24: Solution of 2D problem 8 (ANISO).

0

0.5

1

0

0.5

1
0

0.5

1

stant factor, but actually improving the scalability. However, grid-independent convergence is

still not achieved. As always, PDE-interpolation is the best method (thoughfails with an in-

appropriate hierarchy). It is interesting to note that for semi-coarsening, linear interpolation is

better than Laplacian interpolation here: though both make the mistake of givingequal weight

to weakly coupled nodes in they direction, the Laplacian prediction confounds the mistake by

including more weakly couples nodes.

5.5.9 Problem 8: ANISO

The ANISO problem[17] is a highly anisotropic discontinuous coefficient problem. It splits the

unit square into quarters, the south-west and north-east quarters satisfying 1000ux + uy = f

and the other two satisfyingux + 1000uy = f . The right-hand side and boundary conditions

are the same as in problem 7. See figure 5.24 for the solution.

Unweighted coarsening is useless here too. However, the discontinuities confuse the edge-

swapping routine so much that coefficient-adaptive retriangulation is evenworse—see figure

5.25 for an example of what goes wrong. However, adaptively retriangulating each quarter

100

Figure 5.25: Coefficient-adaptive triangulation gone wrong.

separately works well, as can be seen in table 5.8 where this method is labelled with stars.

As expected for an anisotropic problem, the Laplacian interpolation is terrible; PDE-interp-

olation is best, with linear close behind. However, even these work very poorly on the Delaunay

retriangulated coarsened hierarchy; the advantage over the standardbasis is only realized with

the more sophisticated hierarchy. This underscores the over-riding important of good coarsen-

ing: it is the most sensitive and difficult part of the multi-resolution scheme.

5.5.10 Problem 9: a model reactor

The final self-adjoint problem is an indefinite problem that loosely models neutron diffusion

and reaction. There are 21 circular rods of radius 0.2 arranged neatlyin a disc of radius 0.9,

with an outer shield going out to radius 1. The PDE is:

∇ ·K∇u+ cu = f

101

Table 5.8:CG iterations for 2D problem 8 (ANISO) to reduce the residualnorm by10−6, with flops

per unknown in parentheses; no convergence is marked by *. Each preconditioner’s drop toleranceδ is

chosen to give roughly the same number of nonzeros. Note thatILUT is generally slower than the flop

count suggests. See page 81 for details.

Method(δ) n = 900 n = 3600 n = 14400

ILUT(3.7 · 10−4) 21 (110) 47 (256) 82 (429)

AINV(0.006) 39 (207) 66 (459) 113 (950)

+Mr.Lin(0.15) 133 (706) 336 (2098) 410 (2158)

+Mr.Lap(0.45) 399 (2096) 415 (2381) 486 (2894)

+Mr.PDE(0.15) 126 (656) 306 (1716) 341 (1784)

?Mr.Lin(0.01) 14 (77) 16 (89) 20 (118)

?Mr.Lap(0.4) 333 (1800) 382 (2217) 428 (2583)

?Mr.PDE(0.01) 13 (69) 14 (76) 17 (94)

whereK = 1 andc = 0.3 in the rods,K = 0.005 andc = −0.2 in the disc, andK = 10−6

andc = 0 in the outer shield. The right-hand sidef is−1 inside the reactor and0 on the shield.

All boundary nodes are homogeneous Neumann. See figure 5.26 for thesolution.

The multi-resolution basis convergence is disappointing. PDE-interpolation still provides

a better solution than the standard basis, but it’s still rather slow. The discontinuities and lo-

cally indefinite regions in the rods cause catastrophic difficulties for the linear and Laplacian

interpolation.

Surprisingly, the semi-coarsening is less effective than the unweighted coarsening, a further

indication that this might be the real issue in unstructured multi-resolution methods, and that

either the top-down approach needs to be made much more sophisticated or a different approach

should be adopted.

5.5.11 Problem 10: simple convection

This is a convection-diffusion equation on a100× 100 square grid:

0.01∇2u−∇ · (bu) = f

102

Figure 5.26: Solution of 2D problem 9 (model reactor).

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

500

600

700

800

900

1000

1100

1200

Table 5.9:CG iterations for 2D problem 9 (model reactor) to reduce the residual norm by10−6, with

flops per unknown in parentheses; no convergence is marked by*. Each preconditioner’s drop tolerance

δ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally slower than the

flop count suggests. See page 81 for details.

