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Abstract. We consider ordering techniques to improve the performance of factored sparse
approximate inverse preconditioners, concentrating on the AINV technique of M. Benzi and M.
Tůma. Several practical existing unweighted orderings are considered along with a new algorithm,
Minimum Inverse Penalty (MIP), that we propose. We show how good orderings such as these
can improve the speed of preconditioner computation dramatically, and also demonstrate a fast and
fairly reliable way of testing how good an ordering is in this respect. Our test results also show that
these orderings generally improve convergence of Krylov subspace solvers, but may have difficulties
particularly for anisotropic problems. We then argue that weighted orderings, which take into account
the numerical values in the matrix, will be necessary for such systems. After developing a simple
heuristic for dealing with anisotropy we propose several practical algorithms to implement it. While
these show promise, we conclude a better heuristic is required for robustness.
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1. Introduction. Consider solving the system of linear equations:

Ax = b

where A is a sparse n×n matrix. Depending on the size of A and the nature of the
computing environment an iterative method, with some form of preconditioning to
speed convergence, is a popular choice. Approximate inverse preconditioners, whose
application requires only (easily parallelized) matrix-vector multiplication, are of par-
ticular interest today. Several methods of constructing approximate inverses have been
proposed (e.g. [2, 3, 9, 20, 22, 24]), falling into two categories: those that directly
form an approximation to A−1, and those that form approximations to the inverses of
the matrix’s LU factors. This second category currently shows more promise than the
first, for three reasons. First, it is easy to ensure that the factored preconditioner is
non-singular, simply by making sure both factors have nonzero diagonals. Second, the
factorization appears to allow more information per nonzero to be stored, improving
convergence [4, 8]. Third, the set-up costs for creating these preconditioners can often
be much less [4].

However, unlike A−1 itself, the inverse LU factors are critically dependent on the
ordering of the rows and columns—indeed, they will not exist in general for some
orderings. Even in the case of a SPD matrix, direct methods have shown how im-
portant ordering can be. Thus any factored approximate inverse scheme must handle
ordering with thought. In particular, for an effective preconditioner an ordering that
minimizes the size of the “dropped” entries is needed—decreasing the error between
the approximate inverse factors and the true ones (see [14] for a discussion of this in
the context of ILU).

In this paper we focus our attention on the AINV algorithm[3], which, via implicit
Gaussian elimination with small-element dropping, constructs a factored approximate
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inverse:

A−1 ≈ ZD−1WT

where Z and W are unit upper triangular, and D−1 is diagonal. However, the purely
structural results presented here (in section 2) apply equally to other factored ap-
proximate inverse schemes. Whether the numerical results carry over is still to be
determined. For example, conflicting evidence has been presented in [5] and [16]
about the effect on FSAI[22], which perhaps will only be resolved when the issue of
sparsity pattern selection for FSAI has been settled.

Some preliminary work in studying the effect of ordering on the performance of
AINV has shown promising results[3] (a more recent work by the same authors is [5]).
We carry this research forward in sections 2–3, realizing significant improvements in
speed of preconditioner computation and observing some beneficial effects on conver-
gence, but noting that structural information alone is not always enough. We then
turn our attention to anisotropic problems. For the ILU class of preconditioners it has
been determined that orderings which take the numerical values of the matrix into
account are useful—even necessary (e.g. [10, 11, 12, 14]). Sections 4–6 try to answer
the question of whether the same thing holds for factored approximate inverses. The
appendix contains the details of our test results.

2. Unweighted Orderings. Intuitively, the smaller the size of the dropped
portion from the true inverse factors, the better the approximate inverse will be.
We will for now assume that the magnitudes of the inverse factors’ nonzeros are
distributed roughly the same way under different orderings. (Our experience shows
this is a fairly good assumption for typical isotropic problems, but as we shall see
later, this breaks down for anisotropic matrices in particular) Then we can consider
the simpler problem of reducing the number of dropped nonzeros, instead of their size.
Of course, for sparsity we also want to retain as few nonzeros as possible; thus we
really want to reduce the number of nonzeros in the exact inverse factors—a quantity
we call inverse factor fill, or IF fill.

Definition 2.1. Let A be a square matrix with a triangular factorization A =
LU . The IF fill of A is defined to be the total number of nonzeros in the inverses of
L and U, assuming no cancellation in the forming of those inverses.

For simplicity we restrict our discussion to the symmetric positive-definite case,
first examining IF fill and then considering several existing ordering algorithms that
may be of help. We finish the section by proposing a new ordering scheme, which we
call MIP. The application to the unsymmetric case is straightforward.

The following discussion makes use of some concepts from graph theory. The
graph of an n × n matrix A is a directed graph on n nodes labelled 1, . . . , n, with
an arc i → j if and only if Aij 6= 0. A directed path, or dipath, is an ordered set
〈u1, u2, . . . , uk〉 such that the arcs u1 → u2, . . . , uk−1 → uk all exist—often this is
written as u1 → · · · → uk. See chapter 3 of [17], for example, for further explanation.

From Gilbert[19] and Liu[23], we have the following graph theoretic characteriza-
tion of the structure of the inverse Cholesky factor:

Theorem 2.2. Let A be a SPD matrix with Cholesky factor L. Then assuming
no cancellation the structure of Z = L−T corresponds to the transitive closure1 of the

1The transitive closure of a directed graph G is a graph G∗ on the same vertices with an arc
u → v for any vertices u and v that were connected by a dipath u → · · · → v in G.
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graph of LT , that is, for i < j we have Zij 6= 0 if and only if there is a dipath from
i to j in the graph of LT . Furthermore, this is the same structure as given by the
transitive closure of the elimination tree of A (the transitive reduction2 of LT ).

