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Figure 1: A boat emerges from water. (a) Adequate depth is needed for the desired large-scale disturbances. (b) We compute a guide shape
from the finalized coarse solve to capture the deep motion. (c) The guide shape constrains a high resolution simulation of a thin outer shell
of liquid to keep the same look. (d) A high resolution simulation in shallow water fails to capture the large-scale motion.

Abstract

Art direction of high resolution naturalistic liquid simulations is no-
toriously hard, due to both the chaotic nature of the physics and the
computational resources required. Resimulating a scene at higher
resolution often produces very different results, and is too expensive
to allow many design cycles. We present a method of constraining
or guiding a high resolution liquid simulation to stay close to a final-
ized low resolution version (either simulated or directly animated),
restricting the solve to a thin outer shell of liquid around a guide
shape. Our method is generally faster than an unconstrained sim-
ulation and can be integrated with a standard fluid simulator. We
demonstrate several applications, with both simulated and hand-
animated inputs.
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1 Introduction

A common problem for liquid simulation in film is the high compu-
tational cost, both in time and memory, of high resolution simula-
tion. Even if it is possible to simulate at the required resolution, the
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many iterations needed to achieve the desired artistic result (varying
initial and boundary conditions, parameters, etc.) may still be infea-
sible. While most of the design work can ideally be done at low res-
olution, liquid dynamics are chaotic enough that later increasing the
resolution often significantly changes the overall look and timing.
This is due to numerous factors such as numerical viscosity, fidelity
of solid geometry on the grid, when topological changes occur etc.
To reduce the number of costly iterations at high resolution, we de-
sire a way to guide the high resolution simulation to more closely
follow the finalized low resolution version, while adding natural-
looking extra detail. Note that our focus is entirely on naturalistic
scenarios, not supernatural effects; art direction may nevertheless
demand subtly nonphysical behavior, e.g. timing a splash to music,
which further complicates pure simulation.

We introduce guide shapes in response. High resolution is often
only necessary for small details at the surface and for splashes,
while low resolution suffices for the deeper flow—e.g. ocean wave
disturbances decay exponentially with depth and wave number
[Bridson 2008]. Therefore we take the deeper flow from a finalized
low resolution simulation or even a hand-crafted pre-visualization
animation. Our method extracts a guide shape offset below the sur-
face of the input, creates a matching velocity field throughout the
volume if one is not given, determines an appropriate volume for
seeding liquid in just a surface layer for the high resolution guided
simulation, and imposes the guide shape as a boundary constraint
on that layer (Figure 1). The high resolution version is then faster
and stays closer to the desired result. Though some experimenta-
tion is still necessary to obtain the desired extra detail, our approach
significantly reduces the number and expense of design iterations
required at high resolution.

We have implemented our method as a plug-in to a commercially
available fluid solver, Naiad, and have successfully tested the work-
flow with artists in feature film production. We include here several
examples illustrating improved correspondence between low and
high resolution, artistic control, and faster final simulations.

2 Related Work

Fluid control was introduced to graphics by Foster and Metaxas
[1997]. Several authors have since addressed the problem of match-
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ing predefined key frames [Treuille et al. 2003; McNamara et al.
2004; Hong and Kim 2004] or moving target shapes [Fattal and
Lischinski 2004; Shi and Yu 2005a; Shi and Yu 2005b]. Whereas
these methods closely match the liquid surface to an animated sur-
face or individual key frames with supernatural effects in mind, we
impose control at an interface embedded inside the liquid for a more
natural-looking surface flow. Furthermore we simulate only in a
relatively thin outer shell.

Rasmussen et al. directed liquid simulations [2004] with particles
that define soft or hard control on the flow, via blending or bound-
ary conditions. Sachs et al. [2010] combined Rasmussen et al.’s
methods with those of Shi et al. [2005a] to better control liquids.
These authors all used a Neumann pressure boundary condition as
we do to enforce hard velocity constraints in certain regions of the
fluid. Shi et al. also used a divergence-free force field based on
potential flow; we similarly investigate potential flow for defining
velocities on the guide shape and in liquid emission, and compare
this to simpler velocity extrapolation.