Method(δ) n = 4195 n = 16613 n = 66121

ILUT(0.009) 78 (546) 132 (963) 256 (1840)

AINV(0.08) 181 (1260) 355 (2473) 744 (5136)

Mr.Lin(0.15) * * *

Mr.Lap(0.3) * * *

Mr.PDE(0.11) 89 (666) 141 (1031) 132 (945)

+Mr.Lin(0.2) * * *

+Mr.Lap(0.4) * * *

+Mr.PDE(0.11) 112 (860) 154 (1143) 227 (1621)

103

Figure 5.27: Solutions to 2D problem 10 (simple convection)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

where

b(x, y) = (ex, 0)

with Dirichlet conditions at the sides of the square and Neumann conditions onthe top and

bottom:

u(0, y) = sign(cos(10πy))

u(1, y) = 0

uy(x, 0) = uy(x, 1) = 0

A slightly more difficult problem arises whenb is taken to vary withy:

b =
(
ex(1− (2y − 1)2), 0

)

Figure 5.27 shows the solutions, and table 5.10 has the results for the two problems.

The somewhat mixed results are further evidence that though PDE-interpolation works well,

coarsening needs further research for robustness; the linear and Laplacian interpolation behave

inconsistently, probably indicating some subtle troubles.

104

Table 5.10:Bi-CGstab iterations for 2D problem 10 (simple convection)to reduce the residual norm

by 10−6, with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s

drop toleranceδ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally

slower than the flop count suggests. See page 81 for details.

Method(δ) b1 = ex b1 = ex(1− (2y − 1)2)

ILUT(0.015) 17 (154) 29 (260)

AINV(0.1) 75 (777) *

Mr.Lin(0.2) * 69 (584)

Mr.Lap(0.2) 91 (740) 191 (1504)

Mr.PDE(0.25) 71 (796) 31 (340)

++Mr.Lin(0.13) 93 (1020) 31 (342)

++Mr.Lap(0.12) * 65 (627)

++Mr.PDE(0.12) 17 (216) 23 (273)

5.5.12 Problem 11: circular convection

This is a rather more difficult problem, as the streamlines are not straight linesbut rather closed

circles. The PDE is on the unit disc:

∇2u−∇ · (bu)− 10−2u = f

where

b(x, y) = (−1000y, 1000x)

and

f(x, y) =

{
−1 : x ≤ 0

0 : x > 0

with the natural Robin boundary conditions. This is essentially one time-step in asolid-body

rotation. The discretization is on the uniform triangulation of the disc from earlier problems,

with solution shown in figure 5.28

Like many anisotropic problems, this should be easier since it essentially consists of a set of

very weakly coupled one dimensional problems. The difficulty is that automaticmethods have

105

Figure 5.28: Solution to 2D problem 11 (circular convection)

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

49.9998

50

50.0002

50.0004

50.0006

50.0008

50.001

50.0012

106

Table 5.11:Bi-CGstab iterations for 2D problem 11 (circular convection) to reduce the residual norm

by 10−6, with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s

drop toleranceδ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally

slower than the flop count suggests. See page 81 for details.

Method(δ) n = 1195 n = 4939 n = 19627 n = 78763

ILUT(0.01) 33 (360) 53 (604) 111 (1229) *

AINV(0.12) 77 (833) 275 (2694) 755 (6532) *

Mr.Lin(0.23) 103 (1103) 933 (9620) 255 (2150) 691 (4896)

Mr.PDE(0.32) 73 (750) 135 (1411) 297 (2970) 879 (8554)

+Mr.Lin(0.18) 69 (709) 157 (1402) 389 (3216) *

+Mr.PDE(0.23) 71 (739) 177 (1774) 497 (4900) *

to detect this; if they treat the problem incorrectly very bad things can happen. The additional

twist in this problem is that the one-dimensional problems are periodic, since the streamlines

are closed; this means for example thatA is far from triangular, making life more difficult for

factored preconditioners.

The results for the multi-resolution approximate inverse are disappointing. I cut back the

number of coarse levels to a maximum of two to improve convergence, and whilethis is still

better than the standard basis, it loses scalability. Allowing more levels slows convergence. The

problem is that the coarsening and interpolation should happen only along the stream-lines; at

low resolutions the stream-lines are very curved so retriangulation is boundto do the wrong

thing. A convection-aware coefficient-adaptive triangulation might do the job, but I have left

this for future work.