Notice that the last structure characterization simply means that for i > j,
Zij 6= 0 if and only if j is an ancestor of i in the elimination tree. This allows
us to significantly speed the computation of the preconditioner given a bushy elim-
ination tree, as well as allowing for parallelism—for the calculation of column j in
the factors, only the ancestor columns need be considered (a coarser-grain version of
this parallelism via graph partitioning has been successfully implemented in [6] for
example). Another product of this characterization is a simple way of computing the
IF fill of a SPD matrix, obtained by summing the number of non-zeros in each column
of the inverse factor and multiplying by two for the other (transposed) factor:

Theorem 2.3. The IF fill of a SPD matrix is simply twice the sum of the depths
of all nodes in its elimination tree. In particular, the number of nonzeros in column
j of the true inverse factor Z is given by the number of nodes in the subtree of the
elimination tree rooted at j.

These results suggest orderings that avoid long dipaths in LT (i.e. paths in LT

with monotonically increasing node indices), as these cause lots of IF fill, quadratic
in their length. Alternatively, we are trying to get short and bushy elimination trees.

Another useful characterization of IF fill using notions from [17, 18] allows us
to do a cheap “inverse symbolic factorization”—determing the nonzero structure of
the inverse factors—without using the elimination tree, which is essential for our
Minimum Inverse Penalty ordering algorithm presented later.

Theorem 2.4. Zij 6= 0 if and only if i is reachable from j strictly through nodes
eliminated previous to i—or in terms of the quotient graph model, if i is contained in
a supernode adjacent to j at the moment when j is eliminated.

Based on the heuristic and results above, we now examine several existing or-
derings which might do well and propose a new scheme to directly implement the
heuristic of reducing IF fill.

Red-Black. The simplest ordering we consider is (generalized) Red-Black, where
a maximal independent set of (“red”) nodes is ordered first, and the remaining
(“black”) nodes are ordered next according to their original sequence. In that ini-
tial red block, there are no non-trivial dipaths, hence no off-diagonal entries in Z.

Minimum Degree. Benzi and Tůma have observed that Minimum Degree is
generally beneficial for AINV[3]. This is justified by noting that Minimum Degree
typically substantially reduces the height of the elimination tree, hence should reduce
IF fill.

As an aside, notice that direct-method fill-reducing orderings do not necessarily
reduce IF fill. For example, a good envelope ordering will likely give rise to a very
tall, narrow elimination tree—typically just a path—and thus give full inverse factors.
Again, it should be noted that this isn’t necessarily a bad thing if the inverse factors
still have very small entries, but without using numerical information from the matrix

2The transitive reduction of a directed graph G is a graph G◦ with the minimum number of arcs
but still possessing the same transitive closure as G.
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our experience is that envelope orderings don’t manage this. This may seem at vari-
ance with the result in [13] (elaborated in [5] for factored inverses) that for banded
SPD matrices the rate of decay of the entries in the inverse has an upper bound that
decreases as the bandwidth decreases. However, decay was measured there in terms
of distance from the diagonal, which is really only suitable for small bandwidth or-
derings; the results presented in section 5 of [13], measuring decay in terms of the
unweighted graph distance, should make theoretical progress possible. We will return
to this issue in sections 4–6.

Nested Dissection (ND). On the other hand, by ordering vertex separators
last Nested Dissection (ND) avoids any long monotonic dipaths, and hence a lot of
IF fill. Alternatively, in trying to balance the elimination tree it reduces the sum of
depths.

Minimum Inverse Penalty (MIP). Above we noted that we can very cheaply
compute the number of nonzeros in each column of Z within a symbolic factoriza-
tion. This allows to propose a new ordering, MIP (Minimum Inverse Penalty), an
analogue to Minimum Degree. Minimum Degree is built around a symbolic Cholesky
factorization of the matrix, at each step selecting the node(s) of minimum penalty
to eliminate. The penalty was originally taken to be the degree of the node in the
partially eliminated graph; later algorithms have used other related quantities includ-
ing the external degree and approximate upper bounds. In MIP we follow the same
greedy strategy only we compute a penalty for node v based on Zdegv, the number
of nonzeros in the column of Z were v to be ordered next—the degree in the inverse
Cholesky factor instead of the Cholesky factor—as well as on Udegv, the number of
uneliminated neighbours of node v at the current stage of factorization (not counting
supernodes). In our experiments we found the function Penaltyv = 2Zdegv + Udegv

to be fairly effective. Further research into a better penalty function is needed. Also,
ideas from Minimum Degree such as multiple elimination, element absorption, etc.
might be suitable here.

3. Testing Unweighted Orderings. We used the symmetric part of the matrix
for all the orderings. Red-Black was implemented with the straight-forward greedy
algorithm to select a maximal independent set. Our Minimum Degree algorithm was
AMDBAR, a top-notch variant due to Amestoy, Davis, and Duff [1]. We wrote our
own ND algorithm that constructs vertex separators from edge separators given by
a multi-level bisection algorithm. This algorithm coarsens the graph with degree-
1 node compression and heavy-edge matchings until there are less than 100 nodes,
bisects the small graph spectrally according to the Fiedler vector[15], and uses a
greedy boundary-layer sweep to smooth in projecting back to the original. See [21],
for example, for more details on this point.