Thürey et al. [2006] proposed a particle-based framework for con-
trolling low frequency flow components but still simulated the en-
tire liquid as opposed to a thin shell. Horvath et al. [2009] later
used particles to control fire. Several examples of liquid characters
have also been documented [Wiebe and Houston 2004; Trojansky
2008]. In the context of naturalistic controlled flow, Mihalef et al.
[2004] animated and controlled breaking waves by combining art
direction in 2D with full simulation in 3D.

We also tackle the efficiency of high resolution simulation. Adap-
tive grids are the natural choice if efficiency is the sole issue, using
coarse cells deeper in the flow: Losasso et al. [2004] used an oc-
tree while Irving et al. [2006] employed tall cells and an RLE data
structure. These methods captured two-way interaction between the
coarse and fine parts of the liquid, which our method does not, but
the time stepping of the coarse cells is limited by the CFL condition
in the fine cells. Additionally, our method improves the correspon-
dence between low and high resolution which is neither the focus
nor a property of the adaptive methods.

Our approach is also related to methods which add extra detail to
bulk fluid flow. Vortex particle and turbulence synthesis methods
[Selle et al. 2005; Kim et al. 2008] add detail by increasing vortic-
ity while simulating or as a post process, to some extent also ensur-
ing a correspondence between the bulk flow and the enhanced flow.
However, these methods do not capture the full 3D physics of a liq-
uid surface at higher resolution. For smoke, Nielsen et al. [2009]
improved the correspondence between low and high resolution sim-
ulations, but their method is not directly applicable to liquids, nor
does it help with efficiency. Patel et al. [2009] coupled a high res-
olution 2D simulation to an existing low resolution 3D simulation,
using the 2D simulation to displace and add more detail. Similarly
Angst et al. [2008] used the shallow water equations to enhance a
liquid surface mesh. Neither of these methods can add fully 3D
higher resolution surface effects such as small waves breaking.

3 The Guide Shape Method

The input to our method is a shape in level set representation with a
velocity field defined either at the surface or everywhere inside the
volume. For input from a low resolution simulation a volumetric
velocity field will usually be available, and for artist-animated input
the surface velocity field can be computed by finite differences on
point correspondences. The core of our guiding method requires
a volumetrically defined velocity field, thus in the latter case we
interpolate the surface velocities throughout the volume. The final
output is a guided liquid, which generally matches the input shape
to some extent but adds additional detail and motion.

Symbol Volume
ΩI Input Volume
ΩL Guided Liquid Volume
ΩP Preliminary Guiding Volume
ΩG Final Guiding Volume
ΩR Reseeding Volume
ΩB Union of Guided Liquid and Guiding Volume
ΩS Volume of Kinematic Solids
ΩM Mask Volume

Table 1: Definition of volumes used.

Figure 2: Guided liquid volume Ω−
L , guiding volume Ω−

G and kine-
matic solids volume Ω−

S .

To clarify algorithmic details, we denote a volume by Ω and the
matching level set function at time stepm by φm, but omit the time
step whenever it is clear from context. The surface of the volume
is ∂Ω, the interior is Ω− = {p|φ(p) < 0} and the exterior is
Ω+ = {p|φ(p) > 0}. Table 1 lists the specific volumes used
throughout the text.

Referring to Figure 2, we enforce a velocity boundary condition on
the guided liquid volume Ω−

L , applied at the contact interface be-
tween the guided liquid and a guide volume Ω−

G computed from
both the input geometry and the evolving guided liquid. The equa-
tions of motion are solved only in the guided liquid volume, seeded
inside a band of user-specified width close to the guide shape.

3.1 Velocity Boundary Condition

The rationale for the guide shape method is that in the true solu-
tion of the Navier-Stokes equations, one can replace an arbitrary
moving volume of fluid with a velocity boundary condition at its
surface (taking the surface velocity from the original flow) without
changing the rest of the fluid.1 Indeed, this is true for almost any
continuum, under the usual Cauchy Postulate that inter-continuum
forces are local contact tractions. Therefore if the low resolution
input stays close to the correct physics at the guide depth, impos-
ing the guide shape as a velocity boundary condition on the guided
simulation will lead to the correct physical solution.

We guide the high resolution liquid volume ΩL by imposing a ve-
locity boundary condition at the interface with the guide shape,
∂ΩG ∩ ∂ΩL, using the guide velocity defined there. We imple-
ment this by specifying the guide shape as a kinematic solid with
inflow/outflow velocities [Bridson 2008]: in particular, note that the
guide velocity is derived from the input velocity field, and may not
match the motion or evolution of the guide shape geometry itself.
The guided liquid may flow in or out of the guide shape, with the
solver deleting particles in the former case, and our reseeding algo-
rithm creating new liquid in the latter.