Table 5.11 gives the iteration results, for unweighted and weighted coarsening (with Delau-

nay retriangulation). The Laplacian interpolation basis is completely unsuited tothis problem,

and thus is not included. It is clear that the coarsening is a major difficulty—counter-intuitively,

the PDE-interpolation works better with the unweighted coarsening than with theweighted

scheme.

107

5.5.13 Problem 12: barrier option pricing

The final problem comes from computational finance, a two-asset barrier option pricing problem

in [29]. The PDE, in conservative form1, is:

∂u

∂τ
= ∇ · (K∇u− bu) + cu

with coefficients given by:

K(x, y) =
1

2

(
x2σ2

1 xyρσ1σ2

xyρσ1σ2 y2σ2
2

)

b(x, y) =

(
−x(r − σ2

1 − ρσ1σ2/2)

−y(r − σ2
2 − ρσ1σ2/2)

)

c = −3r + σ2
1 + σ2

2 + ρσ1σ2

Hereτ = −t is backwards time,x andy are the prices of the underlying assets, andσ1, σ2,

ρ, andr are constants describing the stochastic evolution of prices. In this example,σ1 = 0.4,

σ2 = 0.2, r = 0.05, andρ = −0.5. The payoff function (initial condition) is a basket call,

u(x, y, τ = 0) = max(1
2(x + y) − 100, 0), except for this example I assume the barrier is

applied immediately before, settingu = 0 outside of a small ellipse. The boundary conditions

are Dirichlet,u→ x/2 asx→∞ andu→ y/2 asy →∞.

The domain is the square[0, 200]×[0, 200], with an unstructured mesh that is refined around

the boundary of the barrier—see figure 5.29. Iteration counts for an initial fully implicit timestep

of size ∆τ = 0.01 years (a fairly long step of about half a week) are given in table 5.12,

and for a timestep of size∆τ = 0.0001 years (a more typical step of roughly 50 minutes) in

table 5.13, both with the unweighted coarsening and the weighted coarseningwith Delaunay

retriangulation.

For the long timestep, there is considerable correlation between distant nodes. This makes

the multi-resolution method more effective than the standard basis, though clearly only with

PDE-interpolation—linear or Laplacian interpolation fail. For the largest problem, the superior

scaling of PDE interpolation beats even ILUT in flop count.

1Although the original equation is non-conservative, and perhaps should be treated as such, it is simpler for the

current discretization code to deal with the conservative form

108

Figure 5.29: Mesh for 2D problem 12 (option pricing)

zoom 7x

Table 5.12:Bi-CGstab iterations for 2D problem 12 (option pricing) with long timestep to reduce the

residual norm by10−6, with flops per unknown in parentheses; no convergence is marked by *. Each

preconditioner’s drop toleranceδ is chosen to give roughly the same number of nonzeros. Note that

ILUT is generally slower than the flop count suggests. See page 81 for details.

Method(δ) n = 3495 n = 13905 n = 55473

ILUT(0.01) 11 (112) 23 (247) 37 (398)

AINV(0.08) 25 (256) 55 (625) 85 (1013)

Mr.Lin(0.14) 89 (877) 157 (1563) *

Mr.Lap(0.15) 129 (1276) 331 (3287) *

Mr.PDE(0.35) 31 (314) 33 (344) 37 (390)

+Mr.Lin(0.13) 165 (1644) 217 (2232) *

+Mr.Lap(0.2) 141 (1408) 481 (3795) *

+Mr.PDE(0.24) 21 (210) 29 (296) 29 (296)

109

Table 5.13: Bi-CGstab iterations for 2D problem 12 (option pricing) with short timestep to

reduce the residual norm by10−6, with flops per unknown in parentheses; no convergence is

marked by *. Each preconditioner’s drop toleranceδ is chosen to give roughly the same number

of nonzeros. Note that ILUT is generally slower than the flop count suggests. See page 81 for

details.