The appendix provides further details about our testing. The tables contain data
for both the unweighted orderings above and their weighted counterparts presented
below—ignore the lower numbers for now. In brief, we selected several matrices from
the Harwell-Boeing collection and tested them all with each ordering scheme. Table
A.1 gives the true IF fill for each matrix (or its symmetric part) and ordering. Tables
A.2–A.4 give the preconditioner performance. As the number of nonzeros allowed in
the preconditioner can have a significant effect on results, we standardized all our test
runs: in each box the left number is a report for when the preconditioner had as many
nonzeros as the matrix, and the right number for when the preconditioner had twice
as many nonzeros.
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Fig. 3.1. Correlation of IF fill and preconditioner computing time, normalized with respect to
the given (original) ordering.
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Table 3.1
Average decrease in number of iterations over the test set, in percentages of the iterations taken

by the given ordering.

Fill Red-Black AMDBAR ND MIP

1 94% 75% 76% 75%
2 93% 73% 83% 70%

In terms of IF fill reduction, AMDBAR, ND, and MIP are always the best three
by a considerable factor. ND wins 15 times, AMDBAR 5 times, and MIP 3 times,
with one tie. Red-Black beats the natural ordering, but not dramatically.

It is clear that ordering can help immensely for accelerating the computation of
the preconditioner. ND is the winner, followed by AMDBAR, MIP, and then Red-
Black quite a bit behind. The preconditioner computing time is closely correlated to
IF fill—see figure 3.1. Thus calculating IF fill provides a fast and reasonably good test
to indicate how efficient an (unweighted) ordering is for preconditioner computation—
perhaps not an important point if the iteration time dominates the set-up time, but
this may be useful for applications where the reverse is true.

The effect of ordering on speed of solution is less obvious. The poor behaviour of
PORES23, SHERMAN2, and WATSON5 indicate that AINV probably isn’t appro-
priate (although if we had properly treated SHERMAN2 as a block matrix instead
it might have gone better). Notice in particular that sometimes lowering the drop
tolerance, increasing the size of the preconditioner and hopefully making it more
accurate, actually degrades convergence for these indefinite problems. From the re-
maining matrices, we compared the average decrease in number of iterations over the
given ordering—see table 3.1. Particularly given its problems with SAYLR4, WAT-
SON4, WATT1 and WATT2 Red-Black cannot be viewed as a good ordering. MIP is
overall the best, although it had a problem with WATT1, whereas the close contender
AMDBAR did fairly well on all but the difficult three mentioned above. The good

3In [3] somewhat better convergence was achieved for PORES2, presumably due to implementa-
tion differences in the preconditioner or its application.
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IF fill reducing orderings all made worthwhile improvements in convergence rates,
but it is surprising that ND did the least considering its superior IF fill reduction.
Clearly our intuition that having less nonzeros to drop makes a better preconditioner
has merit, but doesn’t tell the entire story.

4. Anisotropy. In the preceding test results we find several exceptions to the
general rule that AMDBAR, ND, and MIP perform similarly, even ignoring PORES2,
SHERMAN2, and WATSON5. For example, there are considerable variations for each
of ALE3D, BCSSTK14, NASA1824, ORSREG1, SAYLR4, and WATSON4. More
importantly, these variations are not correlated with IF fill; some other factor is at
work. Noticing that each of these matrices are quite anisotropic, and recalling the
problems anisotropy poses for ILU, we are led to investigate weighted orderings.

We first develop a heuristic for handling anisotropic matrices. The goal in mind
is to order using the differing strengths of connections to reduce the magnitude of
the inverse factor entries. Then even if we end up with more IF fill (and hence drop
more nonzeros), the magnitude of the discarded portion of the inverse factors may be
smaller and give a more accurate preconditioner.

Again, we only look at symmetric positive-definite A. Let A = LDLT be the
modified Cholesky factorization, where L is unit lower triangular and D is diagonal.
Then Z = L−T , and since (I−LT ) is zero on and below the diagonal hence nilpotent,
we have:

Z = I + (I − LT ) + (I − LT )2 + . . . + (I − LT )n−1

Then for i ≤ j:

Zi,j =
∑

i=i1<i2<···<ip=j

(−1)p−1Li2,i1Li3,i2 · · ·Lip,ip−1

The nonzero entries in this sum correspond to the monotonically increasing di-
paths i = i1 → i2 → . . .→ ip = j in LT . Our orderings should therefore avoid having
many such dipaths which involve large entries of L, as each one could substantially
increase the magnitude of Z’s entries. Thus we want to move the large entries away
from the diagonal, so they cannot appear in many monotonic dipaths. In other words,
after a node has been ordered, we want to order so that its remaining neighbours with
strong L-connections come as late as possible after it.

For the purposes of our ordering heuristic, we want an easy approximation to L
independent of the eventual ordering chosen—something that can capture the order of
magnitude of entries in L but doesn’t require us to decide the ordering ahead of time.
Assuming A has an adequately dominant diagonal without too much variation, we can
take the absolute value of the lower triangular part of A, symmetrically rescaled to
have a unit diagonal. (This can be thought of as a scaled Gauss-Seidel approximation)
Our general heuristic is then to delay strong connections in this approximating matrix
M defined by:

M = F−1/2|A|F−1/2 where F = diag |A|

An alternative justification of this heuristic, simply in the context of reducing the
magnitude of entries in L, is presented in [10].

Now consider a simple demonstration problem to determine whether this heuris-
tic could help. The matrix SINGLEANISO comes from a 5-point finite difference
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Fig. 4.1. The two orderings of SINGLEANISO, depicted on the domain. Lighter shaded boxes
indicate nodes ordered later.