1One can equivalently impose a traction boundary condition, specifying
pressure for an inviscid fluid, but a velocity boundary condition allows us to
conveniently use existing functionality for kinematic solids.
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Figure 3: (a) Input shape ∂ΩI . (b) Preliminary guide ∂ΩP . (c) Final guide ∂ΩG. (d) Reseeding surface ∂ΩR. (e) Guided liquid ∂ΩL.

(a) line 1 (b) line 2 (c) line 5 (d) line 7 (e) line 8 (f) line 9

Figure 4: Illustrates the individual steps of Algorithm 1. References to Algorithm 1 are given by line numbers. (a) Construct mask for
localizing computations. (b) Union solids and input shape (inside the mask region only). (c) Dilate and close air pockets. (d) Erode to ensure
the desired simulation depth of guided liquid. (e) Intersect guiding shape with mask. (f) Subtract solids from guiding shape.

Inside the solver, for inviscid fluids, the kinematic velocities
are used in a Neumann boundary condition on pressure when
setting up the Poisson linear system for pressure projection:
∂p
∂n̂

= ρ
∆t

(ũ− uI) · n̂ where ρ is the density of the liquid, p is
the pressure, ∆t is the time step, uI is the interpolated guiding ve-
locity field and ũ is the velocity field after advection and adding
forces using an operator splitting approach. Hence a constraint
is enforced on the component of velocity normal to the kinematic
solid. While our examples do not use viscous fluids, in the viscous
case the kinematic velocities are similarly used as general velocity
boundary conditions in the unsteady Stokes linear system.

3.2 Guide Shape Computation

The guide shape is built in two stages. First we compute a prelimi-
nary guide shape (Figure 3b) from the input geometry only (Figure
3a). This step is independent of the guided simulation and needs
only to be performed once as a precomputation step for each in-
put shape. In fact, the computation for each frame is independent
and can thus be done in parallel, provided that input shapes for all
frames are available. The second stage is performed online, i.e.
interleaved with the guided liquid simulation (Figure 3e). In the
second stage we compute the final guide shape (Figure 3c) from the
guided liquid simulation and the precomputed preliminary guide
shape. Following the online computation of the guide shape, we
compute the reseeding volume (Figure 3d). Liquid will be reseeded
inside the reseeding volume at each time step to prevent air pockets
from appearing between the guide shape and the guided liquid.

It is essential to compute the final guide shape from both the pre-
liminary guiding shape (which depends on the input geometry) and
from the guided liquid simulation. Using the input geometry for
the precomputed guide ensures that the final guide shape is fully
enclosed in the volume of the input geometry and hence that the ve-
locity field at the guide surface is well defined. On the other hand
it is important to take the surface of the guided liquid into account
as otherwise a minimum simulated depth would not be ensured, for
example in the case of a splash only resolved at high resolution. In
particular if this stage is omitted the guide shape would be able to
protrude outside the guided liquid, leading to artifacts.

In the following descriptions of the algorithms we will be using

Ω[a;b] = {p| d(p) ≥ a ∧ d(p) ≤ b} to denote a band portion of
the domain where d is the signed distance function induced by φ.

3.2.1 Precomputing the Preliminary Guide

The preliminary guide shape is built with a sequence of level set
operations (Figure 4). We first dilate the input shape by a small
amount to form a mask for localizing all subsequent computations.
We union the input geometry with selected kinematic solids—
solids where it’s not important to have high resolution interaction
below the liquid-air surface (e.g. in the boat wake example, Figures
5 and 7, the container is included but not the boat itself since we
want maximum detail around the boat). We then close any small
gaps or air pockets through a combination of dilation and overwrit-
ing of small holes, redistance, and erode to get the desired simula-
tion depth from the input shape. The precomputation stage is more
formally given by Algorithm 1, and the individual steps of the al-
gorithm apart from redistancing are depicted in Figure 4.