Method(δ) n = 3495 n = 13905 n = 55473

ILUT(0.0002) 5 (50) 5 (71) 5 (101)

AINV(0.003) 5 (50) 5 (93) 5 (177)

Mr.Lin(0.25) 583 (6002) * *

Mr.Lap(0.3) 585 (5992) * *

Mr.PDE(0.28) 15 (145) 15 (153) 19 (201)

+Mr.Lin(0.28) 557 (5606) * *

+Mr.Lap(0.33) * * *

+Mr.PDE(0.2) 11 (106) 13 (130) 15 (153)

However, for the short timestep the matrix is very diagonally dominant; there is littlecor-

relation for the multi-resolution basis to exploit, yet fast decay in the Green’sfunction to the

benefit of the standard basis. Even with PDE-interpolation, the basis transforms are essentially

a waste of storage that could be better spent on the approximate inverse, although the flop counts

show that the multi-resolution method is scaling better and might be more effectivefor larger

problems.

5.6 Summary

Every test problem was successfully solved with PDE-interpolation and appropriate coarsening

in the multi-resolution basis: no other method showed this level of robustness.Furthermore,

the multi-resolution method almost always outperformed the standard methods, at least on the

largest meshes: their greater scalability is apparent, often running an order of magnitude or

more faster. (The exceptions are the strongly diagonally dominant matrices arising from the

short timesteps in problem 12.)

110

It’s true the standard methods were more competitive in 2D than in 1D, with ILUT somtimes

giving the best flop counts for smaller meshes. However, as mentioned before this performance

measure should be taken with a grain of salt since applying the ILUT preconditioner is often

more expensive than the approximate inverses, particularly on parallel machines. The fairer

comparison with standard AINV always came out in favour of the multi-resolution methods,

again apart from problem 12.

The downside of the multi-resolution methods is their sensitivity with respect to theauto-

matic mesh coarsening. Particularly for the anisotropic problems, appropriate semi-coarsening

with coefficient-adaptive triangulation (which often required the domain to befirst partitioned

into regions of roughly constant coefficients for robustness) is crucial. However, these problems

were solved with ease once a good hierarchy was found. The only reallytroubling issue was

with the nontrivial convection in problem 11, which featured closed and curved streamlines.

The current automatic mesh coarsening algorithms could not find a good hierarchy, so even

though standard methods did worse, the multi-resolution results were still far from optimal.

111

Chapter 6

Conclusions and Future Work

I have presented a new preconditioner for elliptic PDE’s, based on the idea of using second gen-

eration wavelets to compress the inverse for approximation with sparse matrices. This resolves

the inherent scalability problem of existing approximate inverses: in the standard basis, sparsity

and quality become increasingly compatible as the problem size grows. Along the way I have

pointed out where algorithms are naturally parallel. The test results show that for many fairly

difficult problems the method scales well, much better than the standard basis approximate

inverse, and even for small problems often gives significantly better convergence.

The key points brought home are:

• Wavelets are a natural choice for approximate inverses, but only when moments arenot

preserved with an update step.

• Interpolation should be chosen carefully with knowledge of the problem; in general, PDE-

interpolation is essential for robust convergence. Methods that are higher order than the

PDE are useless.

• Good automatic coarsening is crucial, perhaps more important than the choiceof inter-

polation. Simple approaches are bound to fail for tough problems with anisotropy or

discontinuities; finding a robust algorithm, especially for convection problems, is still an

open problem.

112

Along the way, several interesting questions have been raised. I will briefly summarize them

here.

The parallels to multigrid and other methods would make a comparative study veryuseful.

In particular, the theoretical machinery used for analyzing the convergence of multigrid proba-

bly can be put to good use here, and similarly the new perspective of compressing the discrete

Green’s function might lead to new results for other multi-resolution techniques. On a prac-

tical level, the multi-resolution components of the software are compatible with node-nested

multigrid, so code may be re-used (and the two techniques could be compareddirectly).

Developing an algebraic multi-resolution approximate inverse where the prediction opera-

tors are derived directly from the matrix might make for simpler and more robust code—the

issue of retriangulation in coarsening might be avoided in particular.

Adapting approximate inverse algorithms other than AINV (e.g. Chow and Saad’s MR

method) may be very useful. In particular, other approaches have more natural parallelism

in the construction phase, though perhaps not showing as good convergence rates.

The particle model that served as an intuition for harmonic weighting of the diffusion term

deserves more thought—perhaps a discretization based directly on the underlying statistical

mechanics rather than via the continuum approximation of the PDE will give a rigourous and

powerful solution to the inconsistencies andad hocnature of the current schemes. Coefficient

homogenization for coarsening might also fall naturally out of this research.