Strong−first ordering Weak−first ordering

Table 4.1
Performance of strong-first ordering versus weak-first ordering for SINGLEANISO.

Ordering
Time to compute
preconditioner

Number of
iterations

Time for
iterations

Strong-first 0.51 29 0.4
Weak-first 0.38 25 0.25

discretization on a regular 31× 31 grid of the following PDE:

uxx + 1000uyy = F

Here the edges of A (and M) corresponding to the y-direction are 1000 times heavier
than those corresponding to the x-direction. We try comparing two IF fill reduc-
ing orderings. The first ordering (“Strong-first”) block-orders the grid columns with
nested dissection, and then internally orders each block with nested dissection—this
brings the strong connections close to the diagonal. The second (“Weak-first”) block-
orders the grid rows instead, pushing the strong connections away from the diagonal,
delaying them until the last. These are illustrated in figure 4.1 where each square of
the grid is shaded according to its place in the ordering.

Both orderings produce a reasonable IF fill of 103,682, with isomorphic elimina-
tion trees. However, they give very different performance at the first level of fill—see
table 4.1. In all respects the weak-first ordering is significantly better than the strong-
first one.

In figure 4.2 we plot the decay of the entries in the inverse factors resulting from
the two orderings, and show parts of those factors. The much smaller entries from
the weak-first ordering confirm our heuristic.

5. Weighted Orderings. In our experience it appears that IF fill reduction
typically helps to also reduce the magnitude of entries in the inverse factors, but
blind as it is to the numerical values in the matrix it can make mistakes such as
allowing strong connections close to the diagonal. In creating algorithms for ordering
general matrices, we thus have tried to simply modify the unweighted algorithms to
consider the numerical values.
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Fig. 4.2. Comparison of the magnitude of entries in inverse factors for the different orderings
of SINGLEANISO. The close-up images of the actual factors are shaded according to the magnitude
of the non-zeros—darker means bigger.
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Weighted Nested Dissection (WND). Consider the spectral bipartition al-
gorithm. Finding the Fiedler vector, the eigenvector of the Laplacian of the graph
with second smallest eigenvalue (see [15]), is equivalent to minimizing (over a space
orthogonal to the constant vectors):

∑

(i,j) is an edge

(xi − xj)
2

We then make the bipartition depending on which side of the median each entry
lies. Notice that the closer together two entries are in value—i.e. the smaller (xi−xj)

2

is—the more likely those nodes will be ordered on the same side of the cut. We would
like weakly connected nodes (where Mij is small) to be in the same part and the
strong connections to be in the edge cut, so we try minimizing the following weighted
quadratic sum:

∑

(i,j) is an edge

(xi − xj)
2

Mij

where M is the scaled matrix mentioned above. This corresponds to finding the
eigenvector with second smallest eigenvalue of the weighted Laplacian matrix for the
graph defined by:

(i, j) is an edge if and only if Mij 6= 0, weight(i, j) = 1/Mij

Thus we modify ND simply by changing the Laplacian used in the bipartition step
to this weighted Laplacian. Fortunately our multi-level approach with heavy-edge
matchings typically will eliminate the largest off-diagonal entries as well as substan-
tially decreasing the size of the eigenproblem, making it easy to solve, so our Weighted
Nested Dissection (WND) is very reasonable to compute.
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OutIn. Our other weighted orderings are based on an intuition from finite-
difference matrices. We expect that the nodes most involved in long, heavy paths
are those near the weighted centre of the graph (those with minimum weighted ec-
centricity). The nodes least involved in paths are intuitively the ones on the weighted
periphery of the graph. Thus OutIn orders the periphery first, and proceeds to an
approximate weighted centre (“from the outside to the inside”). To efficiently find an
approximate weighted centre we use an iterative algorithm:

Algorithm 1 (Approximate Weighted Centre).
• Set r ← 1

2 , i← 1, v1 ← some random node.
• Do

– Calculate the M -weighted shortest paths and M -weighted distances to
other nodes from vi (where the distance is the minimum sum of weights,
given by M , along a connecting path).

– Select a node ei of maximum distance from vi.
– Travel r of the way along a shortest path from vi to ei, saving the re-

sulting node as vi+1.
– Set r ← r

2 , i← i + 1.
• End loop when vi = vi−1 and return vi as the approximate centre.

Then our OutIn ordering is:

Algorithm 2 (OutIn).
• Compute M .
• Get an approximate weighted centre c for M .
• Calculate the distances and shortest paths from all other nodes in M to c.
• Return the nodes in sorted order, with most distant first and c last.

Despite our earlier remark that envelope orderings might not be useful, the weight
information actually lets OutIn perform significantly better than the natural ordering,
by reducing the size of the nonzeros in the factors if not the number. However, why
not combine OutIn with an IF fill reducing ordering to try to get the best of both
worlds? We thus test OutIn as a preprocessing stage before applying Red-Black,
Minimum Degree, or MIP. We note that the use of hash tables and other methods to
accelerate the latter two means that it’s not true that the precedence set by OutIn
will always be followed in breaking ties for minimum penalty.

As an aside, we also considered modifying Minimum Degree and MIP with tie-
breaking directly based on the weight of a candidate node’s connections to previously
selected nodes. Weighted tie-breaking (with RCM) has proved useful before in the con-
text of ILU[11]. However, for the significant extra cost incurred by this tie-breaking,
this achieved little here—it appears that a more global view of weights is required
when doing approximate inverses.