Algorithm 1 φP = ComputeGuide

Input: φI {input shape}
Input: φS {kinematic solids}
Input: αM {mask Ω−

M equals input geometry Ω−
I dilated by αM}

Input: αb {final narrow band radius of φP }
Input: αa {max radius of air pockets to be closed}
Input: αd {depth of gaps to to be filled}
Input: αe {minimum simulation depth of ΩL}
Require: (αd + αa) < αM

Require: αM < αb

1: dilate input to obtain mask, fig 4a { φM = φI − αM }
2: union solids and input, fig 4b {φP = min(φS , φI) on Ω−

M }
3: redistance {Solve |∇φP | = 1 on Ω

[0;αd+αa]
P ∩ Ω−

M}
4: dilate to fill gaps {φP = φP − αd on Ω−

M }
5: close air pockets, fig 4c {φP = −αa in holes less than αa}
6: redistance {Solve |∇φP | = 1 on Ω

[−(αd+αe);0]
P ∩ Ω−

M}
7: erode, fig 4d {φP = φP + (αd + αe) on Ω−

M}
8: intersect with mask, fig 4e {φP = max(φP , φM ) }
9: subtract solids, fig 4f {φP = max(φP ,−φS) }

10: redistance {Solve |∇φP | = 1 on Ω
[−αb;αb]
P }



Note that redistancing between dilation and erosion is necessary to
ensure gaps closed by the dilation are not subsequently reopened.
To close air pockets specifically, our implementation uses a union-
find algorithm to detect small holes (radius below αa) surrounded
by liquid and overwrites them with a negative value, prior to redis-
tancing. Our implementation uses narrow band distance volumes,
and solves the Eikonal equation in redistancing with a parallel fast
marching implementation [Sethian 1996] localized inside ΩM . At
∂ΩM we impose a Neumann boundary condition ∂φ/∂n̂ = 0 on
the distance function to avoid an artificial zero-crossing there. Our
typical values for the parameters are αb = 2∆x, αa = 5∆x,
αd = 2.5∆x, αM = αd +αa where ∆x is the width of a grid cell.
The value of αe depends on the example at hand. When increasing
the resolution, the parameter values are scaled correspondingly.

3.2.2 Computing the Final Guide

We run Algorithm 2 at the start of every time step of the simulation
to compute the final guide shape. First we construct a bulk vol-
ume (lines 1–3 of Algorithm 2) as the union of the guided liquid at
the current time step φn

L (Figure 3e) and the final guide shape from
the previous time step advected forward to the current time step φ̃n

G

(Figure 3c from the previous time step advected forward). This vol-
ume corresponds to the bulk liquid volume as if we had simulated
everywhere, without a guide shape. We next perform the same se-
quence of operations on this bulk volume as done by Algorithm 1
and illustrated by Figure 4 (line 4 of Algorithm 2). Finally we in-
tersect this with the precomputed preliminary guide φP (line 5 of
Algorithm 2). Algorithm 2 is bootstrapped in the first time step by
setting φ0

G = φ0
P .

Algorithm 2 φG = ComputeFinalGuide

Input: φP {preliminary guide}
Input: φn−1

G {guide at previous time step}
Input: φL {guided liquid}
Input: φS {kinematic solids}
Input: αM {mask Ω−

M equals input geometry Ω−
I dilated by αM}

Input: αb {final narrow band radius of φP }
Input: αa {max radius of air pockets to be closed}
Input: αd {depth of gaps to to be filled}
Input: αe {minimum simulation depth of guided liquid}
Input: ∆t {time between time steps n− 1 and n}
Require: (αd + αa) < αM

Require: αM < αb

1: advect φn−1
G one time step forward in input velocity uI

{Solve ∂φG
∂t

+ uI · ∇φG = 0 to obtain φ̃n
G from φn−1

G }
2: compute bulk shape as a union {φB = min(φ̃n

G, φL)}
3: redistance bulk shape {Solve |∇φB | = 1 on Ω

[0;αM ]
B }

4: φG = ComputeGuide(φB ,φS ,αM ,αb,αa,αd,αe)
5: intersect φG with preliminary guide {φG = max(φP , φG)}
6: redistance φG {Solve |∇φG| = 1 on Ω

[−αb;αb]
G }

The sequence of operations in Algorithm 2, notably the redistancing
operations, may be expensive when computed at the same resolu-
tion as the guided liquid simulation. However we have found Algo-
rithm 2 can be run at lower resolution than the guided liquid sim-
ulation without any apparent issues. This explains why the guided
simulation times are lower than the timings for a full unguided liq-
uid simulation at the same resolution (Table 2). For input shapes
originating from simulations we perform the computations of the
guide shapes at the resolution of the input simulation.