Coefficient-adaptive triangulation was used to great effect in a controlled setting, but the

present implementation’s instability for variable coefficients is clear, as well as the difficulties

of convection problems.

The bottom-up approach in automatic unstructured mesh coarsening needs tobe considered

along with improvements to the weighted top-down approach suggested here.Theoretical work

on the best possible node placement for the coarsest mesh could cross-fertilize with adaptive

meshing research. This also leads the way to the question of what is the coarsest possibleuseful

representation of a given problem.

Probably the most telling weakness with the method as it stands is the restriction to scalar

problems. Most real-life problems involve systems of PDE’s, often with some variables fol-

lowing an elliptic or parabolic nature and others with a hyperbolic character (so called mixed

113

systems). From an abstract viewpoint, the general scheme of the multi-resolution approximate

inverse appears to apply here, but the problem of good interpolation may be challenging, to say

nothing of coefficient dependent coarsening.

Another obvious direction is in implementing the method for higher order PDE’s ordis-

cretizations. (This arises in structural analysis, flux limiter methods for convection problems,

etc.) There doesn’t appear to be any great difficulty in doing this, but interpolation again could

pose problems, especially determining the coarse nodes used to predict a fine node.

A third and perhaps most challenging direction is the implementation for 3D problems.

Here Green’s functions decay even faster (reducing the need for multi-resolution compression),

interpolation operators are necessarily denser and more expensive, and unstructured meshing

is frought with technical difficulties to name only a few problems. Although similarmulti-

resolution methods can be proven to give “optimal”O(n) convergence even for 3D problems,

the constant factor obscured by theO notation is often so large that other preconditioners are

more effective for the problem sizes of interest today. It may be that though multi-resolution

bases have a role to play, they will only be useful for really big problems—e.g. perhaps coars-

ening should be stopped at hundreds of thousands of nodes. Of course, some 3D problems have

anisotropy or strong convection that essentially reduce them to sets of weakly coupled lower di-

mensional problems, albeit potentially with very complicated geometry; multi-resolution meth-

ods appear to have more potential here.

Finally, although theoretically the algorithms presented in this thesis should be able to run

effectively in parallel, this is a far cry from a working parallel implementation.The creation of

a truly scalable, parallel high performance multi-resolution approximate inverse will be a real

test of the method.

114

Bibliography
[1] R. Abgrall and A. Harten,Multiresolution representation in unstructured meshes, SIAM

J. Numer. Anal., 35 (1998), no. 3, pp. 2128–2146.

[2] R. Alcouffe, A. Brandt, J. Dendy, and J. Painter,The multigrid method for the diffusion

equation with strongly discontinuous coefficients, SIAM J. Sci. Statist. Comput., 2 (1981),

no. 4, pp. 430–454.

[3] T. Barth,Numerical aspects of computing viscous high Reynolds number flows onunstruc-

tured meshes, technical report AIAA 91-0721, Reno, 1991.

[4] M. Benzi and M. T̊uma,A sparse approximate inverse preconditioner for nonsymmetric

linear systems, SIAM J. of Sci. Comput., 19 (1998), no. 3, pp. 968-994.

[5] M. Benzi and M. T̊uma,A comparative study of sparse approximate inverse precondition-

ers, to appear in Appl. Numer. Math., 30 (1999).

[6] M. Benzi and M. T̊uma,Orderings for factorized sparse approximate inverse precondi-

tioners. To appear in SIAM J. of Sci. Comput. (Revised version of Los Alamos National

Laboratory Technical Report LA-UR-98-2175, May 1998)

[7] M. Benzi, J. Marin, and M. T̊uma,A two-level parallel preconditioner based on sparse

approximate inverses, in D. Kincaid et. al., eds., Iterative Methods in Scientific Computa-

tion II, IMACS Series in Computational and Applied Mathematics, IMACS, NJ, 1999 (in

press).

[8] C. Brand,An incomplete-factorization preconditioning using repeated red-black ordering,

Numer. Math., 61 (1992), no. 4, pp. 433–454.

[9] R. Bridson, D. Pierce, and W.-P. Tang,Refined algorithms for a factored approximate

inverse. In preparation.