Before proceeding to our large test set, we verify that these orderings are be-
having as expected with another demonstration matrix. ANISO is a similar prob-
lem to SINGLEANISO only with four abutting regions of anisotropy with differing
directions[12]—see figure 5.1 for a diagram showing the directions in the domain. As
shown in table 5.1, the results for WND over ND and OutIn/MIP over MIP didn’t
change, but there was a significant improvement in the other orderings.

6. Testing Weighted Results. We repeated the tests for our weighted or-
derings, with results given in tables A.1–A.4. For unsymmetric matrices, we used
|A| + |A|T to define M in WND and OutIn, avoiding the issue of directed edges as
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Fig. 5.1. Schematic showing the domain of ANISO. The arrows indicate the direction of the
strong connections.
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Table 5.1
Performance of weighted orderings versus unweighted orderings for ANISO.

Ordering IF fill
Time to compute
preconditioner

Number of
iterations

Time for
iterations

Given 462 0.41 118 1.2
OutIn 266 0.31 77 0.76

Red-Black 239 0.28 107 1.13
OutIn/RB 208 0.28 61 0.61
AMDBAR 69 0.14 66 0.65

OutIn/AMD 69 0.15 48 0.5
ND 72 0.14 65 0.64

WND 84 0.15 65 0.65
MIP 83 0.16 47 0.49

OutIn/MIP 93 0.18 47 0.48

with unweighted orderings. In each box of the tables, the lower numbers correspond
to the weighted orderings; we have grouped them with the corresponding unweighted
orderings for comparison.

Only ND suffered in preconditioner computing time—our spectral weighting ap-
pears to be too severe, creating too much IF fill. However, it is important to note
that the increase in time is much less than that suggested by IF fill—indeed, although
WND gave several times more IF fill for ADD32, MEMPLUS, SAYLR4, SHERMAN4,
and WANG1, it actually allowed for slightly faster preconditioner computation. This
verifies the merit of our heuristic. Both the natural ordering and Red-Black benefited
substantially from OutIn in terms of preconditioner computation, and AMDBAR and
MIP didn’t seem to be effected very much—this could quite well be a result of the
data structure algorithms which do not necessarily preserve the initial precedence set
by OutIn.

In terms of improving convergence, we didn’t fix the problems with PORES2,
SHERMAN2, and WATSON5. These matrices have very weak diagonals anyhow, so
our heuristics probably don’t apply. OutIn and OutIn/RB are a definite improvement
on the natural ordering and Red-Black, apart from on BCSSTK14 and WATSON4.
The effect of OutIn on AMDBAR and MIP is not clear; usually there’s little effect,
and on some matrices (e.g. ALE3D and SAYLR4) it has an opposite effect on the two.
WND shows more promise, improving convergence over ND considerably for ALE3D,
BCSSTK14, ORSIRR1, ORSREG1, and SAYLR4. Its much poorer IF fill reduction
(generally by a factor of 4) gave it problems on a few matrices though.
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7. Conclusions. It is clear that IF fill reduction is crucial to the speed of pre-
conditioner computation, often making an order of magnitude difference. We also saw
that the IF fill of a matrix can be computed very cheaply and gives a good indication
of the preconditioner computation time, for unweighted orderings at least.

Reducing IF fill typically also gives a more effective preconditioner, accelerating
convergence—not only are the number of nonzeros in the true inverse factors de-
creased, but the magnitude of the portion that is dropped by AINV is reduced too.
However, although ND gave the best IF fill reduction, MIP gave the best acceleration
so care must be taken. It would be interesting to determine why this is so. Probably
several steps of Nested Dissection followed by MIP or a Minimum Degree variant on
the subgraphs will prove to be the most practical ordering.

Anisotropy can have a significant effect on performance, both in terms of precon-
ditioner computing time and solution time. Our Weighted Nested Dissection (WND)
algorithm shows the most promise for a high-performance algorithm that can exploit
anisotropy, perhaps after some tuning of the weights in the Laplacian matrix used.
Robustness is still an issue; we believe a more sophisticated weighting heuristic is
necessary for further progress.

Appendix. Testing Data.
Our test platform was a 180MHz Pentium Pro running Windows/NT. We used

MATLAB 5.1, with the algorithm for AINV written as a MEX extension in C. Our
AINV algorithm was a left-looking, column-by-column version, with off-diagonal en-
tries dropped when their magnitude is below a user-supplied tolerance, and with the
entries of D shifted to ±10−3 max |A| when their computed magnitude fell below
10−1εmax |A|. We also make crucial use of the elimination tree; in making a column
conjugate with the previous columns, we only consider its descendents in the elimina-
tion tree (the only columns that could possibly contribute anything). This accelerates
AINV considerably for low IF fill orderings—e.g. SHERMAN3 with AMDBAR order-
ing and a drop tolerance of 0.1 is accelerated by a factor of four! An upcoming paper[7]
will explore this more thoroughly.

To compare the orderings we selected several matrices, mostly from the Harwell-
Boeing collection. First we found the amount of true IF fill caused by each ordering,
given in table A.1. We then determined drop-tolerances for AINV to produce precon-
ditioners with approximately N and 2N nonzeros, where N is the number of nonzeros
in the given matrix. For each matrix, ordering, and fill level we attempted to solve
Ax = b using BiCGStab (CG for s.p.d. matrices), where b was chosen so that the
correct x is the vector of all 1’s. Tables A.2, A.3, and A.4 give the CPU time taken
for preconditioner computation, the iterations required to reduce the residual norm
by a factor of 10−9, and the CPU time taken by the iterations. We halted after 1800
iterations; the daggers in tables A.3 and A.4 indicate no convergence at that point.