3.2.3 Computing the Reseeding Volume

The reseeding volume is computed immediately after the final guide
shape, with the goal of filling gaps which open up between the guide
shape and the guided liquid. In a particle based liquid simulator
(such as Naiad’s FLIP mode), liquid particles are reseeded inside
the reseeding volume; in a level set based liquid simulator, a union
is formed of the reseeding volume and the guided liquid. In both
cases, the liquid volume is instantiated with the guiding velocities
available either from the input data or computed via one of the al-
gorithms described in section 3.3. Note that this is not the velocity
by which the guide shape evolves. Fluid particles that move into
the guide volume are removed.

The overall idea of the reseeding volume computation is to subtract
the guide shape at the current time step φn

G from the guide shape at
the previous time step advected forward to the current time step φ̃n

G.
In particular gaps between φ̃n

G and the guided liquid should appear
for a single time step only due to numerical error. An outline is
given by Algorithm 3. In our implementation we avoid reseeding
particles closer than a certain threshold to the air-liquid interface to
avoid causing noise at the liquid surface. To ensure the reseeding
does not miss holes at the scale of a single grid cell we compute the
reseeding volume at the resolution of the simulation, as opposed to
the guide shapes that are computed at lower resolution. Our typical
values for the parameters are αs = 2.5∆x and αt = ∆x.

Algorithm 3 φR = computeReseedingVolume

Input: φ̃n
G {guide at previous time step advected forward}

Input: φG {guide at current time step}
Input: αb {final narrow band radius of φR}
Input: αs {safe region overlap between φ̃n

G and φL}
Input: αt {safe region overlap between φ̃n

G and φn
G}

Require: {αs, αt} < αb

1: dilate advected guide {φR = φ̃n
G − αs}

2: erode and subtract current guide
{φR = max(φR,−(φG + αt))}

3: redistance {Solve |∇φR| = 1 on Ω
[−αb;αb]
R }

3.3 Velocity Interpolation

Input shapes originating from animations typically only have ve-
locities defined at the surface as opposed to throughout their inte-
rior. However, we require interior velocities both for setting the
velocity boundary condition and for reseeding. Note that the appar-
ent velocity of the evolving guide shape is physically meaningless,
due to construction via level set operations, and cannot be used—
arbitrarily high velocities can appear when the fluid thins to less
than the guide depth, for example. In this section we describe two
methods for interpolating the velocity from the surface into the in-
terior of the input shape (with a comparison given in section 4):
extrapolating velocity in the normal direction from the input sur-
face, and solving for the potential flow which matches the normal
component of velocity at the input surface. Velocity interpolation
is performed as part of the precomputation stage of the preliminary
guide shape described in section 3.2.1.

3.3.1 Velocity Extrapolation in the Normal Direction

By default we propagate velocities from the surface into the interior
of the input shape by constant extrapolation in the normal direction.
Our solver does this with a discrete closest point transform: every
unknown velocity value on the grid is set equal to the closest known
sample. The produced velocity field is usually not divergence-free



Figure 5: Simulation of a moving boat. A certain simulation depth
is required to obtain large-scale wave disturbances. Top row is the
unguided high resolution shallow depth simulation. Bottom row is
the guided high resolution simulation.

but this approach is generally faster than computing the potential
flow solution described next.

3.3.2 Potential Flow

Potential flow models incompressible inviscid irrotational flow. As
opposed to simple extrapolation it gives a divergence-free velocity
field, provided the surface velocities integrate to a flux of zero.

We solve for a scalar potential ψ whose gradient will be the in-
terpolated velocity u = ∇ψ. Incompressibility gives the Laplace
equation ∇ · ∇ψ = 0 in the volume, with a Neumann boundary
condition ∂ψ/∂n̂ = uI · n̂ to match the normal component of the
input velocity at the surface of the input geometry [Lautrup 2005].

We discretize the continuous formulation on a staggered grid us-
ing central differences and the velocity potential ψ defined at cell-
centers. The resulting linear system is solved independently on each
connected component of the input shape. We refer to Briggs et al.
[2000] for a detailed description of how to solve this type of equa-
tion system with pure Neumann boundary conditions.