115

[10] R. Bridson and W.-P. Tang,Ordering, Anisotropy and Factored Sparse Approximate In-

verses, to be published in SIAM J. Sci. Comput. (1999)

[11] R. Bridson and W.-P. Tang,A diagnosis of some ILU orderings, submitted to SIAM J. Sci.

Comput.

[12] T. Chan and B. Smith,Domain decomposition and multigrid algorithms for elliptic prob-

lems on unstructured meshes, Contemporary Math., 180 (1994), pp. 175–189.

[13] T. Chan, B. Smith, and W. L. Wan,An energy-minimizing interpolation for robust multi-

grid methods, technical report CAM98-6, Dept. of Math., University of California atLos

Angeles, 1998.

[14] T. Chan, W.-P. Tang, and W. L. Wan,Wavelet sparse approximate inverse preconditioners,

BIT, 37 (3), 1997.

[15] E. Chow and Y. Saad,Approximate inverse techniques for general sparse matrices, Col-

orado Conference on Iterative Methods, April 5–9, 1994.

[16] E. Chow and Y. Saad,Approximate inverse preconditioners via sparse-sparse iterations,

SIAM J. Sci. Comput., 19 (3), May 1998.

[17] S. Clift, H. Simon, and W.-P. Tang,Spectral ordering techniques for incomplete LU pre-

conditioners for CG methods, manuscript.

[18] I. Daubechies,Ten lectures on wavelets, CBMS-NSF Series Appl. Math., SIAM: Philadel-

phia, 1991.

[19] M. Garey and D. Johnson,Computers and intractability: a guide to the theory of NP-

completeness, W. H. Freeman: New York, 1979.

[20] A. George and J. Liu,Computer Solution of Large Sparse Positive Definite Systems.

Prentice-Hall, Englewood Cliffs, NJ, 1981.

[21] J. Gilbert, Predicting structure in sparse matrix computations, SIAM J. Matrix Anal.

Appl., 15 (1994), pp. 62–79.

[22] M. Grote and T. Huckle,Parallel preconditioning with sparse approximate inverses, SIAM

J. Sci. Comput., 18 (1997), no. 3, pp. 838–853.

116

[23] W. Hackbusch,Multi-grid methods and applications, Springer-Verlag: Berlin, 1985.

[24] G. Karypis and V. Kumar,A fast and high quality multilevel scheme for partitioning irreg-

ular graphs, SIAM J. Sci. Comput., 20 (1999), no. 1, pp. 359–392 (electronic).

[25] L. Kolotilina and A. Yeremin,Factorized sparse approximate inverse preconditionings I.

theory, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 45–58.

[26] J. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl.,

11 (1990), pp. 134–172.

[27] E. Morano, D. Mavriplis and V. Venkatakrishnan,Coarsening strategies for unstructured

multigrid techniques with applications to anisotropic problems, SIAM J. Sci. Comput., 20

(1998), no. 2, pp. 393–415.

[28] E. Ong,Hierarchical basis preconditioners for second order elliptic problems in three

dimensions, PhD. thesis, University of Washington, Seattle, 1989.

[29] P. Forsyth, D. Pooley, B. Simpson, and K. Vetzal,Pricing two asset barrier options with

unstructured meshes, preprint, University of Waterloo, Waterloo, 1999.

[30] R. Renka,TRIPACK, Algorithm 751, ACM Collected Algorithms, published in Transac-

tions on Mathematical Software, 22 (1996), no. 1, pp. 1–8.

[31] J. Ruge and K. Stuben,Algebraic multigrid, in Multigrid methods, ed. S. McCormick,

Frontiers in Applied Mathematics, 3 SIAM: Philadelphia, 1987.

[32] Y. Saad,Iterative methods for sparse linear systems, PWS Publishing Co.: Boston, 1996.

[33] Y. Saad and J. Zhang,BILUM: block versions of multi-elimination and multi-level ILU

preconditioner for general sparse linear systems, to appear in SIAM J. Sci. Comput.

[34] W. Sweldens,The lifting scheme: a construction of second generation wavelets, SIAM J.

Math. Anal., 29 (1997), no. 2, pp. 511-546.

[35] W.-P. Tang and W. L. Wan,Sparse approximate inverse smoother for multigrid, technical

report CAM 98-18, Dept. of Math., University of California at Los Angeles, 1998.

117