In each box of the tables, the upper line corresponds to the unweighted ordering
and the lower line its weighted counterpart. In tables A.2, A.3, and A.4 the numbers
on the left of the box correspond to the low fill tests and those on the right to the
high fill tests.

To highlight the winning ordering for each matrix, we have put the best numbers
in boldface underlined.
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Table A.1
Comparison of IF fill caused by different orderings. Nonzero counts are given in thou-

sands of nonzeros. In each box the upper number corresponds to the unweighted ordering, and the
lower number to its weighted counterpart.

Given Red-Black AMDBAR ND MIP
Name n NNZ OutIn OutIn/* OutIn/* WND OutIn/*

ADD20 2395 13 2660 2228 119 156 97
244 243 119 1689 97

ADD32 4960 20 9083 8662 191 134 52
1062 706 154 669 53

ALE3D 1590 45 365 561 241 197 404
628 608 283 639 329

BCSSTK14 1806 63 1554 1446 432 402 573
1486 1506 419 1526 709

MEMPLUS 17758 99 156022 119739 1618 2362 1736
4468 4435 1615 113777 1736

NASA1824 1824 39 1664 1506 358 452 489
1408 1411 374 1572 454

NASA2146 2146 72 2304 2153 623 510 698
2116 2114 644 2242 808

ORSIRR1 1030 6.9 458 284 154 133 206
394 328 153 462 208

ORSIRR2 886 6.0 320 197 115 126 123
354 279 101 343 174

ORSREG1 2205 14 2432 1414 510 502 643
2092 1527 512 1913 879

PORES2 1224 9.6 738 606 237 202 251
571 541 179 720 317

PORES3 532 3.5 107 83 42 20 23
77 70 40 76 20

SAAD100 8000 54 32004 16770 6878 6238 12095
28974 19841 6815 26054 12750

SAYLR4 3564 22 6352 3519 1275 1153 2182
3236 2311 1306 5091 1650

SHERMAN1 1000 3.8 224 123 55 52 61
150 112 59 164 72

SHERMAN2 1080 23 551 500 269 262 357
539 531 275 544 346

SHERMAN3 5005 20 3708 2090 749 746 1464
3437 2414 751 3212 1451

SHERMAN4 1104 3.8 149 102 40 40 40
128 91 37 114 59

SHERMAN5 3312 21 1340 1122 414 334 465
1117 1103 424 1186 451

SWANG1 3169 21 3865 3666 546 424 941
3513 2722 525 3513 837

WANG1 2903 19 4215 2262 1056 1122 1795
3133 2327 1076 3557 1684

WATSON4 467 2.8 72 69 11 13 7.8
57 39 10 53 8.5

WATSON5 1853 9.6 341 471 46 141 67
432 430 54 833 52

WATT1 1856 11 1719 891 400 351 576
1165 878 425 1184 466

WATT2 1856 12 1723 895 401 353 583
1141 806 496 1251 472
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Table A.2
Comparison of CPU time for preconditioner computation. In each box the upper

numbers correspond to the unweighted ordering, and the lower numbers to its weighted counterpart.
The numbers on the left refer to the low-fill test, and the numbers on the right to the high-fill test.

Given Red-Black AMDBAR ND MIP
Name OutIn OutIn/* OutIn/* WND OutIn/*

ADD20 9.8 12.8 8.1 10.7 1.3 1.5 1.3 1.6 1.2 1.4
1.7 1.6 2.0 1.8 1.3 1.5 2.5 3.2 1.3 1.5

ADD32 33.9 45.6 32.7 43.5 3.4 3.6 3.2 3.4 3.7 3.4
7.1 8.0 6.1 6.3 3.5 3.4 2.9 3.0 3.7 3.4

ALE3D 14.3 26.6 13.0 24.1 9.4 16.1 6.4 11.0 15.9 28.3
16.0 27.6 15.3 26.2 11.2 19.5 15.7 26.4 11.8 20.7

BCSSTK14 6.2 11.1 6.0 10.7 2.3 3.7 2.0 3.3 3.0 4.7
5.6 8.4 5.6 8.5 2.2 3.6 3.6 5.6 3.5 5.7

MEMPLUS 832 1174 594 789 58.6 64.5 59.4 53.8 54.0 52.1
70.6 76.6 81.0 84.5 61.6 61.9 54.7 55.8 65.1 58.2

NASA1824 4.6 7.8 4.0 7.1 1.3 2.1 1.5 2.3 1.8 2.8
3.9 6.0 3.9 6.1 1.4 2.2 1.9 3.0 1.7 2.8

NASA2146 8.4 15.2 8.5 14.7 3.0 5.0 2.4 3.8 3.5 5.7
8.4 14.5 8.5 14.7 3.1 5.1 2.8 4.5 4.2 6.8

ORSIRR1 1.8 3.2 1.2 1.8 0.7 1.0 0.7 0.9 0.9 1.2
1.3 1.7 1.1 1.8 0.8 1.1 1.0 1.4 0.9 1.3

ORSIRR2 1.2 2.1 0.8 1.2 0.6 0.8 0.6 0.8 0.6 0.8
1.4 1.9 1.1 1.3 0.5 0.7 0.7 1.0 0.8 0.9

ORSREG1 7.6 10.7 4.7 6.4 2.8 3.9 2.7 3.8 3.3 4.6
6.4 8.8 5.3 7.1 2.9 3.6 4.6 6.4 4.4 6.1

PORES2 2.8 4.0 2.5 3.8 1.3 1.9 0.7 1.1 1.3 1.8
1.7 2.5 2.0 2.9 1.0 1.5 1.2 1.8 1.6 2.4

PORES3 0.4 0.5 0.3 0.5 0.2 0.3 0.1 0.2 0.1 0.2
0.3 0.5 0.3 0.5 0.2 0.3 0.1 0.2 0.1 0.2

SAAD100 134 196 82.1 120 47.4 65.8 39.4 56.4 77.3 107
160 240 117 179 51.0 70.6 41.6 60.7 88.0 122

SAYLR4 8.5 12.1 5.9 7.1 2.8 3.8 2.3 2.8 4.1 5.0
4.6 6.1 4.1 4.8 2.9 3.5 2.3 2.6 3.3 3.9

SHERMAN1 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2
0.2 0.3 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.2