4 Results and Discussion

We have integrated the methods proposed in this paper with Na-
iad, a FLIP-based liquid solver [Zhu and Bridson 2005] that uses a
sparse volumetric data structure for storing auxiliary level sets and
velocities. Voxels are defined in small tiles close to the surface and
in the interior of the liquid, but not constrained to any particular
rectangular domain. All dimensions are reported in world space
units (metres) and in addition we report the maximum simulation
domains in voxels. Timings as well as particle and grid cell counts
for all examples in the paper are listed in table 2.

Figure 1a shows a simulation with grid spacing 1.20m of a
boat pulled up through a water volume with initial dimensions
241m× 46.1m× 231m. The guide shape is computed at the reso-
lution of the original simulation (grid spacing 1.20m). The guided
high resolution simulation in Figure 1c has a grid spacing of 0.60m,
uses a minimum simulation depth of 6.0m, has a maximum compu-
tational domain of 414× 225× 405 voxels and has a computation
time per time step of approximately 95s. The unguided simula-
tion in Figure 1d also has grid spacing 0.60m, a water volume with
shallower initial dimensions 241m× 10.8m× 231m, a maximum
computational domain of 441x × 234 × 423 voxels and uses ap-
proximately 149s per time step, making it 50% slower yet without
capturing the desired dynamics. An attempt to run the unguided
simulation at high resolution and full depth caused the solver to run
out of memory.

The example shown in Figure 6 illustrates that increasing the res-
olution alone can significantly change the timing of waves in a
simulation. In particular Figure 6a and 6f depict the same simu-

method total guide number number
time time particles grid cells

(seconds) (seconds) (millions) (millions)
Emerging boat, Figure 1

guided 93.9 23.1 10.3 2.63
unguided shallow 149.0 - 19.7 4.80

Liquid in container, Figure 6
guided, αe = 0.15m 6.44 .708 .623 .439
guided, αe = 0.20m 8.66 .701 .855 .490
guided, αe = 0.25m 9.93 .700 1.01 .530
guided, αe = 0.30m 10.7 .733 1.13 .553
unguided 13.9 - 1.67 .659

Sailing boat, Figure 7
guided 91.1 9.24 12.0 4.65
unguided shallow 70.0 - 10.6 4.41
unguided deep 649.0 - 70.3 12.3

Water slide, Figure 9
guided (t = 1s) 28.2 9.91 0.892 2.62
unguided (t = 1s) 35.3 - 2.34 3.82
guided (t = 90s) 209.0 31.8 7.83 22.8
unguided (t = 90s) 482.0 - 49.0 29.5

Table 2: Timings on a machine with two Intel Xeon quad core
2.66GHz CPUs and 16GB of memory. The total time includes all
steps of the solver, including loading (saving) data from (to) disk,
for a single time step. The number of grid cells includes all grid
cells allocated in voxel-tiles.

lation with grid spacings 0.04m and 0.01m respectively—note the
difference in slope between the two surfaces. Figure 6b-e show
simulations with varying simulation depths guided by the low res-
olution simulation in Figure 6a. Table 2 lists timings and storage
requirements for the simulations. The video shows that the guided
simulation largely follows the large-scale shape of the low resolu-
tion simulation. The difference between the low resolution and un-
guided high resolution simulation starts to become apparent about
80 frames into the animation. Occasionally the high resolution sim-
ulation will align with the low resolution simulation but will then
quickly deviate again. The guided simulation in this example ex-
hibits a tendency to create more high thin splashes than the low res-
olution guiding simulation; if undesirable this could be improved
by combining our method with additional control away from the
surface of the guiding shape. As expected, the effect of the guiding
decreases as the depth of the guided liquid increases.

Figure 7 illustrates a moving boat. The guided high resolution sim-
ulation retains the features of the guiding simulation with deeper
water such as a relatively high wake and large-scale wave distur-
bances (Figure 5). The unguided high resolution simulation at a
shallow simulation depth fails to capture these features. For this
type of guided simulation where the guiding shape exhibits large
tangential movements (in particular the waves in front of the boat),
we observed that the depth of the guided liquid has to be relatively
shallow in order to be guided properly. The guided high resolution
simulation takes approximately 91.1s per time step, the shallow
unguided high resolution simulation takes approximately 70s per
time step and the unguided simulation at high resolution and full
depth takes approximately 649s per time step (hence we obtain a
×6 speedup).