SHERMAN2 5.8 11.1 5.4 9.9 3.0 5.0 3.0 5.0 3.2 5.3
5.2 8.9 5.0 8.8 3.2 5.5 4.0 6.8 3.0 5.1

SHERMAN3 18.1 27.8 11.2 17.1 6.1 8.0 6.0 7.8 9.5 12.9
18.9 27.6 13.8 19.8 6.2 8.4 6.4 8.4 9.6 13.5

SHERMAN4 0.6 1.0 0.4 0.6 0.2 0.4 0.3 0.4 0.2 0.3
0.6 0.9 0.4 0.6 0.2 0.3 0.3 0.3 0.3 0.4

SHERMAN5 12.1 21.2 9.5 16.4 4.1 6.6 3.6 5.7 4.1 6.3
7.6 11.7 7.3 11.6 4.3 6.7 4.8 7.3 4.1 6.3

SWANG1 18.7 29.4 18.2 28.0 4.2 5.8 3.2 4.4 6.4 9.2
18.2 29.8 14.8 23.3 4.1 4.2 3.4 4.6 5.9 8.5

WANG1 19.6 31.3 10.8 16.4 6.2 8.8 6.2 8.9 9.2 13.2
16.2 24.2 12.1 18.0 6.4 9.2 6.2 8.8 9.2 13.3

WATSON4 0.3 0.4 0.3 0.4 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1

WATSON5 1.6 2.0 2.1 2.8 0.7 0.8 1.0 1.2 0.8 0.9
2.1 2.9 2.0 2.8 0.7 0.8 1.0 1.2 0.8 0.9

WATT1 7.2 11.3 3.8 6.0 2.0 3.0 1.8 2.5 2.7 4.0
4.8 7.7 3.8 5.8 2.2 3.2 1.8 2.5 2.4 3.6

WATT2 7.4 12.0 4.2 6.6 2.1 3.0 1.8 2.6 2.8 3.9
5.1 7.5 3.7 5.5 2.7 3.9 1.9 2.6 2.5 3.5
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Table A.3
Comparison of iterations required to reduce residual norm by 10−9. In each box

the upper numbers correspond to the unweighted ordering, and the lower numbers to its weighted
counterpart. The numbers on the left refer to the low-fill test, and the numbers on the right to the
high-fill test.

Given Red-Black AMDBAR ND MIP
Name OutIn OutIn/* OutIn/* WND OutIn/*

ADD20 8 5 8 5 7 4 8 4 8 3
8 4 8 4 8 4 8 4 8 3

ADD32 6 4 6 4 5 2 5 3 5 2
6 4 6 3 5 2 6 3 5 2

ALE3D 126 60 70 48 37 44 68 45 33 25
33 29 24 27 28 21 34 35 41 39

BCSSTK14 77 57 76 56 71 47 107 97 64 44
109 99 109 105 69 48 85 66 63 46

MEMPLUS 135 13 108 7 18 5 17 6 21 3
19 9 18 9 18 5 19 6 21 3

NASA1824 945 727 915 734 837 511 708 498 850 496
917 801 920 821 883 601 822 622 834 584

NASA2146 76 56 85 70 57 34 58 30 52 37
85 40 80 40 67 36 69 33 57 33

ORSIRR1 38 22 40 20 32 20 39 23 34 18
33 20 31 17 31 19 33 18 32 19

ORSIRR2 39 28 37 21 33 24 31 20 33 19
38 20 32 20 31 19 34 17 34 22

ORSREG1 43 26 41 19 40 18 39 28 42 19
39 20 37 16 39 20 35 18 41 21

PORES2 160 762 180 99 716 448 † 1120 1117 189
† 1108 754 409 † 315 † † 662 630

PORES3 87 28 90 23 81 31 36 21 35 20
51 35 51 38 95 33 37 17 34 18

SAAD100 25 19 19 13 17 12 19 16 17 12
21 17 17 14 17 12 19 13 17 12

SAYLR4 1386 70 70 95 90 64 173 63 158 62
1251 70 124 67 118 64 92 62 93 62

SHERMAN1 50 34 47 38 51 30 53 35 48 33
56 41 57 35 47 30 46 33 49 32

SHERMAN2 † 280 285 173 † † † 1092 † †

† † † † † † † † † †

SHERMAN3 245 98 111 81 111 70 114 81 105 72
114 88 118 116 108 74 115 83 115 100

SHERMAN4 37 25 36 22 35 22 36 23 34 22
37 26 36 23 36 22 35 23 36 22

SHERMAN5 34 24 30 23 31 19 28 19 28 21
33 20 33 20 30 19 32 19 28 19

SWANG1 4 3 4 3 4 3 4 3 4 3
4 3 4 3 4 3 4 3 4 3

WANG1 43 35 38 27 40 27 38 29 39 30
42 32 40 28 39 26 40 29 38 27

WATSON4 32 10 39 11 19 3 28 6 28 4
63 11 46 8 29 4 35 6 17 4

WATSON5 306 611 † † † 96 † 1022 † 290
† † † † † 119 † 1056 † 274

WATT1 7 6 12 5 8 5 6 5 12 6
7 5 12 9 12 5 12 4 9 9

WATT2 77 54 114 54 8 7 8 8 7 5
49 5 8 5 14 5 6 5 6 5
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Table A.4
Comparison of time taken for iterations. In each box the upper numbers correspond to

the unweighted ordering, and the lower numbers to its weighted counterpart. The numbers on the
left refer to the low-fill test, and the numbers on the right to the high-fill test.