Figure 9 shows the results of a simulation guided by an animated
input shape, and Figure 8 compares the solution using guiding ve-
locities computed from velocity extrapolation and potential flow.
For this simulation the computation time per time step varied be-
tween 35s and 482s for the unguided simulation, and between 28s
and 209s for the guided simulation. The solution using velocity
extrapolation appears to have a tendency to travel faster than the



(a) (b) (c) (d) (e) (f)
Figure 6: Frame 200 from a simulation of liquid moving back and forth inside a container. (a) Unguided simulation with grid spacing
0.04m. (b-e) Guided simulations with grid spacing 0.01m and simulation depths 0.15m, 0.20m, 0.25m, 0.30m respectively. (f) Unguided
simulation with grid spacing 0.01m. At the starting configuration the bounding box is 1.40m×1.42m×1.99m, and the maximum simulation
domain at high resolution is 162× 152× 216 voxels.

Figure 7: Frame 164 from a scene with a moving boat. Left column depicts unguided simulations, middle column depicts guided simulations
and the right column shows the gain in detail for a guided simulation obtained by increasing the resolution. The top (bottom) row shows
simulations with grid spacing 1.20m (0.60m). The unguided simulation in the top-left corner is used to guide the guided simulations that
have a minimum simulation depth of 4.5m and a maximum simulation domain of 306 × 117 × 837 voxels at high resolution. The initial
dimensions of the water volume for the unguided simulations are 158m× 28m× 476m (top-left) and 158m× 5.0m× 476m (bottom-left),
and the maximum simulation domain at high resolution is 306× 72× 837 voxels.

(a) (b) (c)

Figure 8: Frame 90 from water guided by an animated input shape.
(a) Simulation guided by extrapolated velocities. (b) The input
shape. (c) Simulation guided by potential flow velocities.

input shape, which could be problematic in cases where the timing
is important. A comparison of velocity extrapolation and potential
flow for the simulation in Figure 6 is available in the accompanying
video and shows that velocity extrapolation also has a tendency to
exaggerate splashing behaviour. Velocity extrapolation is generally
faster than potential flow, but since this is done as a precomputation
stage it does not affect the actual simulation time.

Since our guiding method imposes guiding only at the guide shape,
input shapes moving with speeds that are far from physical may
cause liquid to move inconsistently with the guide shape. Hence
it would make sense to investigate combining our method with ad-
ditional guiding inside the simulated liquid such as [Thürey et al.
2006] or [Nielsen et al. 2009]. Additionally, an animated guide

does not necessarily take obstacles into account which may cause
discrepancies when the guided liquid interacts with them. Note also
that since we are simulating a relatively thin shell of liquid, we
cannot capture guiding effects below this depth. Furthermore, our
method cannot be used to guide thin splashes in the high resolution
guided simulations, unless the splashes are to some extent captured
at the resolution of the guiding simulation.

5 Conclusion and Future Work

We coupled a velocity boundary condition with velocity interpola-
tion and a novel algorithm for computing guide shapes to achieve
art-directed yet naturalistic liquid simulations at high resolution.
We demonstrated that our method improves the correspondence be-
tween low and high resolution simulations, can decrease computa-
tion time for simulations that require relatively deep water and be
used with animated input shapes. As future work it would be in-
teresting to make a comparison to the divergence free velocity ex-
trapolation method proposed by Rasmussen et al. [2004]. Currently
we are also exploring the possibility of combining our method with
other ways of controlling the liquid to allow for deployment in a
wider range of scenarios. Our method is applicable in a visual ef-
fects production environment, and we hope that our work may serve
as a starting point for further research into art direction of liquids.



(a) (b) (c)

Figure 9: Frame 69 from water guided by an animated input. The simulations have a grid spacing of 0.025m and guide shapes 0.05m. (a)
Unguided simulation with liquid constantly emitted with the velocity of the input shape at the entry point to the simulation domain. Maximum
simulation domain is 8.55m× 7.65m× 30.15m (342× 305× 1205 voxels). (b) The animated input shape. (c) The guided simulation with
a minimum simulation depth of 0.30m and a maximum simulation domain of 9.45m× 13.7m× 32.4m (377× 522× 1295 voxels).
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