Given Red-Black AMDBAR ND MIP
Name OutIn OutIn/* OutIn/* WND OutIn/*

ADD20 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.3 0.4 0.2
0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.2

ADD32 0.6 0.5 0.6 0.5 0.5 0.2 0.5 0.4 0.5 0.2
0.6 0.5 0.6 0.4 0.5 0.2 0.6 0.4 0.5 0.2

ALE3D 18.4 11.5 10.2 9.3 5.5 8.6 10.0 8.7 4.9 5.0
4.9 5.8 3.6 5.4 4.2 4.2 5.0 6.9 6.1 7.7

BCSSTK14 9.3 9.0 9.2 8.9 8.6 7.5 13.0 15.4 7.9 7.1
13.4 16.0 13.2 17.0 8.3 7.7 10.3 10.5 7.7 7.5

MEMPLUS 67.7 8.9 61.0 8.0 9.7 5.0 9.7 10.1 11.8 4.7
14.7 11.4 10.4 6.8 22.0 5.7 15.0 4.3 11.1 4.5

NASA1824 71.4 73.5 68.2 73.5 63.3 52.1 53.2 50.4 65.3 52.0
68.8 81.7 69.3 83.6 66.2 61.2 61.6 62.8 63.1 59.8

NASA2146 10.3 10.2 11.6 12.8 7.8 6.3 7.9 5.6 7.2 6.9
11.6 7.4 10.9 7.4 9.2 6.7 9.4 6.0 7.9 6.1

ORSIRR1 1.0 0.7 1.1 0.7 0.8 0.7 1.0 0.8 0.9 0.6
0.9 0.7 0.8 0.6 0.8 0.6 0.9 0.6 0.8 0.7

ORSIRR2 0.9 0.8 0.8 0.6 0.8 0.7 0.7 0.6 0.8 0.6
0.9 0.6 0.7 0.6 0.7 0.5 0.8 0.5 0.8 0.6

ORSREG1 2.4 1.9 2.3 1.4 2.3 1.3 2.2 2.0 2.4 1.4
2.2 1.5 2.1 1.2 2.2 1.5 2.0 1.3 2.3 1.6

PORES2 5.8 36.8 6.8 4.9 25.1 19.8 † 51.1 39.6 8.4
† 50.6 26.8 18.6 † 14.2 † † 23.2 28.2

PORES3 1.1 0.5 1.2 0.4 1.1 0.5 0.5 0.3 0.4 0.3
0.7 0.6 0.7 0.6 1.3 0.5 0.5 0.3 0.4 0.3

SAAD100 5.9 5.7 4.5 3.9 4.0 3.8 4.3 4.6 4.0 3.8
4.8 5.0 4.0 4.4 4.0 3.9 4.3 3.7 4.1 3.8

SAYLR4 71.8 4.6 3.9 6.4 4.7 4.6 8.9 4.3 8.3 4.3
65.6 4.8 6.8 4.6 6.2 4.4 4.8 4.3 4.9 4.3

SHERMAN1 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.3
0.5 0.4 0.5 0.4 0.4 0.3 0.4 0.3 0.4 0.3

SHERMAN2 † 29.8 23.0 18.4 † † † 115 † †

† † † † † † † † † †

SHERMAN3 23.1 11.5 10.5 10.0 10.5 8.4 10.7 9.5 9.9 8.7
10.8 10.3 11.2 13.8 10.3 8.8 10.8 9.8 10.9 12.2

SHERMAN4 0.7 0.6 0.6 0.5 0.6 0.6 0.6 0.5 0.6 0.5
0.7 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5

SHERMAN5 2.8 2.5 2.5 2.4 2.6 2.0 2.3 2.0 2.4 2.2
2.9 2.3 2.9 2.3 2.5 2.0 2.7 2.1 2.4 2.0

SWANG1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.4 0.3 0.4 0.3 0.4 0.3 0.3 0.3 0.4 0.3

WANG1 3.2 3.4 2.9 2.6 3.1 2.7 2.9 2.9 3.0 3.0
3.2 3.2 3.1 2.8 3.0 2.6 3.0 2.8 3.0 2.8

WATSON4 0.3 0.1 0.4 0.1 0.2 0.0 0.3 0.1 0.3 0.0
0.7 0.2 0.5 0.1 0.3 0.0 0.4 0.1 0.2 0.0

WATSON5 12.4 30.3 † † † 4.8 † 51.9 † 14.7
† † † † † 6.0 † 53.7 † 14.1

WATT1 0.3 0.4 0.6 0.3 0.4 0.3 0.3 0.3 0.6 0.4
0.3 0.3 0.6 0.5 0.6 0.3 0.6 0.2 0.4 0.5

WATT2 3.5 3.1 5.3 3.2 0.4 0.4 0.4 0.5 0.3 0.3
2.3 0.3 0.4 0.3 0.6 0.3 0.3 0.3 0.3 0.3
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